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Abstract. Advancements in the field of big data have led into an
increasing interest in accelerator-based computing as a solution for
computationally intensive problems. However, many prevalent big data
frameworks are built and run on top of the Java Virtual Machine (JVM),
which does not explicitly offer support for accelerated computing with
e.g. GPGPU or FPGA. One major challenge in combining JVM-based
big data frameworks with accelerators is transferring data from objects
that reside in JVM managed memory to the accelerator. In this paper, a
rigorous analysis of possible solutions is presented to address this chal-
lenge. Furthermore, a tool is presented which generates the required code
for four alternative solutions and measures the attainable data trans-
fer speed, given a specific object graph. This can give researchers and
designers a fast insight about whether the interface between JVM and
accelerator can saturate the computational resources of their accelerator.
The benchmarking tool was run on a POWER8 system, for which results
show that depending on the size of the objects and collections size, an
approach based on the Java Native Interface can achieve between 0.9 and
12 GB/s, ByteBuffers can achieve between 0.7 and 3.3 GB/s, the Unsafe
library can achieve between 0.8 and 16 GB/s and finally an approach
access the data directly can achieve between 3 and 67 GB/s. From our
measurements, we conclude that the HotSpot VM does not yet have stan-
dardized interfaces by design that can saturate common bandwidths to
accelerators seen today or in the future, although one of the approaches
presented in this paper can overcome this limitation.

1 Introduction

With the advance of the big data era, many different big data processing and
storage frameworks have been developed. Many of these frameworks are written
in languages that use a Java Virtual Machine (JVM) [10] as the underlying
platform to execute compiled programs. This allows a cluster to easily scale out,
adding nodes of any type of hardware, as long as they can run a JVM. A well
known example is Apache Spark [18] which is written in Scala and is generally
run on the OpenJDK HotSpot virtual machine.

Although the performance of programs run on the JVM can (in very specific
situations) come close to the performance of native implementations, the added
layers of abstraction still impose limits [8]. Speeding up JVM applications beyond
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Just-In-Time (JIT) compilation can be done using native libraries to squeeze out
the last bits of performance that the underlying platform has to offer, sacrificing
some of the portability of the application. While still a long way to go, the big
data field is slowly catching up with the performance known from the high-
performance computing (HPC) domain [1]. However, as the end of multicore
scaling approaches, scaling up even native CPU performance will be troublesome
in the near future [6].

Thus, as big data problems become bigger, there is a need to go even beyond
the performance that traditional multicore systems can offer. For this reason,
the research and industrial community is looking at other paradigms, such as
combining accelerators or near-memory computing with big data platforms. In
this paper, the focus is on accelerators.

GPGPU computing is currently the most popular method for accelerated
computing. GPUs offer superior performance for tasks with a lot of thread-
level parallelism and floating-point calculations. Effort is also put in the more
power-efficient FPGA accelerators, suitable for deeply pipelined datapaths and
other highly parallel algorithms. In either case, there is little explicit support
for accelerated computing in specifications or implementations of major JVMs
at the time of writing.

One of the major challenges during integration of JVM programs with accel-
erators is transferring the data represented as objects in the JVM memory to the
accelerator. The interface between the data stored in objects managed by the
JVM and an accelerator incurs a specific amount of overhead. If this overhead
is higher than the performance gained from the accelerator, there is no point in
investing effort to accelerate an algorithm.

Because we look at this matter within the context of big data frameworks, we
assume that there is an application that would like to perform a transformation
on a parallel collection of data items, represented as JVM objects. One example
is a map transformation, which is a common operation for big data applications.
The goal of this paper is now to give an overview of four different yet feasible
approaches in transferring the object data from the JVM to the accelerator. Fur-
thermore we attempt to quantify the overhead of this data transfer based on the
layout of the object and the approach taken. This can help future development
and integration of accelerators with JVM-based big data frameworks.

The contributions of this paper are:

– We give an overview of the most feasible approaches in transferring data
between JVM and accelerator.

– We present a benchmarking tool that quantifies the parameters of the model
for a given platform. This allows designers and researchers to get an esti-
mation of the performance of their accelerated implementation, when JVM
objects hold the source data. It will also give an indication on which approach
will suit their performance requirements. The tool can also be used as a static
analysis tool on custom object layouts.

– We measure the data transfer performance of each of the approaches on the
OpenJDK HotSpot VM running on a POWER8 system.
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The organization of the paper is as follows. Section 2 will discuss related work.
In Sect. 3 a more thorough problem definition is given. In Sect. 4 we will give an
overview of four feasible approaches. Section 5 comprises the experimental setup.
In Sect. 6 the results are presented. A conclusion is given in Sect. 7.

2 Related Work

When accelerators are controlled by and attached to a host system, it is assumed
that the accelerator interface partially consists of a native library. Therefore, the
problem of transferring object data from JVM to accelerator is initially similar
to the problem of native function access to JVM memory.

For this reason, the JVM implements the Java Native Interface (JNI). Many
open-source projects exist (e.g. JNA [11], JavaCPP [2]) that mainly attempt
to simplify integration of native libraries with Java programs through sugaring
or abstraction of the JNI (which is normally used by writing C or C++ code).
We will measure the best case performance of JNI without any of the overhead
introduced by the frameworks.

Several researchers that attempt to integrate accelerators with JVM based
big data frameworks note that the JNI interface causes a major performance
bottleneck for their applications. In the work of [3,9], the massive latency that
the JNI introduces is hidden by task pipelining, effectively overlapping JNI access
with accelerator execution. Also, when a succession of transformations will take
place on the accelerator, intermediate data is cached in local memory and can
also be broadcast to other nodes as is.

Another interesting scheme is described in [7], which uses direct ByteBuffers
for which the backing array is mapped to a region accessible through direct
memory access by an FPGA. The authors use the Xilinx Zynq system, in which
the host CPU shares the same physical memory as the FPGA. Such hardware
setup enables easy access to the data from the accelerators, although it is not
yet common in today’s big data clusters.

In the Apache Spark project, with the introduction of the Tungsten engine,
data items can be stored in off-heap memory using DataFrames and Datasets. At
the time of writing, this is currently done mainly to prevent garbage collection
overhead on the large collections of data. The community has been discussing the
possibility of feeding data that is stored off-heap directly to native libraries, but
any design, implementation or measurements have not yet been presented [16].
Furthermore, objects are serialized into the off-heap memory using serializers
that in many cases will also introduce extra overhead by e.g. compressing the
data [13].

More recently, with TensorFrames [5], integration of GPGPU accelerated
computing in Spark using off-heap managed data is shown. However, internally
the data is first deserialized back into the JVM and then JavaCPP is used (which
is JNI based) to transfer the data row-wise through a native library to a GPGPU,
which is rather inefficient. In the work on Spark-GPU [17], a similar approach
is seen. Data items first have to be transferred to some off-heap memory region,
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before passing it to a GPGPU. In a specific case with string objects, the authors
show that reading back this data from a GPU-friendly projection in an off-heap
structure incurs significant overhead of between 10.5× to 18.3×.

Many of these previous works focus on accelerating a specific application,
in which the interface between JVM and accelerator is not the main point of
thorough investigation. In this work, we aim to give an overview and quantify
in detail the properties of this interface, since it is one of the most critical
components in such a system.

3 Problem Definition

In light of the advancing interest in accelerating JVM based big data applica-
tions and frameworks, the main question that this paper aims to address is as
follows. Which approaches exist to transfer data held by objects in a JVM to an
accelerator, and how efficient are they?

To scope the question, we assume that there is an application holding a
collection of objects that contain data of interest to be used in a transformation.
The transformation is implemented in an accelerator. This commonly means
that each object in the collection will be transformed to some new object, or it
will be reduced to some final result. We also assume the collection is parallel,
thus the transformation may be applied to the objects in parallel as well, i.e. the
objects within a collection do not refer to each other.

The fields of an object that represent its state and data, can be of the fol-
lowing types:

– A primitive (e.g. an integer, float or character).
– A reference to a child object or a child array object.

One exception is the array object type; it can hold multiple primitives or
references, where each primitive or reference does not have a separate field iden-
tifier, merely an index. For the sake of simplicity we will assume that there are
no loops in the reference graph of the object, i.e. all object reference graphs are
trees.

The main problem within this scope is due to the fact that a programmer
running applications on a JVM has no explicit control over the location or the
layout of the objects in memory. In a system where one has control over both
layout and location of objects, one may choose to lay out the data in such a way
that it is convenient for an accelerator interface to access. This usually means
that the data at least resides in a contiguous memory region.

Thus, to perform the transformation on one object of the collection, all prim-
itives that reside in the object tree must first be obtained. This involves travers-
ing the object tree, accessing all the primitives, whether they are in fields or in
arrays. When this data is collected and saved in a contiguous memory region,
this process is also known as serialization. Serialization is used to store the object
to disk or to transfer it over a network, hence the object must usually be placed
in a contiguous memory region so that it may fit in a file or a message. Later on,
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Fig. 1. Four different approaches of transferring the object data to the native environ-
ment. The thick lines represent the data path, and pointer/reference passing between
different programs is shown with an asterisk. Label numbers indicate data flow order.

the serialized object is deserialized into the memory of another JVM. However,
for a transformation to take place in an accelerator, the primitives must merely
be transported to the accelerator’s local memory; not necessarily reconstructing
it in such a way that a JVM program can access it again.

Accelerators are often controlled by a host CPU. In most cases this CPU
will also run the JVM. Controlling the accelerator from the application will
therefore involve calling at least one, but possibly multiple native functions. In
major JVM implementations, this can be done using the Java Native Interface
(JNI). Therefore, there are two ways of where object traversal could take place;
either by bytecode running on the JVM itself or by a native function invoked
through the JNI.

To address the question posed at the beginning of this section, the next
section will give an overview of four feasible approaches to obtain the primitives
and transfer them to an accelerator.
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Table 1. Summary of characteristics of different approaches

Approach Traversal Serialized Copies Portability Support Seen in

ByteBuffer bytecode yes 1-2 high high [13]

ByteBuffer (off-heap) bytecode yes 1 high high [7]

Unsafe bytecode yes 1 medium low [5][17]

JNI native yes 1-2 medium high [11][2][4]

Direct (copy) native yes 1 low low —

Direct (no-copy) native no 0 low low —

4 Overview of Data Transfer Approaches

This section first discusses the approaches of accessing a single JVM object using
a single thread, and then how multiple objects can be accessed using multiple
threads.

4.1 Single-Object, Single-Thread Approaches

There are four basic approaches by which the data of an object could be trans-
ferred to an accelerator (also shown in Fig. 1), namely:

(a) ByteBuffer approach — Using the JVM to traverse the object tree and write
it into a byte array using the java.nio.ByteBuffer or its derivatives like
IntBuffer or FloatBuffer. The byte array is then passed to the accelerator
interface through the JNI.

(b) Unsafe approach — Using the JVM to traverse the object tree and write
it directly to off-heap memory using the sun.misc.Unsafe library. The
address of off-heap memory location of the object is then passed to the
accelerator interface.

(c) JNI approach — The object reference is passed as an argument through the
JNI to a native function. Then, the native function uses JNI functions such
as Get<Primitive>Field or Get<Primitive>ArrayElements to obtain the
primitives.

(d) Direct approach—Traversing the object tree directly while it resides inside
the JVM memory. The accelerator interface may directly load the data or
it may first be serialized in some off-heap memory location.

The following subsections will discuss each approach in more detail. A sum-
mary can be found in Table 1.
ByteBuffer approach: For this approach, the object tree is traversed using
JVM bytecode. Primitives and primitive arrays are copied to a ByteBuffer
using its put and get methods. ByteBuffers are objects that wrap around a byte
array (called the backing array). They allow an easy interface to load and store
primitives from and to the byte array. The reference to this byte array can be
passed through the JNI to a native function that interfaces with the accelerator.
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To obtain the actual array, the JNI function Get<Primitive>ArrayElements
or GetPrimitiveArrayCritical can be used. This may1 cause another copy
(although less likely in the latter case) of the data, but in either case it makes
the array accessible to the native function. A variant to this approach is where
the ByteBuffers can also wrap around an off-heap byte array, if the byte array
is allocated using the allocateDirect method. In this case, the data only has
to be copied from VM memory to the byte array once. The address of the off-
heap byte array can be obtained in the native code by using the JNI function
GetDirectBufferAddress.

Unsafe approach: The Unsafe approach uses the sun.misc.Unsafe library.
This library allows C-like memory operations such as allocation and freeing of off-
heap memory. Within the Java programming paradigm it is considered ‘unsafe’
because usually memory management is not done explicitly by the programmer.
The library is tightly coupled with the HotSpot VM, but its interface is not
officially supported or standardized. Traversal of the tree is done using JVM
bytecode. Primitives and primitive arrays are copied to an off-heap allocated
memory location using put and get methods. This makes the Unsafe approach
quite similar to the ByteBuffer Direct approach. To access the data, the memory
address of the off-heap structure can be simply passed to a native function
interfacing with the accelerator using the JNI.

JNI approach: The JNI approach is less straightforward, since traversing the
object tree is done through JNI calls in the native code. First, the references to
the classes of the objects in a tree must be obtained using FindClass. Then, the
field IDs of the classes must be obtained using GetFieldID. Object references
can be traversed using GetObjectField. Finally, with Get<Primitive>Field,
primitive fields can be obtained. The functions Get<Primitive>ArrayElements
or GetPrimitiveArrayCritical can be used to obtain array values, where both
functions potentially copy the values into a newly allocated region that must be
released afterwards. Because an accelerator cannot call JNI functions directly,
it is assumed that when the JNI approach is used, the primitives are stored in
some memory allocated by the native code, and thus the object is serialized. The
serialized object is then passed to the accelerator interface.

Direct approach: The Direct approach involves traversing the object tree and
obtaining the values from the JVM memory itself. Traversing the object tree is
done through calculating pointers to the objects from JVM references directly.
Fields are taken from offsets on the object pointers. This approach has low
portability since the way in which references are represented and translated
to virtual memory addresses is not standardized across implementations. For
example, in the HotSpot VM, this depends on VM parameters and platform
address size. References (called ordinary object pointers or OOPs) can be 32-
or 64-bits, where the 64-bit representation is an actual native pointer, but the
32-bits representation might be a compressed OOP [12]. Also, the offsets or
1 this depends on whether the representation of the array in the VM is the same as

the native representation, and if the VM garbage collector supports “pinning”.
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implementation of field storage is not specified. Therefore, this approach is not
straightforward and is extremely platform-dependent.

If the accelerator has an interface that allows to initiate loads/stores from/to
the host application memory that is running the JVM (e.g. CAPI [15], or with
CPU + FPGA SoCs where the acceleration fabric shares the data bus of the
CPU [7], or with techniques such as NVIDIA’s Unified Memory in CUDA), it is
not required for the object to be serialized. Instead, the actual object traversal
may take place on the accelerator itself. Therefore, the Direct approach allows
serialized (copy) but also unserialized (no-copy) access to the object, which is
unique to this approach.

We have not found an accelerator interface leveraging this technique pub-
lished in literature. Note that for server-grade systems this technique seems yet
unfeasible, since the latency of contemporary accelerator interfaces is still in the
order of microseconds. When reference are traversed in large data structures
with small objects, this will result in poor performance, because the ratio of
requests to data is high.

It might appear that proper functioning of this approach can be endangered
by the JVM garbage collection mechanism. However, when starting the Direct
approach through a single JNI invocation that uses an object reference as a
parameter, this reference is made a local reference. This means that as long
as the JNI function has not yet returned, the garbage collector will not move
the object of this reference, or its children. The reference could even be made
global such that the object will not be garbage collected at all and can be passed
between different JNI invocations or threads.

4.2 Parallel Access of Collections of Objects

When there is a collection of objects to be processed by an accelerator, and the
objects of the collection do not refer to other objects in the collection, the collec-
tion may also be accessed in parallel. This can help to increase the throughput
on multicore systems. In case of the Direct approach with load/store capable
accelerators, loads for data of multiple objects could be pipelined.

To support parallel access for the ByteBuffer approaches, each thread gets its
own ByteBuffer object with backing array in order to prevent race conditions.
The backing arrays are obtained through the JNI and could be merged in the
native code. They could also be sent to the accelerator interface in sequence,
thus from the accelerator point of view, it will no longer be a single collection
per se. This might introduce some overhead or require a slightly more complex
control structure for the ByteBuffer approach.

For the Unsafe approach, the memory is allocated once, then each thread gets
its own instance of sun.misc.Unsafe, again to prevent race conditions. Then,
each thread operates on a different offset of the destination memory.

For the JNI approach, parallel access is more complicated. Because references
to objects are only valid in the corresponding thread that obtained them through
the JNI, the reference to the array holding the collection must first be made
global before it is passed to each thread. New threads must also register with
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the JVM using the JNI function AttachCurrentThread before they may call
other JNI functions. After accessing the values, the threads must detach and the
global reference must be released to allow garbage collection to take place on
the objects.

For the Direct approach, parallel access is straightforward. Multiple threads
may have multiple outstanding accesses of JVM memory simultaneously, and
store them on different offsets of off-heap memory.

5 Experimental Setup

To measure the access times of the different approaches, a benchmarking tool was
implemented (see also Fig. 2). As an input to the tool, a layout of an object tree
is first specified. From this specification, Scala sources and ultimately JVM byte-
code is generated, containing the required object classes and an Instantiator
class which contains methods to instantiate the object tree and fill it with ran-
dom data. Furthermore, for each approach, in the top-level class, methods are
generated to serialize the object to a byte array or to off-heap memory corre-
sponding to the description of the ByteBuffer and Unsafe approach, respectively.
These classes are then compiled to JVM bytecode. For the JNI and Direct app-
roach, functions callable through the JNI are generated in C. They are then also
compiled to a shared library, together with functions that access the data for the
ByteBuffer and Unsafe approach. Finally, a second program (benchmark runner)
can take the class files and library as an input and run measurements of object
access time. The benchmarking tool is available as an open-source project [14].
Using this tool, it is possible to measure the access times of different types and

root

child childprim

arrayprim prim

Object graph

Code
Gener-
ator

C
source

Scala
source

C lib

Class
files

Bench
runner

Fig. 2. General flow of the benchmarking tool

sizes of object trees. It is possible to generate two types of object layouts. One
layout where the root object does not contain any references, except to primitive
arrays (a leaf object). A leaf object contains only a variable amount of primi-
tives and arrays of variable size. Another layout where the object has a specified
width W and depth D, such that at the root level it contains W references to
the second level, where each object contains max(W − 1, 1) references, until the
level equals D. Only at the last level, the primitives and arrays are instantiated.
This layout allows us to also make a linear object tree, by setting W = 1 and
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D > 1. It is also possible to supply a custom class layout or object tree to the
tool, such that it may be used as a static analysis tool for existing applications.

By varying the parameters of the aforementioned object tree layouts, it is
possible to obtain the parameters of the model for a specific platform and JVM
implementation. By varying the number of primitives in a leaf object, the average
time to copy a primitive can be measured. By increasing the array size of a leaf
object, the average array copy time per element can be measured. By varying
the depth in a linear object tree, the average time to traverse a reference can be
measured.

Parallel collection serialization and parallel access performance is also mea-
sured to get the peak performance for the platform. From the hardware point
of view, when more cores and hardware threads run in parallel, we may assume
that the internal memory infrastructure is at some point saturated, resulting
in peak performance for that platform. Thus, besides specifying the object tree
layout for a benchmark, it is also possible to generate a collection of N of these
objects and specify with how many threads to access the objects. Furthermore,
because run-time measurements on the JVM are very noisy, the experiments are
repeated R times and averaged. These numbers are reported per experiment in
Sect. 6.

The benchmarking system consists of two POWER8 CPUs running at
3.42 GHz on an IBM Power System S824L (8247-42L) with 256 GiB of total
RAM. We confine our measurements to one of the two CPUs only. Primitives
used are 32-bit integers. Attaching an actual accelerator is outside the scope of
this paper, but by accumulating all serialized primitives into a single value on the
CPUs we can validate the correctness of each approach and we can make a fair
comparison for the Direct (no-copy) case. This is in theory the fastest approach,
because it does not copy at all. Without any operations on the data it would
otherwise only have to resolve all references without accessing the data itself.
Native threads are controlled through OpenMP and JVM threads are statically
managed.

In a real application, more dimensions to the problem are relevant, such as
how to lay out the serialized objects in the memory such that its structure is
convenient to process in a specific accelerator, how to retain references within
the serialized format, how to deal with cyclic object graphs, how to deal with
static fields of classes, and more detailed problems which are commonly seen in
serialization. However, because we are primarily interested in the feasibility and
best-case performance, these dimensions are also outside the scope of this work.

6 Results

6.1 Single Object

In Fig. 3a, the access time of a leaf object with an increasing number of
primitive fields is shown. We found that the ByteBuffer, Unsafe and Direct
approaches show a mainly linear increase in access time, while the JNI approach
shows a significant quadratic increase when the number of fields increases in
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Fig. 3. Average latency of accessing JVM objects.
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a leaf object. This is due to the use of the JNI function GetFieldID for this
particular experiment. This function looks up the field identifier string in the
HotSpot symbol table. Suppose the number of primitives is p. We must search
p symbols p times to access all primitives. Thus the time complexity to access a
field by using GetFieldID is O(p2).

In Fig. 3c the access time of a leaf object containing only an array is shown.
Accessing arrays of different sizes clearly shows the effect of the CPU cache hier-
archy. The derivative of the access time with respect to the array size is small in
regions where the array still fits in the cache. It becomes larger for array sizes
that do not fit in the cache. Any initial overhead of the copies becomes relatively
small. For each approach that has the same number of copies (see Table 1), for
large arrays, their access times converge, because internally array copies are usu-
ally performed by highly optimized memcpy calls (although variants depending
on the native platform exist, e.g. for the Unsafe and ByteBuffer approaches).

In Fig. 3e, the access time of a linear object tree is shown. We found that the
access times increases in a mainly linear manner with respect to the number of
references traversed.

6.2 Parallel Performance

In the case of a parallel collection, we first attempt to find a suitable number
of threads. For each approach we measuring three cases; 1. small objects (2
primitives and an array with 16 primitives) 2. medium objects (8 primitives and
an array of 1024 primitives) and 3. large objects (64 primitives and an array
of 800 × 600 primitives. Reference traversal performance is included in these
measurements since a collection consists of many references to all its objects.
The collections are of such a size that their serialized representation is over
several hundred MiB, to make sure each thread has enough work to justify the
overhead from spawning it. The results of these three measurements are seen in
Fig. 4.

From these measurements, we found that for all approaches except the Direct
approaches, the scalability is rather poor. This is most likely due to race condi-
tions on specific resources of the VM. These approaches scale very badly when
the ratio of reference to data is high (small objects case). In the case of a high
ratio of reference to data, the maximum number of threads even gives the best
performance for the Direct approaches. In the medium and large object cases,
the speedup increases all the way to the maximum number of threads only for the
Direct (no-copy) case. This approach only performs a single load and accumulate
on each data item. The gains from multi-threading are therefore more signifi-
cant than in the case of the Direct (copy) approach, because the computation
to communication ratio is three times higher. The Direct (copy) approach loads,
stores and then loads again and accumulates the data. The Unsafe approach also
scales rather well in the medium and large measurement, compared to the JNI
approaches, which scales only well for the large case. The ByteBuffer approach
does not scale very well beyond four threads. From these measurements we set
a suitable number of threads for each approach as shown in Table 2.
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Fig. 4. Throughput and speedup of accessing collections of JVM objects.
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Table 2. Maximum throughput and corresponding number of threads for the small,
medium and large benchmark.

Approach Small
(threads)

MB/s Medium
(threads)

MB/s Large
(threads)

MB/s Threads
used for
Fig. 3

ByteBuffer 4 1142 4 2159 10 3121 4

ByteBuffer (off-heap) 6 706 6 2231 4 3346 4

Unsafe 4 914 58 9080 62 16604 10

JNI 4 389 6 6094 78 12332 4

Direct (copy) 56 3232 80 16273 76 18788 80

Direct (no-copy) 78 7366 76 47064 80 67381 80

6.3 Collection

In the case of a parallel collection, the same types of measurements are performed
as in the case for a single object, although on a collection of N of these objects.
These measurements are shown in Fig. 3.

From measurements shown in Fig. 3b, we found that the quadratic increase
in access time for the JNI approach is now relatively insignificant, because the
field identifiers only have to be looked up once for the whole collection. However,
the JNI approach is still slow, because for each field primitive, the function call
Get<Primitive>Field JNI must still be made.

Figure 3d shows that after different initialization times, approaches with the
same number of copies converge towards the same access latency as the arrays
get larger, as was the case for the single-thread single-object measurements.

Lastly, for the measurement of reference traversal in a linear object graph
(Fig. 3f), the direct approaches show similar access time, followed by the Unsafe
and ByteBuffer approaches. Theoretically, there should not be much difference
between the Unsafe and ByteBuffer approaches, because reference traversal is
done in the JVM in the same way for both approaches. The difference in average
time for the ByteBuffer approach is due to the overhead induced by spawning the
threads and ByteBuffer objects. For the Unsafe approach, this overhead is much
lower. Again, the JNI approach shows an order of magnitude worse performance.

6.4 Discussion

Contemporary commercially available accelerator cards are often connected via
PCI-e GEN3 with peak bandwidths of almost 8 GB/s or 16 GB/s, depending on
the configuration. One example includes the POWER8 system where the CAPI
interface can be used over such a link. Even newer interfaces such as NVIDIA
NVLink are expected to achieve up to 80 GB/s.

From the measurements presented in this section, it can be seen that the
ByteBuffer approaches are generally unfavorable, because they cannot achieve
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near the bandwidths of the PCIe range easily. They are only faster than using
the JNI approach in the case of accessing a collection of small objects. The JNI
approach can be a feasible solution, but only when the ratio of references-to-
data is low (e.g. when there are few but large arrays in the objects). At the same
time, the Unsafe approach performs better in most cases and it is much easier
to program, because traversal of the object graph can be written or generated
in the JVM based source language. If it is necessary to saturate the link, with
small objects (a high reference/data ratio) the only feasible solution is to take
the Direct approach.

A major drawback of this approach is that it is highly platform dependent
and it could even be considered more ’unsafe‘ than the Unsafe approach, since it
accesses VM managed memory without some sort of interface that was designed
into the VM. To mitigate this drawback, the VM could by design include some
functionality to support fast object graph traversal, serialization and data trans-
fer to accelerator interfaces, implemented with native code and tightly coupled
with the VM as in the case of the Unsafe library.

7 Conclusion

In this paper, an overview is given for four different approaches for accelerator
interfaces to obtain data from JVM managed objects; using ByteBuffers, the
sun.misc.Unsafe library, the Java Native Interface (JNI) and to directly obtain
the data from JVM managed memory (Direct).

A benchmarking tool was implemented that generates code to serialize the
object or a collection of objects for use in an accelerator, using these four different
approaches (where two approaches have two variants). By measuring the access
times of single objects by a single thread, and access times of a parallel collection
of objects by multiple threads, the performance of a POWER8 system with
the HotSpot VM was measured. Furthermore, the throughput of a collection of
small, medium and large objects was measurement with respect to the number
of threads.

From the measurements we may conclude that the ByteBuffer approach does
not perform well in most cases (it can achieve between 0.7 and 3.3 GB/s of
throughput). Also, it does not scale well with the number of threads. The JNI
approach can perform well in situations where the ratio of references to data is
low, but also scales poorly with the number of threads (it can achieve between
0.9 and 12 GB/s of throughput). The Unsafe approach scales slightly better,
up to the number of physical cores of CPU, and is also able to provide enough
bandwidth to saturate common accelerator interfaces (it can achieve between
0.8 and 16 GB/s of throughput). The best approach in terms of performance is
the Direct approach. It scales well and offers more than enough bandwidth for
common accelerator interfaces, but its portability and ease of use is poor (it can
achieve between 3 and 67 GB/s).

The measurements of the benchmarking tool can effectively be used to predict
the interface speed of accelerators attached to a JVM. This may help researchers
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and developers to obtain a good estimation of the maximum speedup they may
get by combining accelerators with JVM-based applications.

As new accelerator interfaces with higher bandwidths are introduced, the
need for a faster interface that is integrated into the HotSpot VM by design is
high. This is especially the case if users of big data frameworks based on the
JVM want to make use of the computational power of accelerators.
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