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Abstract—As embedded systems are faced with ever more
demanding workloads and more tasks are being consolidated
onto a smaller number of microcontrollers, system designers
are faced with opposing requirements of increasing performance
while retaining real-time analyzability. For example, one can
think of the following performance-enhancing techniques: caches,
branch prediction, out-of-order (OoO) superscalar processing,
simultaneous multi-threading (SMT). Clearly, there is a need for
a platform that can deliver high performance for non-critical
tasks and full analyzability and predictability for critical tasks
(mixed-criticality systems).

In this paper, we demonstrate how a polymorphic VLIW
processor can satisfy these seemingly contradicting goals by
allowing a schedule to dynamically, i.e., at run-time, distribute
the computing resources to one or multiple threads. The core
provides full performance isolation between threads and can keep
multiple task contexts in hardware (virtual processors, similar
to SMT) between which it can switch with minimal penalty (a
pipeline flush). In this work, we show that this dynamic platform
can improve performance over current predictable processors (by
a factor of 5 on average using the highest performing configura-
tion), and provides schedulability that is on par with an earlier
study that explored the concept of creating a dynamic processor
based on a superscalar architecture. Furthermore, we measured a
15% improvement in schedulability over a heterogeneous multi-
core platform with an equal number of datapaths. Finally, our
VHDL design and tools (including compiler, simulator, libraries
etc.) are available for download for the academic community.

I. INTRODUCTION

In numerous real-time application domains such as auto-
motive computing, emerging restrictions such as power limi-
tations, cost, size, and maintainability push increasingly more
tasks onto a single microcontroller. The timing properties of
these tasks can vary in the degree of strictness, giving rise
to the field of mixed-critical systems [1]. Platforms executing
these types of workloads have the following requirements:

• Full predictability/analyzability - It should be possible to
perform Worst-Case Execution Time (WCET) analysis to
extract tight bounds on the required computation time for
each task.

• Timing isolation - Running tasks should not be affected
by external influences, e.g., other tasks contending for
resources, to ensure the timing validity of the system.

However, they also have the following desirable properties that
are prone to contradict with above-mentioned requirements:

• High-performance - Tasks should not only be able to
meet their own deadlines, but also to allow non-critical
tasks to achieve a certain quality of service (for example,
car entertainment media playback). Many architectural
techniques to improve performance impede predictability
and subsequently analyzability. Examples are caches,
branch prediction, and out-of-order (OoO) processing.

• Multicore/Multi-threaded - Multiple tasks should be able
to run concurrently, for reasons of performance and power
(a single-core that is powerful enough to run all tasks will
require more power than multiple cores with lower clock
frequency and voltage), and improved schedulability (see
Section V). Multicore platforms often under-utilize pro-
cessor resources, while multi-threaded platforms such as
SMT processors fail to provide timing isolation [2].

In order to meet these requirements, numerous processor
designs with predictable timing have been introduced. A recent
example is FlexPRET [3], which is a fine-grained multi-
threaded processor that provides full isolation and timing
predictability. It is similar to a barrel processor but allows
more flexibility in assigning cycles to threads in order to
allow higher single-thread performance at the cost of adding
forwarding paths (that need to distinguish the thread ID of
instructions) to the design.

In this paper, we propose to use the ρ-VEX polymorphic
VLIW processor for mixed-critical and real-time workloads.
Its goal is to provide a high level of flexibility by being able
to adapt to different workloads. We show that it has good
properties in terms of performance and schedulability in this
application domain. The runtime reconfigurable (polymorphic)
version can choose to target programs with a high level of ILP
in a high-performance single core 8-issue VLIW configuration,
or multiple threads/programs in a multicore configuration with
smaller issue widths. The key behind this runtime-adaptability
is being able to split the processor’s data paths into separate
cores or combining them into a single larger core. When
the processor is split, the independent datapaths provide full
isolation from each other. The ρ-VEX provides multi-core978-1-5386-1898-1/17/$31.00 c© 2017 IEEE



processing capabilities without under-utilizing resources. The
VLIW architecture, when used without caches, provides a
high degree of time-predictability [4] as it offers static branch
prediction (the compiler analyzes the most likely control flow
and restructures the code accordingly), in-order execution and
an exposed pipeline (all instruction latencies are fixed and
known to the compiler - no pipeline interlocking or resource
contention). Even when using caches, the ρ-VEX provides full
performance isolation between tasks as the caches are split
in the same fashion as the core, assuming that the backing
bus interconnect provides isolation. Naturally, adding caches
will reduce predictability and this paper will therefore not
evaluate cached setups. The designer can choose to use local
memories and/or enable caches using VHDL generics. We
evaluate the benefits of using this hardware platform for real-
time workloads in terms of schedulability, throughput, and
single-thread performance.

The contributions of this work are:
• We propose to use a polymorphic VLIW processor for

real-time and mixed-criticality workloads.
• We perform an evaluation of the processor in terms

of schedulability and performance using the Mälardalen
real-time benchmark suite.

• We show that the number of randomly generated task
sets that can be successfully scheduled on the processor
is on par with an earlier study on a proposed dynamic
superscalar architecture [5].

• We show that the processor can schedule up to 15%
more task sets compared to a heterogeneous multicore
processor with an equal number of total datapaths.

• We show that the VLIW processor improves perfor-
mance over a recently introduced time-predictable RISC-
V processor by up to 5.5× for the highest performing
configuration.

The remainder of this paper is structured as follows. In
Section II, the execution platform is introduced and concepts
necessary to understand the work are briefly discussed. Sec-
tion III continues with the scheduling methodology we propose
to use that allows us to exploit the dynamic nature of the
processor while still guaranteeing timing isolation between
Hard Real-Time Tasks (HRTT). Then we will highlight how
it can also assign any cycles not needed by HRTTs to Soft
Real-Time Tasks (SRTT). Section IV discusses the evaluation
setup, Section V shows the results and Section VII concludes
the work.

II. BACKGROUND

This section briefly discusses concepts from earlier work
that are needed to understand this work. First, we will intro-
duce the dynamic processing platform used. Subsequently, we
discuss the scheduling framework that we will use to schedule
workloads for this dynamic processor.

A. Processing platform

The processor used in this paper is the ρ-VEX dynamically
reconfigurable (polymorphic) VLIW processor [6]. We briefly

introduce here the main concepts of the processor related to
this work. The processor works by creating an 8-issue VLIW
core and multiplying the full processor state (consisting of the
general-purpose register file and a set of control registers such
as the program counter) to create by default 4 ‘virtual cores’
called contexts. Between the 8 datapaths and the contexts, an
interconnect is added that can be configured at run-time. When
running in a single 8-issue mode, all datapaths are connected
to one of the four contexts, and when running in 4× 2-issue
mode, each context is attached to a pair of datapaths (the in-
struction set architecture requires a minimum of two datapaths
to support long immediates). A single pair of datapaths or
multiples of these pairs can be re-assigned (i.e., reconfigured)
to the contexts without the need to save/restore the contexts
to/from main memory. Reconfiguring the interconnection can
be performed within 9 cycles (4 cycles during which the new
configuration is decoded and the core will continue running in
the old configuration, 4 cycles to flush the pipeline and 1 cycle
to start the new configuration). Datapaths that are unaffected
by the reconfiguration command will continue running without
stall cycles. A more in-depth discussion regarding the circuit
complexity of this design and the benefits in terms of context
switching and (reduced) interrupt latency can be found in [7].

Figure 1. Schematic depiction of the concept behind the ρ-VEX poly-
morphism: multiple contexts can be connected to the datapaths in different
fashions. In this configuration, Task 1 has been assigned a single pair of
datapaths (a 2-issue VLIW), task 2 uses 2 pairs (forming a 4-issue VLIW),
task 3 is inactive and task 4 has 1 pair of datapaths.

The core has an array of performance counters including
cycle, operation, stall, and various cache-related counters.
without stall cycles In order to provide high-precision timers,
the size of these registers can be configured and are at most
56 bits (resulting in 10 days with single cycle accuracy at 80
MHz before the timer overflows). Using this width, they can
be accessed by 2 ordinary load word instructions as the most
significant 8 bits of the lower part are identical to the least
significant bits of the high part.

The ρ-VEX pipeline has 4 stages by default (see Figure 2)
and supports forwarding and variable-length VLIW instruc-



Figure 2. Schematic of a single datapath with default configuration. The VHDL code is highly generic and units can be assigned to a pipeline stage at the
designers discretion. The registers between the stages are automatically inserted. [8]

tions. It is also highly configurable at design time using
VHDL generics, can be used with or without caches and is
synthesizable to ASIC and FPGA targets. It supports up to 8
contexts. Using the default configuration, it can be synthesized
at 80 MHz on the Xilinx VC707 evaluation board.

B. Scheduling Methodology for Dynamic Processors

In [5], modifications to an Alpha 21164 processor are
proposed to create a dynamically partitionable processor that
can run 1 thread in 4-issue in-order superscalar mode, 4
threads in scalar mode, or a combination. The goal for this
design is to be able to provide high performance for single
threads but also analyzability and timing isolation between
threads. Although this work is not directly comparable, being
a proposed design without hardware implementation and also
targeting the high-performance instead of embedded domain,
it does provide us with a very useful scheduling methodology
for our dynamic processor. It will be introduced here briefly.

The scheduling framework provides a way to create static
schedules for a dynamic processor that supports high fre-
quency reconfigurations. The problem with creating schedules
for these processors is that 1) each task in the task set
has its own period, so the hyper-period of the task set can
become very large, and 2) the processor can be reconfigured
at any time, resulting in an infeasible search space when
combined with the length of the hyper period. In addition to
this (although this problem is not discussed by [5]), a program
can have different phases over the course of its execution, in
which the Instruction-Level Parallellism (ILP) varies [9]. The
impact that changing the issue-width of the processor has on
the performance of a program fully depends on the ILP of that
program. Therefore, the WCET measurements for different
issue widths (see Table II) are only valid if 1) the issue-width
stays constant during the entire execution of a program or 2)
uniform ILP is assumed (which is not realistic for any non-
trivial program).

The main idea behind the scheduling framework in order to
mitigate these problems is to divide the schedule into rounds
of fixed length and spreading the execution of each task

(a) Task set with WCETs and periods.

(b) Task set spread over rounds.

Figure 3. Figure (a) presents an example task set, Figure (b) shows this set
after the tasks have been equally spread over rounds.

evenly over the rounds. To guarantee a single task to meet
its deadline, a scheduler must assign CPU time to it equal
to WCET

period . Similarly, after dividing the period into the fixed-
length rounds, our scheduler must guarantee the program that
same fraction of each round. At the end of the task’s period,
it will have executed a number of cycles equal to the WCET,
thus guaranteeing the validity of the schedule. In this fashion,
we have spread out the executions of all tasks in the task
set over their entire period resulting in a common sub-period
(the round). Therefore, instead of having to analyze the entire
hyper-period, we only have to create a schedule for a round
and repeat it indefinitely. In summary, creating a schedule for a
workload corresponds to creating a valid schedule for a single



round, resulting in a small search space for reconfigurations.
This scheduling method ensures that reconfigurations always
occur at the same time within a round and always coincide
with a task switch. This way, every task always runs with a
constant issue-width during its entire execution. From each
task’s point of view, it is always running in the same issue
width despite of the reconfigurations. Because of this, the
WCET for a task using that particular issue width is valid.
It is the main point of how the scheduling method allows us
to use a dynamic platform to schedule real-time workloads.

III. APPROACH

In this section, we describe how we use the scheduling
framework discussed in Section II-B to create valid static
schedules for the dynamic platform discussed in Section II-A.
We then proceed to describe how the ρ-VEX can efficiently
assign resources not needed by HRTTs to SRTTs in order for
them to achieve higher performance.

A. Schedule creation for hard real-time tasks

Creating a valid schedule for a single round involves as-
signing the required number of cycles and compute resources
(datapaths) to each task, drawing from the available pool of
cycles and resources. This is equivalent to a 2-dimensional
binpacking problem, where the number of cycles is one
dimension (time) and the number of datapaths the second
(resources). The amount of available cycles, identical to the
length of a round, is a designer’s choice. In this paper, we
have selected 200 cycles, because a number of our benchmarks
have runtimes starting from 2000 cycles (see Table II). More
realistic scenarios would benefit from longer round lengths
to decrease reconfiguration overhead. The amount of available
datapaths (issue width) depends on the processor. In case of the
ρ-VEX, it is a design-time parameter and can be 2, 4, or 8. The
polymorphic core has an issue width of 8 by default. For our
evaluations, we will use the polymorphic core and a number
of static (fixed) core configurations. The difference from a
scheduling point of view, is that fixed cores can only consider
WCETs for their particular configuration. The polymorphic
core can choose between each of them. This means that if
a task has a period that is slightly shorter than the 2-issue
WCET, a fixed platform consisting of one or more 2-issue
cores cannot meet the deadline. The reconfigurable core can
choose to run this task in 8-issue mode, and may therefore be
able to schedule this task. Conversely, if a task set has 4 tasks
that each have periods slightly longer than the 2-issue WCET,
a platform consisting of 4 2-issue cores can meet the deadlines
but a single 8-issue core cannot (as the execution time of a
task never scales down linearly when increasing the number
of issue slots). Again, this task set can be scheduled on the
polymorphic core. Because the core can be reconfigured during
a round, it is able to schedule task sets that are impossible
to schedule on any fixed platform with equal computational
resources (see Figure 4 for an example). Conversely, the
dynamic platform is able to ’mimic’ all possible static setups,
so it is able to schedule all task sets that are schedulable on

any static setup. In other words, the set of task sets that is
schedulable on the dynamic core is a superset of the set that
is schedulable on any static platform with equal aggregate
resources (datapaths).

Figure 4. Example of how to create a valid schedule for a dynamic processor.

Activation cycle Configuration
0 0x2100
60 0x3300

Table I
SCHEDULE TABLE CORRESPONDING TO THE EXAMPLE IN FIGURE 4. THE
ρ-VEX CONFIGURATION WORD USES 1 NIBBLE TO ASSIGN A PAIR OF

DATAPATHS TO A CONTEXT. IN THE CASE OF 0X2100, CONTEXT 1 AND 2
BOTH RUN ON A 2-ISSUE VLIW AND CONTEXT 0 RUNS ON A 4-ISSUE.

Our solution to the 2-D binpacking problem is implemented
as follows. For each task in the task set, a list of two-tuples
is created. This list contains an entry for issue widths of
2, 4, and 8; the two-tuples represent the issue width and
the corresponding WCET divided by the task period. Only
issue widths for which the WCET is smaller than or equal
to the task period are included. The tasks are now sorted
by area, a common pre-heuristic for binpacking algorithms.
The area is defined as follows: min

width

(
WCETwidth

period ·width
)

.
Before running the binpacking algorithm, a feasibility check is
performed by simply testing whether the sum of all the areas is
less than or equal to the total computational resources. If a task
set is not feasible, it is ignored. The tasks are now packed one
by one, by descending area. Packing is first attempted using
the narrowest core (in case of the 1x4, 2x2 heterogeneous
platform) and using the narrowest issue width compatible
with that core. The packing algorithm utilized is bottom-
left first (BLF) [10]. If packing fails, wider compatible issue
widths are attempted first. If all possible run configurations
on the narrowest core in a multi-core system fail, packing is
attempted on the next core. If packing fails on all cores in the
platform, the task set is considered to not be schedulable on
that platform.



A successful schedule consist of a mapping between data-
paths and contexts. From the scheduler’s point of view, each
context runs a task, but it is up to the designer to execute
multiple tasks on a single context (he will have to add the
WCET of a task save/restore). Depending on the task graph,
the mapping can change during a round. This is not only
true for the dynamic platform; when there are more tasks
than processors, context switches are also required on static
platforms. The mappings are stored in a static schedule table,
that contains an entry for every change in mapping during
the round. Each entry must be activated at a certain cycle
during the round. For the ρ-VEX, this can be performed by
a state machine that triggers a reconfiguration at certain time
values, but it is also possible to program a timer to trigger the
runtime scheduler. The runtime scheduler will read the next
entry from the table, activate the corresponding configuration
and reprogram the timer for the next entry. In this case, the
WCET of the scheduler must be added to the schedule for
every change in mapping. Table I depicts an example of a
schedule table corresponding to the scheduling example of
Figure 4.

B. Mixed-criticality: Assigning unallocated cycles to soft real-
time tasks

What makes this platform especially suitable for mixed-
critical systems, is that any space not consumed by critical
tasks can be assigned to non-critical tasks in an efficient
way, as will be discussed in this section. To make use of
the slack in the schedule, the designer can assign SRTTs
to one or more context(s). These context can be added into
the static schedule after the scheduling method described in
the previous section has guaranteed the required execution
time for the HRTTs. However, there will usually be much
more free cycles because of the overestimation of the WCET
(the actual execution time can be lower than the worst case,
sometimes a lot lower if it depends on the input). The ρ-
VEX is also able to utilize these cycles as follows. As soon
as a HRTT finishes, it will request the scheduler to give its
resources to one of the SRTT contexts as depicted in Figure
5. Naturally, the scheduler must ensure that tasks cannot take
away resources from other tasks. The scheduler will write
this change in the currently active static schedule table. From
that moment, the portion of resources that was reserved for
that task in each round will be given to the SRTT. When
as the original HRTT is triggered, the interrupt routine will
restore the original schedule, thereby again guaranteeing the
tasks execution time. This means that the HRTT is still fully
isolated. Multiple SRTTs can be scheduled on a single context
using any classical scheduling algorithm, taking into account
that these switches will require a classical save/restore penalty.

Depending on how much resources are left and how many
threads are active, the core can run these other tasks in either
high-performance 8-issue mode or high-throughput multicore
mode, unlike other analyzable processors such as [3] that is
limited to scalar execution. This is one of the key points of
the ρ-VEX processor - it is able to provide timing isolation,

Figure 5. A Hard Real-Time Task (red) giving its resources to a Soft Real-
Time Task when it has finished. When the original task is triggered again, it
will take its resources back. Static multicore systems are not able to utilize
all resources. A heterogeneous multicore can achieve a higher utilization by
migrating a task to a larger core when it becomes available. However, this
needs state saving and restoring (not needed by the dynamic core).

in addition to exploiting its dynamic properties to adapt
to the characteristics of the workload (Instruction-level or
Thread-level parallelism as discussed in [8]). When using a
heterogeneous multicore system, a task can be migrated from
a little core to a big core when it becomes available to increase
resource utilization as well (depicted in Figure 5). However,
when the HRTT is triggered, the core must first save the state
of that other task again before the HRTT can resume. This
penalty must be added to the WCET and is not required by
the dynamic core.

The ρ-VEX platform can be configured with caches and
DDR memory along with memory mapped single-cycle local
memories (scratchpads) for both instruction and data, so that
critical applications can use the scratchpads and non-critical
applications will utilize main memory through the caches.
Memory protection (spatial isolation) can be provided using
the experimental memory management unit. However, adding
this component to the design increases the cycle time consid-
erably, therefore we propose a simpler scheme where accesses
to local memories that are not assigned to the corresponding
context generate a trap (in the same fashion that the ρ-VEX
generates a trap when accessing unmapped addresses). The
operating system’s trap handler can then try to recover from
this error or terminate/restart the offending program, while
the other context (that would otherwise be victimized by the
access – either because a write changes the program state or
because arbitration for the memory port causes a stall cycle)
continues unaffected.



IV. EXPERIMENTAL SETUP

For the measurements, we are using a cycle-level archi-
tectural simulator for flexibility, and base our results on an
FPGA prototype of the ρ-VEX processor clocked at 80 MHz
running on a Xilinx VC707 development board. We will
use 23 programs from the Mälardalen benchmark suite [11].
Execution times, listed in Table II, were measured on a single
core for each of the 3 possible configurations, in a platform
without caches and using single-cycle memories (implemented
by FPGA RAM blocks). These execution times are assumed to
be the worst-case execution times, as they are always executed
using the same input. However, standard WCET analysis or
measurement techniques can be applied [4].

Table II
WCETS OF THE BENCHMARKS FOR THE POSSIBLE PROCESSOR

CONFIGURATIONS (2-ISSUE, 4-ISSUE, 8-ISSUE).

Worst-Case Execution Time (cycles)
Benchmark 2-issue 4-issue 8-issue
adpcm 350009 315107 309206
cnt 3626 2937 2664
compress 5236 4479 4241
cover 2210 2006 1815
crc 17879 14985 14667
edn 23184 18581 17505
expint 10800 9926 9512
fft1 50389 34061 26614
fir 183221 139559 129815
lms 4986376 3372138 2709911
ludcmp 55388 41112 34928
matmult 93211 85882 84649
minver 19289 13406 10844
ndes 31120 26502 24457
ns 5212 4253 4116
nsichneu 6357 6330 6316
prime 25788 23170 23158
qsort-exam 2995 2241 1922
qurt 21211 14494 11591
sqrt 19587 13877 11574
st 3631939 2313149 1731382
ud 11579 10720 10420
whet 29519872 18704428 13694591

The programs were compiled using our port of the Open64
compiler using optimization level 3. Programs were run bare-
metal, with our port of the newlib embedded standard C
library. Our UART driver was modified so it did not wait when
the output buffer is full, in order to remove the influence of
serial output. Output is written into a reserved memory region
so that it can still be examined after execution.

In order to measure the ‘schedulability’ (how many task
sets can be successfully scheduled) of the processor and
compare to [5], we have implemented a program that mimics
the task set generator according to their description. We will
briefly describe it here for clarity. We will generate task sets
consisting of 4 tasks randomly selected from the benchmark
set. For each of the tasks, a period is randomly chosen
using the following constraints: WCET8issue ≤ period <
(1.5×ntasks)×WCET2issue. These boundaries guarantee any
single task to be schedulable on a single 8-issue core (highest
performing processor in our design space), and that a sufficient
number of schedules are generated that are schedulable on a

single 2-issue core (lowest performing processor in our design
space).

The task set are divided into 4 bins of varying ‘difficulty’;
every set is categorized in terms of total 2-issue utilization
(the sum of the 2-issue utilization of each task in the set;∑

task
WCET2task

periodtask
). Bin 0 contains the lightest task set with a

total utilization of 0 - 1, and bin 3 has the most difficult task
sets with highest utilizations (between 3 and 4). Each task set
is randomly generated and assigned to its corresponding bin
until each bin has 2500 task sets. In [5], the bins consist of 25
task sets each. However, using that size, we found the results
to vary significantly between runs. Therefore, we increased it
to get more consistent outcomes.

We will consider a number of platforms in our evaluation.
Most of these will have equal aggregate resources (i.e., 8
datapaths in total), to demonstrate the effectiveness of the
dynamic processor in utilizing these resources. The exception
is the 1x2-issue platform, to match the “scalar processor” in
[5].

V. RESULTS

This section presents the measurement results in two eval-
uation metrics: schedulability and performance.

A. Schedulability

Figure 6 plots the number of task sets that can be success-
fully scheduled on the different platforms. The four groups on
the x-axis each list the results for a certain schedule bin, from
0 (task sets with lowest total utilization) to 3 (task sets with
highest total utilization). Every result is relative to the number
of feasible schedules in the bin (which is plotted in Figure 7).

A single 2-issue core can, by definition, only schedule tasks
from bin 0 (total 2-issue utilization must be < 1). This can be
clearly seen in the graph, where all other bins have 0 successful
schedules for that platform. As the difficulty increases, the ad-
vantage of using the dynamic processor becomes clear; in bin
2 it is able to schedule 97% of the feasible schedules and in bin
3 50%. The homogeneous multi-core platforms can schedule
considerably smaller numbers of task sets, with the 4x2-issue
being able to accommodate only 10% of the task sets from
bin 3. These sets consist of tasks with periods that are close
to, but not shorter than, the 2-issue execution time. If there
is a single task in the set that requires a larger core to meet
the deadline, this platform cannot schedule it. The absence of
the 2x4-issue platform is due to the usually small difference
between 2-issue and 4-issue execution times (see Table II).
For this platform, running the programs in 4-issue mode is
the only choice, resulting in more total ‘area’ utilization for
a task, even if it does not need the additional performance.
The same applies to the 1x8-issue platform, but the effect
is even more pronounced. The heterogeneous 1x4,2x2-issue
platform provides a very adequate schedulability, with the
dynamic processor beating it by only 15%. This means that, if
the higher single-thread performance that the 8-issue dynamic
core can deliver is not needed, a heterogeneous platform is a
good alternative for designers to consider.



Figure 6. Plot of the number of successful schedulings for each of the
evaluated hardware platforms. On the x-axis are the 4 bins with increasing
total utilization. Results are relative to the number of feasible task sets in the
bins (infeasible task sets are ignored).

Figure 7. Plot of the number of feasible task sets for each of the task set
bins.

The number of feasible task sets per bin is plotted in Figure
7. It drops as the difficulty of the task set bin increases to 80%
for bin 2 and 20% for bin 3. Of these 500 feasible task sets
in bin 3, the dynamic core is able to schedule around 50%,
which could indicate that 1) there is room for improvement in
the scheduling framework and binpacking algorithm, or 2) the
requirement that every individual task must always run using a
constant issue-width (see Section II) could be a limiting factor.

Comparing to the results from [5], plotted in Figure 8, we
see a similar curve over the task set bins, but our scheduler
performs somewhat better for the dynamic processor. In bin
3, it can schedule almost twice the number of task sets
at 50% vs. 28%. An equivalent of the heterogeneous 1x4,
2x2 platform has not been evaluated so we cannot make a
comparison. Figure 9 shows a different representation of
the schedulability results, plotting the fraction of successful
schedulings in relation to the total system utilization. We can
see that as the number of tasks increases, the advantage of the
dynamic core becomes more pronounced.

B. Performance & Area Utilization

To evaluate the performance of the ρ-VEX processor, a
comparison was performed with a 32-bit RISC-V processor on
which the FlexPRET time-predictable processor [3] is based.

Figure 8. Schedulability results from [5], to be compared with Figure 6.
RVMP (Real-time Virtual MultiProcessor) should be compared to dyncore.

Figure 9. Schedulability plotted in relation to total system utilization.



Table III
PERFORMANCE - RISC-V (RV32I) VS ρ-VEX.

ρ-VEX speedup over RISC-V
(factor)

Benchmark RISC-V 2-issue 4-issue 8-issue
adpcm 1732860 4.95 5.50 5.60
cnt 9554 2.63 3.25 3.59
compress 6917 1.32 1.54 1.63
cover 1808 0.82 0.90 1.00
crc 21633 1.21 1.44 1.47
edn 818203 35.29 44.03 46.74
expint 6726 0.62 0.68 0.71
fir 956526 5.22 6.85 7.37
lms 19926799 4.00 5.91 7.35
ludcmp 194575 3.51 4.73 5.57
matmult 682965 7.33 7.95 8.07
minver 43312 2.25 3.23 3.99
ndes 32785 1.05 1.24 1.34
nsichneu 4260 0.67 0.67 0.67
prime 74616 2.89 3.22 3.22
qsort-exam 10283 3.43 4.59 5.35
qurt 92343 4.35 6.37 7.97
st 15210054 4.19 6.58 8.78
ud 4120 0.36 0.38 0.40
whet 49287174 1.67 2.64 3.60
Weighted avg. speedup N.A. 2.27 3.52 4.69
Avg. speedup N.A. 3.95 4.99 5.54

As we are only measuring performance, the timing extensions
are not needed. Measurements are based on cycle counts from
the spike simulator executing the RV32I instruction set. All
benchmarks are compiled using optimization level 3. The
speedups are calculated assuming a target clock frequency of
80MHz for both processors. It must be noted, though, that the
RISC-V will likely be able to achieve higher clock frequencies.
Also note that there are 3 benchmarks that have been removed
from the results (fft1, ns and sqrt). This is because the RISC-
V compiler completely optimized them away, resulting in a
program that only returns the answer.

When weighted to execution time, the highest performing
8-issue ρ-VEX is 4.69× faster than the RISC-V. As this bench-
mark suite is being dominated by the execution time of whet,
we also report the non-weighted average of 5.54× speedup.
Table IV lists the FPGA utilization for the two processors
when prototyped on a FPGA. The utilization of Block RAMs
is relatively high in case of the ρ-VEX, because the multi-
ported register file implementation requires duplicated storage
combined with a Live Value Table [12]. Compared to the
FlexPRET, the ρ-VEX utilizes approximately 5 times more
resources. As can be seen in Table III, this is similar to
the increase in performance. This compares quite favorably
as single-thread performance normally does not scale linearly
with area utilization.

The size of the ρ-VEX, however, is a factor that designers
will need to consider as an 8-issue VLIW will be overkill
for many application scenarios. However, for some domains
such as media or digital signal processing, VLIWs are known
to provide significant performance gains over scalar RISC
processors, therefore, in these cases the ρ-VEX is a suitable
platform.

Table IV
RESOURCE USAGE OF ρ-VEX VS. THE FLEXPRET TIMING-ANALYZABLE

MULTI-THREADED PROCESSOR

ρ-VEX
(4-threads)

FlexPRET
(4-threads)

Increase
(factor)

Slice Registers 8529 2687 4.72
Slice LUTs 31839 5661 5.6
BRAMs 128 Not reported N.A.

VI. RELATED WORK

This work touches upon the subjects of (static real-
time) schedulability, multi-threaded architectures, and time-
predictable processors. In [13] and [14], predictability and
schedulability is discussed. Examples of processors with mul-
tiple contexts/threads for the purpose of real-time systems are
[15] [16]. In [17], performance comparisons are made between
increasing the number of cores and increasing the number of
register sets. A VLIW architecture with multiple hardware
contexts is the Itanium [18]. There, it is used to increase
throughput by using SMT. This is not directly comparable
to the ρ-VEX used in this work as it targets the high-
performance instead of embedded domain, and furthermore it
does not provide performance isolation. An SMT architecture
with bounded performance interference is proposed in [2].
The multiple contexts of the ρ-VEX are discussed in [7].
In [5], modifications to an Alpha 211164 are proposed that
makes use of multiple isolated multi-threaded contexts (virtual
processors) to improve static real-time schedulability. This
work is the most closely related to ours and is discussed more
in-depth in Section II. The contributions we provide over this
work is the use of a platform that is implemented in VHDL
and available for download for the academic community,
and which targets the embedded instead of high-performance
domain (Virtex 6 and 7 boards are supported). Although it
is not discussed by [5], the scheduling method has some
similarities to p-fair scheduling [19]. In particular, p-fair also
relies on rounds to assign resources to tasks. However, in p-fair
scheduling, a round is atomic regarding resource assignment
(a resource can only be assigned to a task for a full round).
The scheduling method used in this work divides the resources
within a round in order to reduce the search space of a dynamic
processor that can change at any time during runtime.

In the realm of time-predictable processors, the most no-
table example is arguably the recently introduced FlexPRET
softcore [3] that is also available for download and can be
prototyped on an FPGA. Instead of assigning execution lanes
to threads, it can assign cycles to threads in a fine-grained
multi-threaded fashion. By assigning a larger fraction of the
threads, it can also throttle the performance of a single thread.
The advantage of the ρ-VEX is that it is a VLIW architecture
that can provide high performance over the scalar FlexPRET
(see Table III), particularly in certain embedded domains such
as signal processing or media applications. See [4] for a study
about time-predictability of VLIWs and their compilers.



VII. CONCLUSIONS

This paper introduces the ρ-VEX polymorphic processor
to the field of real-time and mixed-criticality systems. We
showed that it can exploit its dynamic properties to 1) improve
schedulability over fixed execution platforms, while still pro-
viding execution time guarantees when using a round-based
scheduling methodology, and 2) efficiently assign resources to
lower-priority threads when high-priority threads finish ahead
of their WCET. Due to the 8-issue VLIW architecture, it
can also provide significant performance gains compared to
scalar RISC architectures such as time-predictable RISC-V
processors. The nature of VLIW architectures provides a high
degree of predictability as it uses static branch prediction
and an exposed pipeline. This makes it possible to establish
relatively tight WCET bounds, either using measurements (if
it is possible to fabricate an input that activates the longest
execution path) or using static analysis techniques. These
advantages make it a suitable platform for mixed-criticality
systems, especially when the workload contains media and/or
signal processing applications. The cost of increased area
utilization is a trade-off that designers must make when
choosing an execution platform. Keep in mind that, to achieve
full predictability in a complete system, a predictable intercon-
nect (and main memory system, if applicable) must be used
such as [20]. when using caches instead of local memories,
the system still provides performance isolation because the
caches are split in the same fashion as the datapaths, but the
predictability is severely impacted (one would need to assume
that every cache access results in a miss). The ρ-VEX comes
with VHDL code, toolchain (consisting of multiple compilers,
binutils, newlib, etc.), a fast architectural simulator, extensive
debug hardware and interface tools. It can be downloaded for
academic use at www.rvex.ewi.tudelft.nl.
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