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Abstract—In this paper we introduce a novel error resilient
memory architecture potentially applicable to a large range of
memory technologies. In contrast with state of the art memory
error correction schemes, which rely on (extended Hamming)
Error Correcting Codes (ECC), we make use of Low Density
Parity Check (LDPC) codes due to their close to the Shannon
performance limit error correction capabilities. To allow for a
cost-effective implementation we build our approach on top of a
3D memory organization which inherently fast and customizable
wide-I/O vertical access allows for a smooth transfer of the
required LDPC long code-words to/from an error correction
dedicated die. To make the error correction process transparent
to the memory users, e.g., processing cores, we propose an online
memory scrubbing policy that performs the LDPC-based error
detection and correction decoupled from the normal memory
operation. For evaluation purposes we consider 3D memories
protected by the proposed LDPC mechanism with various data
width codes implementations. Simulation results indicate that our
proposal clearly outperforms state of the art ECC schemes with
fault tolerance improvements by a 4710× factor being obtained
when compared to extended Hamming ECC. Furthermore, we
evaluate instances of the proposed memory concept equipped
with different LDPC codecs implemented on a commercial 40nm
low-power CMOS technology and evaluate them on actual mem-
ory traces in terms of error correction capability, area, latency,
and energy. Our results indicate that the LDPC protected mem-
ories offer substantially improved error correction capabilities,
when compared to state of the art extended Hamming ECC, being
able to assure clean runs for memory error rates α < 3× 10−2,
which demonstrate that our proposal can potentially successfully
protect system on a chip memory systems even in very harsh
environmental conditions.

I. INTRODUCTION

Technology shrinking and increased integration factor allow,

on one hand, for continuous Integrated Circuits (ICs) perfor-

mance improvements. On the other hand, ICs are more prone

to different defect types during the manufacturing process [1]

and to in field degradations [2]. Multi-Bit Upsets (MBUs)

become much more frequent [3], [4] with a maximum

MBU bit multiplicity of over 100 bits being predicted for 32
and 22nm SRAM generations [5]. Thus, traditional Single-

Error Correction (SEC) ECCs with column interleaving [6]

cannot any-longer mitigate this large amount of MBUs [7]

and powerful but cost effective techniques to detect and correct

multiple memory errors are becoming crucial for future SoC

related developments [8].
Three dimensional stacked ICs (3D-SICs) based on

Through-Silicon-Via (TSV) interconnects [9] further boost in-

creased transistor density and performance [10]–[12] while fa-

cilitating dependable computing [12]–[14]. Various 3D mem-

ory designs have been proposed ever since the technology was

introduced [15]–[18]. In particular for polyhedral memories

[16], TSVs bundles are distributed across the entire memory

footprint. This enables a bandwidth amount and a wide in-

terconnect width not achievable in planar counterparts, which

opens new avenues for memory error correction [19].

In this paper we propose a novel memory error correc-

tion mechanism which takes advantage of the 3D memories

flexible, powerful, and wide data access capabilities. Our

approach relies on performing Low Density Parity Check

(LDPC) encoding/decoding [20] on large codewords, which

can be quickly transferred over the 3D memory TSVs to

a dedicated die, on which the actual error correction and

detection is performed. An important component of the mech-

anism consists of an online memory scrubbing policy, which

enables transparent error detection and correction. In case

the scrubbing process cannot keep the pace in cleaning the

memory bit-flips induced by harsh environmental conditions

or aging effects, faulty data might be read by the processing

units, which may result in unpredictable application behavior.

To handle this issue, we propose an Operating System (OS)

controlled adaptation mechanism which increases the memory

access time but allows for memory integrity preservations even

in extremely aggressive environments.

We evaluated our proposal by considering as a case study

3D memories protected by the proposed LDPC mechanism

with various data width codes implementations. The sim-

ulation experiments indicate that our proposal outperforms

state of the art extended Hamming ECC schemes in terms

of error correction capability, being able to tolerate crossover

probability rates (α) up to 8 × 10−2 for a targeted Word

Error Rate (WER) of 10−6. This translates into fault tolerance

improvements by a 4710× factor when compared to extended

Hamming ECC. Next we evaluate instances of the proposed

memory concept equipped with different LDPC codecs imple-

mented in a commercial 40nm low-power CMOS technology

on actual memory traces in terms of error correction capability,

area, latency, and energy. Our results indicate that the LDPC

based protection memories offer substantially improved error

correction capabilities, when compared to state of the art ex-

tended Hamming ECC, being able to assure correct application

execution for bit flip error rates α < 3× 10−2.

The outline of the paper is the following. In Section II we

describe our LDPC-based error correction proposed approach.

In Section III we evaluate the implications of our proposal

and perform a comparison with state of the art memory error

correction approaches. Section IV concludes the paper.
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Figure 1. LDPC-based Error Correction for 3D Memories
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Figure 2. Memory Scrubbing Timeline

II. LDPC-BASED ERROR CORRECTION PROPOSAL

The proposed LDPC error protection mechanism depicted

in Figure 1 consists in: (i) forming extended codewords

by combining data and check bits from multiple memory

sources, (ii) augmenting the 3D memory stack with extra logic

dedicated to the LDPC encoding and decoding execution, (iii)

employing TSVs to transfer the extended codewords on/from

the dedicated Error Correction (EC) die, and (iv) utilizing

an online memory scrubbing policy able to perform memory

maintenance without interfering with data requests issued by

the System on Chip (SoC) computation cores.

Memory maintenance is performed by means of a scrub-
bing procedure, i.e., at certain time periods (scrubbing inter-
vals), the entire memory is scanned (in a time period which

we call scrubbing time) and eventual errors are corrected. See

Figure 2 for timing details. We mention that Memory Read

(MR) and Memory Write (MW) operations handle memory

I/O width data while Srubbing Read (SR) and Scrubbing

Write (SW) operate on large data width values upper bounded

by the number of TSVs in the 3D memory. The scrubbing

maintenance operates in a transparent manner, i.e., in case

of conflicts SR/SW accesses have lower priority than normal

MR/MW accesses. Due to the 3D memory organization [16]

multiple accesses can be served in parallel as long as no arrays

and/or TSV conflicts are incurred.

The scrubbing procedure steps are depicted in Figure 3.

At memory system start-up a scrubbing initialization process

is performed (step 0). This may include, e.g., (i) memory

initialization, (ii) LDPC codec allocation and instantiation as

the codec dedicated tier may contain more than one LDPC

codec, (iii) scrubbing start address(es) allocation. In step 1 the

LDPC codeword comprising parts located at the to be currently

scrubbed address are brought on the codec tier. This step may
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Figure 3. Memory Maintenance Scrubbing Flow

require several SR accesses in various arrays which can be

performed serially or in parallel. When all the comprising

codeword parts are loaded, they can be provided as input to the

LDPC decoder such that step 2, i.e., the actual decoding, can

proceed. In case the LDPC decoder fails to identify a valid

codeword at step 2 an exception is raised which treatment

is up to the application (OS) policy in place. A successful

decoding triggers step 3, in which possible errors are identified

by comparing the decoder input codeword with the decoder

output codeword. Eventual discovered errors are reported and

a codeword update process is initiated (step 4). The codeword

update process is similar to step 1, with the difference that

now SW accesses accesses are performed. In step 5 the next

to be scrubbed address is computed and if this is the initial to

be scrubbed address, the scrubbing iteration ends and step 6
in which the scrubbing process is idle is entered, otherwise,

the flow restarts from step 1. The scrubbing time depends on:

(i) employed LDPC codec performance, (ii) memory latency

(steps 1,4), (iii) LDPC codecs number (step 2), (iv) memory

array and TSV conflicts (steps 1,4), (v) overall memory

capacity, and, (vi) bit-error rate, which depends on aging

and environmental aggression profile. Consequently, in order

to diminish the scrubbing time, the scrubbing controller can

take advantage of: (i) the 3D memory rich access mode set,

and (ii) the low maintenance related accesses occurrence,

to dynamically adapt its access schedule such that memory

conflicts are minimized, if not completely avoided.

Even though from the user point of view the proposed

memory system data write seems coding free, a launch of

an encoding process (and sometimes also of a decoding

process) is required when a write at address A invalidates

all the codeword C check bits to which the data item at

address A belongs. Consequently, the codeword C data bits

need to be transferred via TSVs on the dedicated EC die in

order to be re-encoded and written back into the memory.

Depending on the actual bit error rate we may decide to

place the invalidated message in the front of the scrubbing

queue or to take no further action as there is a large chance

that another write may occur within the same message in the

close future. Nevertheless, a read from an invalidated message

should immediately trigger the reconstruction of the check bits.
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We refer to this write policy as write invalidation and we note

that it may have an impact on the EC efficiency. If aging and

environmental conditions ask for a better protection, a write
with on the fly encoding operation should be employed. Thus,

when a word write is requested at address A a series of actions

have to take place. First, the codeword C (to which address A
belongs) has to be loaded on the EC die. Next, C is decoded,

the possible errors if any are corrected and the value at address

A is replaced with the new to be written value and codeword

C is re-encoded. Finally, C is stored back into the memory.

Regardless of the write policy, errors could still affect memory

integrity as bit-flips occurring between two scrubbing scans

could propagate when read operations on those locations are

performed. To avoid such situations the read with on the fly
operation can be employed, such that a read request at address

A (which is part of codeword C) comprises the following

actions: (i) load the codeword C on the codec die, decode

it, and correct possible errors, if any (ii) send the data value

stored at A to the computation core that issued the request,

and (iii) re-encode the codeword C, if errors were identified,

and store it back to the memory.
If memory operates in highly aggressive environmental

conditions or aging effects become predominant resulting in

high error rate it is possible that the scrubbing process cannot

keep the pace in cleaning the induced bit-flips. Such situations

can be detected by the Operating System (OS), which can

decide to change the ECC modus operandi and to enable write
with on the fly encoding and read with on the fly operations.

We note however that the execution of codec activities during

read/write operations required when on the fly modes are

activated might have a detrimental impact on SoC performance

in terms of throughput, latency, and energy consumption. Since

3D memories are constructed by stacking identical memory

dies which dimensions determine the IC footprint, the EC die

might be able to accommodate several LDPC codecs. Hence,

the memory maintenance process can be parallelized resulting

in a higher error resilience. In addition, by placing on the

ECC die LDPC codecs of different characteristics and sizes

more options become available for the system adaptation to the

environmental aggression level. In this way the 3D memory

structure can be split into multiple ECC memory blocks on

which different ECC mechanisms are applied when sensing

that part of memory requires a more/less powerful protection.

Table I
LDPC ENCODERS AND DECODERS IN ASIC IMPLEMENTATIONS

Energy/Bit Latency/Bit Area/Bit
(pJ/Bit) (ps/Bit) (um2/Bit)

Instances Dec Enc Dec Enc Dec Enc

K2048 Z16 3041.99 0.19 19702.15 2.19 87.89 57.96
K2048 Z32 3417.96 0.19 10849.61 2.19 146.48 57.72
K2048 Z64 4877.93 0.20 6875.00 2.19 288.08 60.32
K4096 Z16 4077.14 0.41 20546.88 1.09 58.59 176.34
K4096 Z32 3549.80 0.41 10834.96 1.09 85.44 175.75
K4096 Z64 4667.96 0.40 6611.32 1.09 153.80 172.03
K4096 Z128 7929.68 0.41 4626.46 1.09 302.73 177.27

III. EVALUATION

To evaluate the upper bound performance of our proposal,

we simulate memories protected by: (i) state of the art (64
data bits and 8 check bits) extended Hamming (SECDED),

and (ii) the proposed LDPC-based mechanism with (512, 64),

(1024, 128), (2048, 256), and (4096, 512) codeword sizes. For

LDPC we consider Quasi-Cyclic (QC) codes with variable-

nodes degree dv = 4 and check-nodes degree dc = 36,

which make use of Layered Min-Sum (LMS), Flooded Min-

Sum (FMS), Layered Self-Corrected Min-Sum (LSCMS), and

Flooded Self-Corrected Min-Sum (FSCMS) decoders operat-

ing on 3-bit and 4-bit soft information inputs and internal

exchanged messages. To simulate memory fault occurrence,

we use a binary symmetric channel model with various

crossover probabilities (α). The decoders performances in

terms of WER are plotted in Figure 4. It can be noticed that:

(i) when a WER = 10−6 is targeted, the SECDED protected

memory tolerates memory faults up to α = 1 × 10−5 while

the LDPC protected ones bear up to 8 × 10−2, (ii) utilizing

soft information as input significantly improves the decoding

performance, and, (iii) the longer the employed LDPC code

the higher the obtained benefit.

Physical synthesis on a commercial 40nm low-power

CMOS was performed using Cadence Encounter RTL Com-

piler [21] for (2048, 256) and (4096, 512) codecs with their

designs being automatically generated as in [22]. Various

QC LDPC codes with different sub-matrix sizes (Z) were

considered. The synthesis results are presented in Figure 5

and Table I from which one can observe that: (i) the sub-

matrix size Z is the main design parameter from the hardware

cost point of view, (ii) the decoder K4096 Z16 is one of the

most balanced options, (iii) the energy and the latency needed

for encoding are 3 to 4 orders of magnitude smaller when

compared to decoding, (iv) the encoding energy, latency, and

area figures are relatively Z independent, and, (v) encoding
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Figure 6. LDPC Error Correction Die Real Estate Utilization

smaller codes is more energy and area efficient at the cost

of a longer latency per bit. In Figure 6 we provide an LDPC

(K2048/4096 Z16) tier real estate utilization estimation for

4-dies 3D memories. Memory footprints are obtained with a

modified Cacti 6 simulator [23] for 40nm CMOS technology

as in [16]. We mention that the 2048-bit LDPC protection is

assured by means of two parallel scrubbing blocks, which each

having allocated half of the memory size.

Next we performed experiments on memory access traces

considering a system based on an ARMv7-A processor with

a two level cache hierarchy: (i) 32-kB instruction and data L1

caches, and (ii) a unified 4-MB L2 cache implemented as a

4 die 3D memory. We simulated the system with a modified

gem5 simulator [24] in order to obtain access traces for the

L2 cache when running a memory intensive SPEC CPU2000

[25] suite benchmarks subset. We run each benchmark for 1
million committed instructions and we injected transient faults

into the memory at random data locations during each cycle.

In Figure 7 we present: (i) the total number of erroneous 64-

bit words which become visible to the executed application

on average per run, and, (ii) the total number of runs when

no error was propagated. It can be noticed from Figure 7 that

the SECDED protection manages to significantly reduce the

number of propagated 64-bit erroneous words only for α <
10−3 while LDPC protection significantly reduces the number

of 64-bit erroneous propagated words already at α = 5×10−2.

IV. CONCLUSION

In this paper we proposed and investigated an adaptive

LDPC-based memory error correction mechanism best suited

for 3D memories and potentially applicable to a large memory

technologies range. Our results indicate that our proposed

LDPC based memory protection offers substantially improved

error correction capabilities when compared to state of the

art extended Hamming ECC, being able to assure correct

application execution for α < 3× 10−2 memory error rates.
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