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Abstract—Due to its high-throughput and low cost, Next Gen-
eration Sequencing (NGS) technology is becoming increasingly
popular in many genomics research labs. However, handling
the massive raw data generated by the NGS platforms poses
a significant computational challenge to genomics analysis tools.
This paper presents a GPU acceleration of the GATK Haplo-
typeCaller (GATK HC), a widely used DNA variant caller in
the clinic. Moreover, this paper proposes a load-balanced multi-
process optimization of GATK HaplotypeCaller to address its
implementation limitation which forces the sequential execution
of the program and prevents effective utilization of hardware ac-
celeration. In single-threaded mode, the GPU-based GATK HC is
1.71x and 1.21x faster than the baseline HC implementation and
the vectorized GATK HC implementation, respectively. Moreover,
the GPU-based implementation achieves up to 2.04x and 1.40x
speedup in load-balanced multi-process mode over the baseline
implementation and the vectorized GATK HC implementation in
non-load-balanced multi-process mode, respectively.

Index Terms—GPU acceleration; GATK HaplotypeCaller;
multi-process; pair-HMMs forward algorithm;

I. INTRODUCTION

Next Generation Sequencing (NGS) [1] technology makes
DNA sequencing more affordable and accessible than ever
before. DNA sequencing is essential for a deep understanding
of human genetics and is considered as an enabler on personal-
ized medicine. Many applications for DNA sequence analysis
have been developing at a fast rate in the last decade, such
as sequence alignment, genome de-novo assembly, variant
calling, haplotype phasing and so on.

Variant calling is a crucial step for DNA sequence analysis,
which is used to find the positions where a given patient DNA
sequence is different from a reference genome in order to
detect DNA variants. These variants include SNVs (single
nucleotide variations), small insertions/deletions (INDELs)
and structural variations (SVs). Many tools (called variant
callers) have been proposed to detect variants in order to be
used in practice to diagnose genetic disease, for example.

Early variant callers, such as the GATK UnifiedGeno-
typer [2], SAMtools [3] and VarScan2 [4], detect variants at
different positions in isolation. These tools are very effective in
detecting SNVs, but are lacking when it comes to the accuracy
of identifying INDELs and SVs.

More recent haplotype-based callers, such as the GATK
HaplotypeCaller [5], Platypus [6] and freebayes [7], have im-
proved the accuracy of detecting INDELs. INDELs are easily

misaligned when mapping the patient DNA to a reference
genome, which is ahead of variant calling. In order to correctly
identify INDELs, haplotype-based variant callers add extra
steps, such as local de-novo assembly of haplotypes [5][6] or
direct detection of haplotypes [7]. Moreover, haplotype-based
callers enhance the accuracy of identifying SNVs by making
use of linkage disequilibrium between nearby variants. The
GATK UnifiedGenotyper, for example, is less effective than
the GATK HaplotypeCaller in detecting INDELs. However,
this comes at the cost of higher execution time.

The GATK HaplotypeCaller (or GATK HC) is widely used
in many large-scale sequencing projects. However, GATK
HC suffers from long execution time, which would limit its
feasibility in many situation. In this paper, we investigate
and propose the first GPU-accelerated version GATK HC to
improve its performance. Regarding to the optimization of
GATK HC, Intel processors and IBM POWER processors both
exploit vector instructions to speed up the pairwise alignment
kernel [8][9], which is the most time consuming part of
GATK HC. There are also a couple of publications on FPGA-
based and GPU-based hardware acceleration of the pairwise
alignment kernel of GATK HC, but they do not discuss the
acceleration of the overall application [10][11].

In this paper, we present an efficient GPU-accelerated
implementation of GATK HC and evaluate its effective-
ness. An important component of the work is integrating
the GPU acceleration into the Java-based GATK HC code
and minimizing the incurred overhead. Compared with the
baseline implementation, it achieved 1.71x speedup in single-
threaded mode. Moreover, we found an important limitation
in the GATK HaplotypeCaller implementation which forces
the sequential execution of the program and prevents effective
utilization of the accelerated part. A load-balanced multi-
process optimization is proposed to overcome this limitation,
which makes the GPU-based implementation up to 2.04x
and 1.40x faster than the baseline implementation and the
vectorized implementation, respectively.

The rest of this paper is organized as follows. Section II
presents a brief overview of GATK HC. Section III presents
the details of the GPU-accelerated implementation of GATK
HC and the load-balanced multi-process optimization. Sec-
tion IV presents the experimental results along with analyses.
Section V concludes this paper.



II. BACKGROUND

A. GATK HaplotypeCaller

GATK HC is a Java-based DNA variant caller that is widely
used in practice. It is divided into the following four main
steps [12].

(i) Define active regions—Active regions are determined
based on the presence of significant evidence for vari-
ation. The following steps only operate on the active
regions and ignore the inactive regions.

(ii) Determine haplotypes—For each active region, a de
Bruijn-like graph is built to reassemble the active region
and a list of haplotypes is determined based on the
graph. Here, haplotype is a sequence covering the entire
length of an active region. Then each haplotype is re-
aligned against the reference sequence using the Smith-
Waterman algorithm in order to identify potentially
variant sites.

(iii) Determine likelihoods of the haplotypes—For each
active region, a pairwise alignment of each read against
each haplotype is performed using the pair-HMMs for-
ward algorithm, which produces a matrix of likelihoods
of haplotypes given the reads.

(iv) Assign genotypes—For each potential variant site,
Bayes’ rule is applied to calculate the likelihoods of
each genotype using the likelihoods of haplotypes given
the reads. The genotype with the largest likelihoods is
selected.

GATK HC can run in single-threaded and multi-threaded
mode, as shown in Figure 1. When GATK HC runs in single-
threaded mode (Figure 1(a)), it first defines active regions
(Step(i) in the list above). If there is an active region, it
executes Step(ii), Step(iii) and Step(iv) in succession and
jumps back to Step(i). If there are no more active regions
in Step(i), GATK HC ends execution.

When GATK HC runs in multi-threaded mode (Figure 1(b)),
each thread executes in the same way as in single-threaded
mode. However, since the size of the active region is not
known in advance, Step(i) has to first complete calculating
the current active region before the next active region can be
calculated. This leads to only one thread executing Step(i) at
any time.

In order to investigate which of these steps is most time-
consuming and which one is most suitable for GPU-based
acceleration, we analyzed and profiled GATK HC (GATK
version 3.7) with a typical workload (chromosome 10 of the
whole human genome dataset G15512.HCC1954.1).

Firstly, GATK HC was executed in single-threaded mode in
order to find which step is most time-consuming. The profiling
results in single-threaded mode are shown in Table I. The
relative execution time and type of processing are specified
in the table as well. As shown in Table I, Step(iii) is most
time-consuming, which consumes 48.5% of the total execution
time. The main operation of Step(iii) is pairwise alignments
implemented by the pair-HMMs forward algorithm, which is

Fig. 1. GATK HC workflow in (a) single-threaded mode and (b) multi-
threaded mode

executed millions of times. Therefore, acceleration of the pair-
HMMs forward algorithm is very important to improve the
performance of GATK HC in single-threaded mode.

GATK HC then was executed in multi-threaded mode.
The total execution time with different number of cores was
recorded, which is shown in Figure 2. Moreover, in order to
find the influence of the data dependency of Step(i) across
multiple threads, we modified GATK HC by disabling the
execution of the other steps and made it only executed Step(i).



TABLE I
PROFILING RESULTS OF GATK HAPLOTYPECALLER

Steps Time Processing
Define active regions 15.5% Sequential
Determine haplotypes 34.0% Sequential
Determine likelihoods 48.5% Parallel
Assign genotypes 1.3% Parallel
Other 0.7%

The total execution time of the modified GATK HC running
on 20 cores is 1164 seconds, while the total execution time
of original GATK HC running on 20 cores is 1249 seconds.
This indicates that when the number of cores is big enough,
GATK HC execution time becomes bottlenecked by Step(i) in
multi-threaded mode.

In practice, GATK HC is usually executed in multi-process
mode instead of in multi-threaded mode to overcome the data
dependencies in Step(i). In multi-process mode, the input file
is split into chunks based on genome regions and each chunk
is processed by GATK HC independently. Although there may
be some accuracy loss at the boundaries between consecutive
chunks within the same chromosome, the accuracy loss can
be negligible in many cases.

The simplest way to divide the input file is to split
the genome regions into multiple intervals of equal length.
[13][14] proposes to split the genome regions based on the
number of reads mapped to each regions, taking the read
coverage into consideration. However, both methods do not
results in a balanced division of the input file in the case of
GATK HC. In this paper, we present a load-balanced multi-
process optimization to minimize the total execution time.
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Fig. 2. Multi-threaded execution time of GATK HC

B. Pair-HMMs forward algorithm

In GATK HC, the pair-HMMs forward algorithm takes a
read and a haplotype as the input and calculates the overall
alignment probability. Previous research on increasing the
speed of the pair-HMMs forward algorithm can be found
in [8][9][10][11], most of which exploit the inherent paral-
lelism of the algorithm. Intel and IBM researchers employ
vector instructions on their respective processors [8][9] to
reduce the execution time. These vectorization approaches
have been implemented and can be integrated into GATK

Fig. 3. Data flow of the multi-process GATK HC

HC easily. The authors claim a dramatic improvement of the
performance of single-threaded GATK HC.

On the other hand, [10][11][15] propose FPGA-based im-
plementations of the pair-HMMs forward algorithm. [10]
utilizes a systolic array to map the algorithm on FPGAs, while
[11] proposes pipelined processing elements within a systolic
array and [15] reduces the overhead in the systolic array.
However, these implementations have not been integrated into
GATK HC.

In addition, [16] proposes several GPU-based implemen-
tations of the pair-HMMs forward algorithm and compares
these implementations using datasets with different number
of read-haplotype pairs. It investigates two different acceler-
ation approaches: the inter-task and intra-task parallelization.
According to the paper, when the number of read-haplotype
pairs is small, the intra-task GPU-based implementation out-
performs all other investigated implementations.

III. METHODS

Our efforts to improve the performance of GATK HC can
be divided into two aspects: (1) a load-balanced multi-process
parallelization approach to reduce the sequential execution of
Step(i) and (2) integration of GPU acceleration of the pair-
HMMs forward algorithm into the multi-process GATK HC.

A. Load-balanced multi-process optimization

Figure 3 shows the data flow of the multi-process GATK
HC. The GATK HC argument −L is used to confine process-
ing to a specific genome interval instead of actually dividing
the input file into small parts. Each interval is processed
individually by a GATK HC instance. The output of these
GATK HC instances, represented by VCF files, are combined
by VCFtools [17] into one VCF file.

As mentioned in Section II-A, Step(ii), Step(iii) and Step(iv)
operate only on active regions. If each genome interval has
the same number of active regions, this will most probably
result in a load-balanced multi-process implementation. Since
the active regions are determined by the presence of significant
evidence of variation in Step(i), the number of variants in each
genome interval is the key parameter to ensure load-balancing.



Fig. 4. Two methods of calling CUDA programming modules from Java code

When running GATK HC, the argument −D and a dbsnp
file is usually used in order to annotate variants found by
GATK HC with the corresponding reference ID. Since the
dbsnp file includes all known variants and the positions of
these variants on the genome, we can use this file to divide the
genome into regions based on the number of known variants.
Although GATK HC might find novel variants not present in
the dbsnp file, the number of these variants is relatively small
and would have a negligible influence on the genome region
division.

In order to divide the genome region using the dbsnp file, we
modified BCFtools, which uses the HTSlib library to realize
fast accesses of the dbsnp file. The modification of BCFtools
is to add a function in the vcffilter.c file. The new function
first calculates the total number of variants and then outputs
the start and end positions of each genome interval, which has
the same number of variants.

Besides the number of variants, the number of reads on each
genome interval may also influence the load-balancing. One
solution is to take these two factors together into consideration.
However, it turns out that calculating the total number of reads
in the input file is very time consuming. Moreover, for each
new input file, the calculation of the total number of reads has
to be done again. Thus, the genome region is divided only
based on the variant numbers in the dbsnp file.

B. Application level GPU acceleration

In GATK HC, the number of read-haplotype pairs processed
by the pair-HMMs forward algorithm depends on the number
of the reads and haplotypes found in each active region. For
example, the number of read-haplotype pairs ranges from 4
to 38912 for each active region in chromosome 10 of the
whole human genome dataset G15512.HCCI954.1. According
to [16], for this type of dataset, the intra-task GPU-based
implementation of the pair-HMMs forward algorithm is the
most effective GPU-based implementation that gives the high-
est performance.

The GPU acceleration of the pair-HMMs forward algorithm
is implemented using CUDA. Although CUDA is able to
support various programming languages, it does not support
Java, which is the programming language of GATK HC. One
method to call CUDA code from Java is using JNI (Java Native
Interface), which enables Java code to call modules written in
programming languages such as C and C++. As shown by
Figure 4(a), this is done by first using JNI to call C++ code
from Java, which in turn calls CUDA code.

Fig. 5. GATK HC new workflow in single-threaded mode

Another method is to apply JCuda[18], which supplies direct
accesses of the CUDA code from Java code. In essence, the
design of JCuda also uses JNI to call C++ code and lets
C++ code call CUDA programming modules. However, JCuda
hides these details from the user. Thus, we can directly call
CUDA programming modules from Java codes, as shown by
Figure 4(b). For GATK HC, JCuda is employed to call CUDA
code from Java.

As shown by Figure 1(a) and (b), the last three steps of the
workflow (Determine haplotypes, Determine likelihoods and
Assign genotypes) are executed sequentially for each active
region. This prevents hiding the execution time of the GPU
accelerated part. If the Java implementation of the pair-HMMs
forward algorithm is replaced by the GPU implementation, the
CPU would be idle and wait for the GPU results. In order
to allow hiding GPU execution time, we need to modify the
workflow in order to make GPU and CPU run in parallel.

Figure 5 is the new workflow of GATK HC in single-
threaded mode. GATK HC first produces and collects multiple
active regions and passes these active regions to subsequent
steps. Then, Determine haplotypes is executed for the first



active region and the results are transferred to the GPU. Next,
Determine likelihoods for the first active region is executed
on GPU while Determine haplotypes for the second active
region is executed on CPU simultaneously. The rest of the
active regions are processed in the same manner. In this way,
Determine likelihoods on GPU and Determine haplotypes on
CPU are executed simultaneously.

With regard to multi-threaded mode, GATK HC first pro-
duces multiple active region, which is still sequentially exe-
cuted. The other steps of multi-threaded mode are modified in
the same way as the steps of single-threaded mode in Figure 5.
For each thread, Determine haplotypes on CPU and Determine
likelihoods on GPU are executed simultaneously.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

In this paper, we use an IBM Power System S824L (82478-
42L) to perform experiments and measure performance results.
This system includes two IBM Power8 processors (10 cores
each) running at 3.42 GHz, 256 GB of DDR3 memory, and
an NVIDIA Tesla K40 card. The NVIDIA Tesla K40 card has
2880 cores running at up to 745 MHz, with CUDA compute
capability 3.5.

This paper uses GATK version 3.7 for the analysis, which
is the latest version of GATK at the time of writing. The paper
compare the performance of three GATK HC implementations:
(1) the baseline GATK HC with the pair-HMMs forward
algorithm implemented in Java, which is downloaded from the
GATK website; (2) GATK HC with the pair-HMMs forward
algorithm optimized using vector instructions, the library of
which is implemented by IBM research [9]; (3) GATK HC
with the pair-HMMs forward algorithm accelerated on GPU.
The dataset used for the measurement is chromosome 10 of
the whole human genome dataset G15512.HCC1954.1.

B. Single-threaded

Table II shows the results of the GATK HC implementations
in single-threaded mode. As shown by Table II, the baseline
implementation took the longest time (8034.05 seconds). The
vectorized GATK HC is 1.42x faster than the baseline im-
plementation. The GPU-based GATK HC is 1.71x and 1.21x
faster than the baseline implementation and the vectorized
GATK HC implementation, respectively.

TABLE II
RESULTS OF GATK HC IMPLEMENTATIONS IN SINGLE-THREADED MODE.

GATK HC Total time [s] Time pair-HMMs [s] Speedup
Baseline 8034.05 3676.12 —
Vectorized 5655.96 1289.62 1.42x
GPU-based 4687.08 hidden 1.71x

C. Multi-threaded

Figure 6 shows results of the three GATK HC implemen-
tations in multi-threaded mode with thread number ranging
from 2 to 20.
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Fig. 6. Total execution time of GATK HC in multi-threaded mode

The execution time of all three implementations decreases
while the thread number increases. This is the benefit of us-
ing multi-thread, which makes Step(ii) Determine haplotypes,
Step(iii) Determine likelihoods and Step(iv) Assign genotypes
be executed in parallel.

When the thread number is small, the execution time of
the GPU-based implementation is the lowest. However, the
execution time of the three implementations becomes very
similar when the number of threads becomes bigger than 10.
This means that the acceleration of the pair-HMMs forward
algorithm does not have big effects on the total execution time
when the number of threads is big enough.

D. Multi-process

The three implementations were executed with differ-
ent number of processes from 2 to 20 both in the load-
balanced and non-load-balanced multi-process mode. In the
load-balanced multi-process mode, the input file is divided
according to the method proposed in Section III-A; in the
non-load-balanced multi-process mode, the input file is divided
simply using equal number of bases in each segment of the
genome.

In order to verify the accuracy of GATK HC in multi-
process mode, VCFtools is used to merge the output files
produced by the GATK HC instances into one file and compare
this file with the output file produced by the baseline imple-
mentation in single-threaded mode. The comparison results
show that there is no accuracy loss for all the multi-process
GATK HC experiments with process number from 2 to 20.
For other input file, there might be some accuracy loss.

Generally, the execution time of each GATK HC instance
in multi-process mode is not the same. Therefore, the max-
imal execution time is measured and used as a metric for
comparison. Actually, the maximal execution time presents
the total time used to handle the input file in multi-process
mode. Figure 7 shows the maximal execution time of the three
implementations running with different number of processes.

As shown in Figure 7, the maximal execution time of
the three implementations in the load-balanced multi-process
mode is smaller than these in the non-load-balanced multi-
process mode.
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Fig. 7. Maximal execution time of GATK HC implementations in multi-
process mode

Moreover, the GPU-based GATK HC implementation in the
load-balanced multi-process mode is the fastest. Compared
with the baseline implementation and the vectorized GATK
HC implementation in the non-load-balanced multi-process
mode, the GPU-based GATK HC implementation in the load-
balanced multi-process mode achieves up to 2.04x and 1.40x
speedup, respectively.

V. CONCLUSIONS

This paper presents a novel implementation of a GPU accel-
erated GATK HC to improve the overall performance of this
computationally intensive application. The paper also proposes
a load-balanced multi-process optimization that divides the
genome into regions of different sizes to ensure a more equal
distribution of computation load between different processes.
In addition, the paper compares the GPU-based, vectorized
and baseline GATK HC implementations in single-threaded,
multi-threaded and multi-process modes.

In single-threaded mode, the GPU-based GATK HC is 1.71x
faster than the baseline implementation and 1.21x faster than
the vectorized GATK HC implementation. In multi-threaded
mode, the GATK HC workflow limits the performance im-
provement achievable by accelerating the pair-HMMs kernel.
In multi-process mode, the GPU-based GATK HC implemen-
tation is the fastest. In addition, the GPU-based implementa-
tion achieves up to 2.04x and 1.40x speedup in load-balanced
multi-process mode over the baseline implementation and
vectorized GATK HC implementation in non-load-balanced
multi-process mode, respectively.
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