
Streaming Distributed DNA Sequence Alignment Using Apache Spark

Hamid Mushtaq Nauman Ahmed Zaid Al-Ars

Computer Engineering Laboratory
Delft University of Technology, 2628 CD, Delft, The Netherlands

{H.Mushtaq, N.Ahmed, Z.Al-Ars}@tudelft.nl

Abstract—The large amount of data generated by Next-
Generation Sequencing (NGS) technology, usually in the order
of hundreds of gigabytes per experiment, has to be analyzed
quickly to generate meaningful variant results. The first step
in analyzing such data is to map those sequenced reads to
their corresponding positions in the human genome. One of
the most popular tools to do such sequence alignment is the
Burrows-Wheeler Aligner (BWA mem). One limitation of the
BWA program though is that it cannot be run on a cluster.
In this paper, we propose StreamBWA, a new framework
that allows the BWA mem program to run on a cluster in
a distributed fashion, at the same time while the input data
is being streamed into the cluster. It can process the input
data directly from a compressed file, which either lies on the
local file system or on a URL. Moreover, StreamBWA can start
combining the output files of the distributed BWA mem tasks
at the same time while these tasks are still being executed
on the cluster. Empirical evaluation shows that this streaming
distributed approach is approximately 2x faster than the non-
streaming approach. Furthermore, our streaming distributed
approach is 5x faster than other state-of-the-art solutions such
as SparkBWA. The source code of StreamBWA is publicly
available at https://github.com/HamidMushtaq/StreamBWA.

I. INTRODUCTION

DNA analysis is performed to identify mutations in the

DNA indicating specific susceptibilities to certain diseases.

The first step of such analysis is mapping of the sequenced

reads to their corresponding positions in the human genome.

One very popular tool to do that is the Burrows-Wheeler

Aligner (BWA mem) [Li13]. However, BWA mem can only

run with multiple threads on a single node.

Existing state-of-the-art tools, such as SparkBWA

[Abuin16], do allow for running BWA mem on a cluster in

a distributed fashion. However, SparkBWA requires data to

be available in the HDFS (Hadoop distributed file system).

Since, normally the input files are given in gzip format, this

requires first uncompressing the file before uploading it to

the HDFS. Subsequently, this also slows down the execution

of BWA itself, since data on the HDFS has to be reformatted

as appropriate input to the BWA program tasks running on

the cluster. Finally, the output files produced by those BWA

tasks are combined separately at the end, which also requires

significant time.

In this paper, we propose a new distributed framework,

StreamBWA, which allows to run BWA mem on a cluster,

while the input data is being streamed directly from a

compressed file. This file can either be located on the master

node or on a URL, such as an https or an ftp site. This

eliminates the need to spend execution time separately on

downloading the file and then uncompressing it. Moreover,

since the master node can stream data to the data nodes, the

overhead of uploading data to the HDFS can also be hidden.

The master node can also start combining the output files of

BWA tasks running on the data nodes, in parallel, once they

are available, further reducing the overall time. Experimental

results show that, compared to SparkBWA, StreamBWA is

almost 5x faster for the selected datasets on a 4 (+1 master)

nodes cluster.

The contributions of this paper are as follows.

• We implemented StreamBWA: A framework that runs

BWA on a Spark cluster, where the input data is

streamed in parallel to the data nodes executing the

BWA mem tasks.

• StreamBWA is also able to combine the output files

generated by the BWA tasks in a streaming fashion.

• StreamBWA improves the efficiency of running BWA

tasks by eliminating the need to reformat the input data

for them (unlike SparkBWA).

This paper is organized as follows. Section II discusses

big data techniques, the different stages of DNA analysis

pipelines and related work. Section III presents our stream-

ing approach. Next, Section IV discusses the implementation

of StreamBWA. This is followed by Section V, which

presents the evaluation results and performance analysis. We

finally conclude the paper with Section VI.

II. BACKGROUND

In this section, first we discuss big data techniques avail-

able for executing parallel applications on scalable computa-

tional infrastructures, and then we discuss the typical DNA

analysis pipelines. Lastly, we discuss the related work.

A. Big data techniques

The MapReduce [Dean08] programming model has been

one of the most prevalent big data approaches used to

manage data intensive computational pipelines that need to

be processed on multiple compute nodes in a scalable cluster.

This model divides the computation into two phases: map

and reduce. During the map phase, input data is first format-

ted as key-value <K,V > pairs followed by performing a

specific mapping function on all of these pairs, resulting

in a mapping of the input to an output set of <K,V >
pairs. The mapping function is executed in a distributed

fashion using various mapping tasks that run locally on

the data present in the nodes of the cluster. The output

188

2017 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering

2471-7819/17/31.00 ©2017 IEEE
DOI 10.1109/BIBE.2017.00038



Mapping

BWA memRaw seq 
reads Discovered 

variants
Variant 

Discovery

Mapped 
reads

Figure 1. Typical DNA analysis and variant discovery pipeline

is then taken by the reduce tasks which first shuffle the

data by grouping all the values that belong to the same

key together. Afterwards, the reduce tasks compute a single

output from the grouped <K,V > pairs. Apache Hadoop

is an example of an open source implementation of the

MapReduce programming model.

One disadvantage of the MapReduce framework is that

it stores all data generated between the two phases (map

and reduce) on disk, and if multiple map/reduce stages

are chained together, it stores the output of each stage

on the HDFS. This implies significant overhead due to

the intensive disk access. Another disadvantage is that the

only transformations allowed are map and reduce. If a

different transformation has to be applied, it has to be done

by modifying the map and reduce functions, thus making

development with this framework very cumbersome.

Apache Spark is a more recent big data framework that

addresses the disadvantages of MapReduce listed above.

First, it allows more transformations than mere map and

reduce. It provides transformations such as join, cogroup,

intersection, distinct and many others as predefined oper-

ations. This makes development of programs much easier

as compared to the MapReduce framework. Moreover, the

output of each transformation is saved in memory, but

still allowing disk to be used to save data that does not

fit within the available memory size. In this way, Spark

avoids the overhead of disk access that is so prevalent in

the MapReduce framework. In addition, Spark provides a

programming interface to implement algorithms in various

programming languages such as Scala, Python and Java,

which allows writing programs in the language that is best

suited to the problem.

B. DNA analysis pipeline

Figure 1 shows a typical DNA analysis and variant

discovery pipeline. The input data set to this pipeline is

the raw sequencing reads, which are obtained from a DNA

sequencing machine. Since the DNA is usually over-sampled

by as much as 30x to 100x by the sequencing machine, the

number of such reads in a typical file could be very large,

and therefore the file storing these reads is of a very large

size, typically in the range of several hundreds of gigabytes

for a human genome. One standard file format used today

to store these reads is the FASTQ file format [Jones12].

The first step performed in the DNA analysis pipeline

is DNA mapping. In this step, raw reads are mapped to a

reference genome. Many classic alignment tools can be used,

such as Bowtie2 [Langmead12] or the popular BWA mem.

For StreamBWA, we use the BWA program unchanged, as

Download data

Create input 
chunks

Run BWA mem 
instances
Combine the 

output

Download data Create input 
chunks

Run BWA mem 
instances

Combine the 
output

Time

StreamBWA’s 
approach

Non-streaming 
approach

Figure 2. Timeline of streaming vs non-streaming approach

the BWA executable is executed directly by the tasks on the

data nodes. This also allows us to use hardware accelerated

implementations of BWA mem, such as [Ahmed15]. With

StreamBWA, the output files (in SAM format) can also be

combined in parallel by the master node. These files can

also be combined into separate chromosomes or even load

balanced chromosomal regions. The benefit of allowing such

balanced output is that subsequent tools for variant discovery

in the DNA analysis pipeline can efficiently work on those

load balanced regions in parallel.

C. Related work

Recently, there have been a number of frameworks pro-

posed to tackle the scalability problem of a DNA analy-

sis pipeline. While some approaches work for the whole

pipeline and use big data scalability techniques, such as

SparkGA [Mushtaq17] and Halvade [Decap15], other ap-

proaches use integrated cluster scalability techniques, such

as Churchill [Kelly15]. There are also scalability frameworks

that focus on a single stage of the DNA analysis pipeline,

such as BigBWA [Abuin12] and SparkBWA. BigBWA pro-

poses a MapReduce-based big data solution for running

BWA mem, while in SparkBWA, the same authors run BWA

mem using the in-memory Apache Spark framework. In

this work, we provide an Apache Spark big data scalability

solution that specifically targets the DNA mapping step,

similar to SparkBWA. However, our tool allows for the

mapping to start while the input file is still gradually being

streamed. This hides the high cost of data transfer of the

big FASTQ files. Similarly, with our tool, the combination of

output SAM files is also done in parallel to the the execution

of DNA mapping.

III. STREAMING APPROACH

Figure 2 shows how our streaming approach can hide

the latencies associated with downloading, uncompressing,

distributing, and combining files. The figure indicates the

timeline of our streaming approach versus the non-streaming

approach. In the non-streaming approach, all these opera-

tions are performed sequentially, thereby inducing delays,

whereas StreamBWA is able to perform all these operations

in parallel.

189



Figure 3 shows the dataflow of our proposed stream-

ing approach. In order to distribute a FASTQ file or two

paired-end FASTQ files, to multiple nodes, we need to

first break them down into chunks. This is done with a

chunker program that we built and whose source code can be

found at https://github.com/HamidMushtaq/FastqChunker.

The FASTQ chunker program runs on the master node and

can read data from either a URL (such as an ftp or an

https site) or a file directly. For paired-end FASTQ files,

the chunker has an option to interleave the data into single

chunks as well. Moreover, the input FASTQ files can be

either uncompressed or gzip compressed. The FASTQ chun-

ker keeps on reading data from files/URLs, uncompressing

it, and uploading the chunks after compressing them. The

compression of the chunks can be done by using multiple

threads. After the FASTQ chunker uploads a chunk, it also

uploads a corresponding file to inform the StreamBWA

program that the chunk has been made. As soon as a chunk

has been created, a BWA task in StreamBWA, would be able

to process it immediately if all resources are not already

occupied by other tasks.

When a BWA task outputs a SAM file, it also uploads

a corresponding flag to notify the SAM files combiner part

of the StreamBWA, which has the task of combining the

SAM files into one. It is also possible for StreamBWA to

create one SAM file for each chromosome, or even create

SAM files for chromosomal regions. While the BWA tasks

are running on the Spark cluster, the SAM files combiner of

StreamBWA is running in parallel.

Since the chunker is a separate program, it can also be

used with other programs. For example, we successfully

combined our chunker utility with the SparkGA program, so

that like StreamBWA, SparkGA could also process chunks

on the fly.

IV. IMPLEMENTATION

Our framework consists of two utilities. One is the

StreamBWA tool and the other is the chunker program. The

chunker reads the input gzipped file, creates compressed

chunks and uploads them to the HDFS. The StreamBWA

reads those chunks on the fly, and also combines the

resulting SAM files into either a single combined output,

into combined output files for each chromosome or into files

grouped by chromosomal regions, each file representing one

such chromosomal region. The chunker and StreamBWA are

discussed next.

A. Chunker

The chunker utility is written in Scala and uses Future op-

erations to create compressed chunks with parallel threads.

In one iteration, it reads N number of blocks from a file

stored either locally or at a URL, where N is the number of

Futures (threads). After reading those N blocks, each block

is given to a separate thread. This way, N parallel threads can

URL

FASTQ 
Chunker FASTQ chunks

Chunk created 
flags

BWA 
tasks

SAM files 
combiner

SAM files

SAM file 
created flags

Combined SAM 
file(s)

HDFS

StreamBWA

Figure 3. Dataflow of the proposed streaming approach

compress blocks and upload them to the HDFS. The Halvade

upload tool is a similar utility. However, unlike the Halvade

upload tool, which reads data line by line, our tool reads a

block of uncompressed data at once from the gzipped file,

and at the end of that block looks for the reads boundary.

That is, it checks where the last read is ending, it takes the

data till the last read, and puts the remaining part into a

buffer, which we call the leftover buffer. This data from that

leftover buffer is then appended to the data of the next block.

Reading data block by block, rather than line by line, is

the reason our chunking utility performs significantly better

than the Halvade upload utility, as shown by the evaluation

results.

After uploading a compressed chunk to the HDFS, a

status file is also uploaded. This status file is just an empty

file with an ID, to signal to the StreamBWA program that

the corresponding chunk has been uploaded. IDs are just

numbers, starting from 0. If N threads are being used, chunks

from 0 to N-1 would be uploaded first, followed by chunks

from N to N*2-1 and so on. This chunker program runs

locally on the master node. When all the chunks have been

uploaded, a sentinel file is also sent to signal that all files

have been uploaded.

The algorithm for paired-end FASTQ files chunking is

shown as Algorithm 1. Here, bArrArr1 and bArrArr2 are

arrays of type ByteArray, which is a class we created to hold

the data read in each iteration. These elements are allocated

once with a big enough size, so that they can be used again

and again, thus avoiding creating a new element each time.

Using new repeatedly would increase memory and garbage

collection overhead. Similarly gis1 and gis2 are objects of

type GZInput which we created to read gzipped compressed

data. It is different from the standard GZInputStream class,

since it can read fixed number of uncompressed bytes. In

190



Algorithm 1: Paired FASTQ chunking

1 while !endReached do
2 for i = 0 until nThreads do
3 if endReached then
4 bArrArr1(i).setLen(0)
5 bArrArr2(i).setLen(0)
6 bytesRead(i) = -1

7 else
8 bytesRead(i) = gis1.read(tmpBuf1)
9 gis2.read(tmpBuf2)

10 if bytesRead(i) == -1 then
11 endReached = true
12 bArrArr1(i).copyFrom(leftOver1)
13 bArrArr2(i).copyFrom(leftOver2)

14 else
15 /* leftOver1 is null on the

First ever iteration */
16 if leftOver1 == null then
17 leftOver1 = new ByteArray(bufSize)
18 leftOver2 = new ByteArray(bufSize)
19 bArr1.copy(tmpBuf1, 0, bytesRead(i))
20 bArr2.copy(tmpBuf2, 0, bytesRead(i))

21 else
22 bArr1.copy(leftOver1)
23 bArr1.app(tmpBuf1, 0, bytesRead(i))
24 bArr2.copy(leftOver2)
25 bArr2.app(tmpBuf2, 0, bytesRead(i))

26 splitAtRB(bArr1, bArrArr1(i), leftOver1)
27 splitAtRB(bArr2, bArrArr2(i), leftOver2)

28 if f(i) != null then
29 Await.result(f(i), Duration.Inf)

30 gzOutStreams(i).synchronized {
31 baFuture1(i).copy(bArrArr1(i))
32 baFuture2(i).copy(bArrArr2(i))
33 }
34 f(i) = Future {
35 gzipOutStreams(i).synchronized {
36 writeToChunk(i)
37 }
38 }
39 waitForFuturesAndCloseGZOutSreams()

the constructor, we can specify the blocksize, and then

GZInputStream would read exactly the same number of

bytes (uncompressed) each time. The way the algorithm

works is that in each iteration, we read blocks for each

Future, where number of Futures is equal to nThreads. From

the data read from each FASTQ file, the data is split at the

last read, so that there are no incomplete reads. The last

remaining read is then put into leftover buffers. The data

from the leftover buffers is then appended in the beginning

of the block of the next iteration. Thereafter the data read

is copied into baFuture1 and baFuture2, which are buffers

passed to the corresponding Future.

The data for a chunk is then interleaved in a Future, as

shown in algorithm 2. When the data in the output stream

becomes greater than the allowed chunk size, it is written to

the chunk. Next time the data would be written to another

chunk.

While future i is interleaving data and writing it to a

chunk, the iteration i could be fetching data from the input

gzipped paired-end FASTQ files in parallel. In this way,

when the next instance of future i starts, its input data might

already be there. With this mechanism, we are able to fully

or partially hide the the time it takes to compress the chunks

and upload them to the HDFS.

Algorithm 2: Writing of interleaved chunk

1 if baFuture1(i).getLen() != 0 then
2 content = interleave(baFuture1(i), baFuture2(i))
3 gzOutStreams(i).write(content)
4 if gzOutStreams(i).getSize() > chunkSize then
5 gzOutStreams(i).close()
6 data = gzipOutStreams(ti).getByteArray
7 writeChunkFile(chunkCtr(i) + ”.fq.gz”, data)
8 writeStatusFile(chunkCtr(i))
9 chunkCtr(i) = chunkCtr(i) + nThreads

10 baos = new ByteArrayOutputStream
11 gzOutStreams(i) = new GZIPOutputStream1(baos,

compLevel)

Since, the chunker utility is a separate program and not

a part of StreamBWA, it means it can also be used with

other genomic pipeline tools. For example, we have also

successfully interfaced the chunker utility with our SparkGA

tool, to perform chunking in parallel on the master node.

B. StreamBWA

The StreamBWA program can be either run in client

or cluster mode. In client mode, a controller part of

StreamBWA (called the driver) runs on the master node,

while the executors are run on the data nodes. On the other

hand, in cluster mode, the driver is also run on one of the

data nodes.

Each BWA task on the data node is assigned an ID.

The BWA tasks are scheduled such that the task with the

smallest ID, runs first. Each such task then waits for the

corresponding chunk to exist in the HDFS. This can be done

by looking at the corresponding status file. As soon as that

status file appears, the task grabs the corresponding chunk,

uncompresses it and execute BWA with it. This means that

in the beginning, the first group of tasks have to wait for

the chunker to have made the chunks. However, by the time

the next group of tasks are scheduled, the chunker might

already have placed the chunks for them, as the chunker

is continuously being run in parallel on the master node.

If there appears a task whose ID is greater than the total

number of chunks, that task would know that it has no

corresponding chunk to process, by seeing that the sentinel

file has been uploaded by the chunker, while no file with

that ID was produced by the chunker.

As discussed before, the StreamBWA program can also

combine the output chunks into a single output file, or

files grouped by chromosomes or chromosomal regions.

Moreover, these combined output files can either be placed

on the HDFS or on the local file system of the master node.

191



Table I
COMPARISON OF OUR CHUNKING UTILITY WITH HALVADE UPLOAD

TOOL (CL = COMPRESSION LEVEL)

Program D1
chunk-
ing
time
(mins)

D1
chunks
size
(GB)

D2
chunk-
ing
time
(mins)

D2
chunks
size
(GB)

Halvade upload tool (cl: 6) 53.5 74.7 20 28.4
StreamBWA (cl: 6) 39.5 74.7 13 28.4
StreamBWA (cl: 5) 33 77.5 12 29
StreamBWA (cl: 4) 32.5 79.2 12 29.5
StreamBWA (cl: 3) 32.5 80.5 12 30.4

The combiner part is implemented using Scala Futures,

which runs on the driver part of StreamBWA. As soon as one

task completes its execution of BWA, it uploads the output

SAM file to the HDFS. Besides that, it also uploads a status

file. The combiner keeps looking for those status files to

know when to merge those output SAM files. For this, the

combiner maintains a Set data structure, which contains the

IDs of all the SAM files which have been already merged. By

taking the diff of the IDs of the status files and the IDs in that

Set, the combiner knows which files to merge. It repeats this

step, until all files have been merged. To increase efficiency,

more than one Future can be used. When a combiner has to

be used, each task running BWA, outputs a compressed SAM

file. By using multiple Futures (threads), the decompression

of multiple compressed SAM files can be done in parallel.

V. EVALUATION RESULTS

We tested the results on an IBM Power7+ cluster with 4

data nodes + 1 master node. Each node has two sockets that

host a Power7+ processor. In total, a node has 16 physical

cores and 128GB of memory. Each Power7+ core is capable

of 4-way simultaneous multithreading. Spark is run over

YARN on that platform. Although the master node in our

cluster also has 128GB of memory, we restricted the use

of memory to less than 16 GB for the master node. This

is because, in a typical scenario, the master node is much

less powerful compared to the data nodes, as the master

node is expected to remain idle most of the time. Since, our

framework exploits this idleness of the master node, without

adding extra cost to it, to emulate that situation, we kept the

memory usage of the master node to less than 16GB.

We tested and compared our framework with other

solutions using dataset D1 (NA12878D HiSeqX R1 and

NA12878D HiSeqX R2 from [NA12878]) and dataset

D2 (ERR022066 1.filt and ERR022066 2.filt from the

data/HG00109/sequence read folder of [1000genomes]).

The total uncompressed size of D1 is 272GB while that

of D2 is 90GB.

A. Evaluation of the chunker utility

Table I compares the performance of our chunking utility

with that of the Halvade upload tool. These results are also

illustrated in Figure 4. The table and figure show that for

������� ��	���
�� ��	���
�� ��	���
�� ��	���
��

�
��
�

�

��

��

��

��

��

��

���������

���������

Figure 4. Performance comparison between Halvade’s and our chunker
utility (cl = compression level)

Table II
COMPARISON OF STREAMBWA WITH NON-PARALLEL STREAMBWA

AND SPARKBWA

Process D1, size =
272GB (mins,
% of total)

D2, size =
90GB (mins,
% of total)

SparkBWA
Download 45 (7%) 12.5 (12%)
Uncompress 127 (20%) 30 (29%)
Upload to the HDFS 19 (3%) 6 (6%)
BWA 368 (59%) 33.5 (33%)
Combine 70 (11%) 21 (20%)
Total 629 103

Non-streaming SreamBWA
Download 45 (18%) 12.5 (25%)
Chunker 32.5 (13%) 12 (24%)
BWA 104 (41%) 5 (10%)
Combine 70 (28%) 21 (42%)
Total 251.5 50.5

Streaming SreamBWA
Chunker ‖ BWA 105 (79%) 12 (65%)
Chunker ‖ BWA ‖ Combine 120 (91%) 15.5 (84%)
Download ‖ Chunker ‖ BWA
‖ Combine

132.5 20

both datasets, our chunking utility outperforms the Halvade

upload tool by up to 35% (at the same compression level).

The reason for this increased performance is due to the

decreased processing of the input data. While Halvade reads

the input gzipped data line by line, our chunking utility can

read blocks of data, and demarcate them properly on the

read boundaries.

The results also show that by lowering the compression

level from the default 6, we gain even more speedup of up

to 65% at the cost of slightly bigger files. This speedup is

the result of a faster gzip compression at lower compression

levels, obviously. We were not able to compare with the

Halvade upload tool at a lower compression level, as it only

allows the default compression level.

192



�������� 	
������

�
��������� ���������
�

���

���

���

���

���

���

���

�
��
�

���������

���������

Figure 5. Comparison of StreamBWA with the non-parallel based approach
and SparkBWA

B. Comparison of StreamBWA with SparkBWA

Table II shows a comparison of StreamBWA with its non-

parallel counterpart and SparkBWA. The total times for each

solution are shown in bold, and are plotted in Figure 5.

The results show that StreamBWA is about 5x faster than

SparkBWA. The main reason being that StreamBWA per-

forms uncompression/uploading, BWA mapping and com-

bining of output, in parallel, while SparkBWA has to do

those sequentially. Furthermore, even after the data has been

uploaded to the HDFS, SparkBWA has to group data into

input files which are to be given to the BWA tasks. For

that purpose, it has to first make RDDs by using expensive

operations, such as join and sortByKey. For this reason, even

the non-parallel version of StreamBWA is up to 2.5x faster

than SparkBWA, as it does not require this extra step.

VI. CONCLUSIONS

In this paper, we presented StreamBWA,

an open source tool (publicly available at

https://github.com/HamidMushtaq/StreamBWA), which

can be used for performing the Burrows-Wheeler Aligner

(BWA mem) algorithm on a Spark based cluster. Not only

is StreamBWA able to run BWA mem tasks in a distributed

fashion on a cluster, it can also stream data to those BWA

mem tasks running on the data nodes on the fly. Moreover,

it also combines the output files of the BWA mem tasks

into one or multiple SAM files in a streaming fashion.

Results show that this streaming distributed approach is

approximately 2x faster than the non-streaming approach.

In addition, since unlike other state-of-the-art approaches,

like SparkBWA, which have to format data in a specific

way, even after it being uploaded to the HDFS, StreamBWA

formats data before uploading it to the HDFS, thus further

saving time. Due to this reason, even the non-streaming

version of StreamBWA is faster than SparkBWA by up to

2.5x, with the streaming version being approximately 5x

faster on the selected datasets. Lastly, unlike SparkBWA,

besides allowing the output to be combined into a sin-

gle file, StreamBWA also allows to group output data by

chromosomes or even load balanced chromosomal regions.

Arranging output into such chromosomal regions is useful

for optimizing the performance of the subsequent tools of a

DNA analysis pipeline.

REFERENCES

[Ahmed15] N. Ahmed, et al., ”Heterogeneous Hardware/Software
Acceleration of the BWA-MEM DNA Alignment Algorithm”,
ICCAD’15, pp. 240-246, 2015.

[Auwera13] G.A. van der Auwera, et al., ”From FASTQ Data to
High-Confidence Variant Calls: The Genome Analysis Toolkit
Best Practices Pipeline”, Current Protocols in Bioinformatics,
43:11.10.1-11.10.33, 2013.

[Decap15] D. Decap, J. Reumers, C. Herzeel, P. Costanza and J.
Fostier, ”Halvade: scalable sequence analysis with MapRe-
duce”, Bioinformatics, btv179v2-btv179, 2015.

[Bio] http://www.bioplanet.com/gcat
[Gusfield97] D. Gusfield. 1997. Algorithms on Strings, Trees and

Sequences. Cambridge University Press, Cambridge, UK.
[Picard] https://broadinstitute.github.io/picard
[NA12878] http://allseq.com/knowledge-bank/1000-genome/get-

your-1000-genome-test-data-set
[1000genomes] ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3
[Dean08] J. Dean and S. Ghemawat, ”MapReduce: Simplified

Data Processing on Large Clusters”, Commun. ACM, vol. 51,
no. 1, 2008.

[Zaharia10] M. Zaharia, et al., ”Spark: cluster computing with
working sets”, HotCloud’10, USENIX Association.

[Abuin16] J.M. Abuin, J.C. Pichel, T.F. Pena and J. Amigo,
”SparkBWA: Speeding Up the Alignment of High-
Throughput DNA Sequencing Data”, PLoS ONE 11.5,
e0155461, 2016.

[Jones12] D.C. Jones, W.L. Ruzzo, X. Peng and M.G. Katze,
”Compression of next-generation sequencing reads aided by
highly efficient de novo assembly”, Nucleic Acids Research,
2012.

[Kelly15] B.J. Kelly, et al., ”Churchill: an ultra-fast, determin-
istic, highly scalable and balanced parallelization strategy
for the discovery of human genetic variation in clinical and
population-scale genomics”, Genome Biology, vol. 16, no. 6,
2015.

[Li13] H. Li, ”Aligning sequence reads, clone sequences and
assembly contigs with BWA-MEM”, arXiv:1303.3997 [q-
bio.GN], 2013.

[Mushtaq15] H. Mushtaq and Z. Al-Ars, ”Cluster-based Apache
Spark implementation of the GATK DNA analysis pipeline”,
IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp. 1471-1477, 2015.

[Mushtaq17] H. Mushtaq, et al., ”SparkGA: A Spark Framework
for Cost Effective, Fast and Accurate DNA Analysis at Scale”,
ACM Conference on Bioinformatics, Computational Biology
and Health Informatics (ACM-BCB), pp. 148-157, 2017.

[Langmead12] B. Langmead and S.L. Salzberg, ”Fast gapped-read
alignment with Bowtie 2”, Nature Methods, vol. 9, no. 4,
pp. 357-359, 2012.

[Abuin12] J.M. Abun, J.C. Pichel, T.F. Pena and J. Amigo,
”BigBWA: approaching the BurrowsWheeler aligner to
Big Data technologies, Bioinformatics”, vol. 31, no. 24,
pp. 40034005, 2015.

193


