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Abstract—Much research has been dedicated to reducing the
computational time associated with the analysis of genome data,
which resulted in shifting the bottleneck from the time needed
for the computational analysis part to the actual time needed
for sequencing of DNA information. DNA sequencing is a time
consuming process, and all existing DNA analysis methods have
to wait for the DNA sequencing to completely finish before
starting the analysis. In this paper, we propose a new DNA
analysis approach where we start the genome analysis before
the DNA sequencing is completely finished. The genome analysis
is started when the DNA reads are still in the process of being
sequenced. We use algorithms to predict the unknown bases and
their corresponding base quality scores of the incomplete read.
Results show that our method of predicting the unknown bases
and quality scores achieves more than 90% similarity with the
full dataset for 50 unknown bases (slashing more than a day
of sequencing time). We also show that our base quality value
prediction scheme is highly accurate, only reducing the similarity
of the detected variants by 0.45%. However, there is still room
to introduce more accurate prediction schemes for the unknown
bases to increase the effectiveness of the analysis by up to 5.8%.

Index Terms—DNA Sequencing delay; Prediction; GATK;

I. INTRODUCTION

The decreasing cost of DNA sequencing [1] has enabled sci-
entists to perform genome analysis easily and with increasing
resolution for applications ranging from research to clinical
diagnostics.

In Variant Calling the sequenced DNA sample is compared
against a reference genome to find the genetic variations in the
sample as opposed to the reference. In this paper, we will use
variant calling as case study for predictive genome analysis.
Genome Analysis Toolkit (GATK) [2] is a widely-used variant
calling pipeline. The stages in the GATK pipeline for detecting
SNPs and INDELs are described in [3]

Both DNA sequencing as well as DNA analysis consume
a lot of time before variants are available for further inves-
tigation (e.g., diagnostics). High-throughput Illumina DNA
sequencing machines (such as the HiSeq 2500) require up to
a week to fully sequence the DNA. Similarly, the processing
of the large amounts of data by the genome analysis pipeline
results in a huge computation time as well.

A lot of effort has been made in the past to accelerate the
computation time of individual stages of the pipeline as well as
accelerating the whole pipeline using cluster based computing.
BWA-MEM is accelerated in [4]. A multithreaded version of
Picard tools is presented in [5]. An FPGA acceleration of the
PairHMM calculation is given in [6]. A cluster based Spark

Fig. 1: The proposed scheme to hide DNA sequencing delay

implementation of the whole GATK pipeline is presented
in [7]. As a result of these efforts in reducing the computation
time, the process of DNA sequencing is becoming the limiting-
factor in the total time required for genome analysis. The
process of DNA sequencing takes days to complete [8], while
implementations of the genome analysis pipeline on computer
clusters can process hundreds of gigabytes of DNA sequencing
data in less than two hours [9].

In this paper, we overcome the problem of long DNA
sequencing time by partially hiding its delay. This is achieved
by starting the genome analysis while the sequencing of the
DNA read data is still in progress. In this way, our scheme does
not wait for the DNA sequencing process to completely finish
before starting the analysis. As the genome analysis is started
while the DNA read is still being sequenced, we do not know
the values of the last bases of the read and their corresponding
base quality scores. Therefore, we introduced an additional
stage in the genome analysis pipeline that predicts the value
of the unknown bases and their corresponding base quality
scores. A patent based on the work in this paper is also filed
in Europe [10].

The outline of the rest of the paper is as follows. Our
approach to hide the DNA sequencing delay is presented in
Section II. The method of predicting unknown bases, their
corresponding base quality scores and some additional SAM
fields is described in Section III. Experimental results of our
proposed techniques are discussed in Section IV. We finally
conclude the paper in Section V.

II. APPROACH

In this paper, we propose a scheme in which the large
DNA sequencing time is partially hidden by starting the
genome analysis before the DNA sequencing is completely
finished. Current high throughput DNA sequencing machines
(e.g., Illumina), sequence both ends of a DNA fragment to
generate paired-end read data. Paired-end read data allows



Fig. 2: (a) Workflow 1 and 2. Workflow 1 has two additional stages: SAMToFASTQ conversion and remapping with BWA-MEM.

more accurate genome analysis as compared to single-end
reads. The DNA sequencing technology used by Illumina
is known as Sequencing by Synthesis (SBS). In SBS, the
first and the second read in the paired-end data is generated
by sequencing the forward and reverse strand, respectively.
The two reads in the pair are sequenced one after the other.
Hence, the first read in the paired-end is completely sequenced
followed by the second read. Moreover, one base is sequenced
at a time. Sequencing a base, produces two values: 1) The
actual value of the base (i.e., A, T, C, G or N (ambiguous
base)) and 2) The base quality score which is the probability
of error in the sequencing process.

In high-end Illumina DNA sequencing machines (e.g.,
HiSeq 2500), generating around 1 Terabyte of data, sequencing
a base takes around 30 minutes [8]. Therefore, hiding the
sequencing of even a few bases results in large saving in time.
In this work, we have reduced the DNA sequencing latency
by starting the genome analysis while the DNA sequencing
of the second read in a paired-end read is still in progress.
In this way, we can save a large amount of time, and the
genome analysis can be completed much earlier as compared
to the case in which the genome analysis is started after the
DNA sequencing is completely finished. Figure 1 shows the
proposed scheme. The sequenced bases are streamed out of
the DNA sequencing machine while the sequencing is still in
progress. The bases are stored in a base accumulator. After
enough bases of the second read have been accumulated, the
FASTQ file is generated. At the same time a base quality
profile of the first read is also generated. The FASTQ file and
the base quality profile of the first read are used to perform
the genome analysis and complete the unknown part of the
reads

III. METHODS

In the rest of the paper we will use the following termi-
nology:

1) The paired-end read dataset which would have been
generated if the DNA sequencing is allowed to finish
is called original read dataset.

2) The second read in the paired-end read dataset which
would have been generated if the DNA sequencing is
allowed to finish is called original second read.

3) The paired-end read dataset in which the second read
has unknown bases due to incomplete DNA sequencing
is called incomplete read dataset.

4) The first read in the incomplete read dataset is exactly
the same as that in the original read dataset and is simply
called first read.

5) The second read in the paired-end dataset with unknown
bases due to incomplete DNA sequencing is called
incomplete second read.

6) The number of unknown bases in the incomplete second
read is called n unknown.

7) The paired-end read dataset in which the unknown bases
and quality scores of the second read are completed by
our read prediction schemes is called completed read
dataset.

8) The second read in the paired-end read dataset with
unknown bases and quality scores that have been com-
pleted by our read prediction schemes are called com-
pleted second read.

A. Input read dataset

In the experiments in this paper, we use the whole exome
sequencing of NA12878 dataset. This dataset has 150x cov-
erage with paired-end reads and a read length of 100 base
pairs (bp) [11]. The 150x dataset is used to generate subsets of
datasets with 50x and 100x coverage. Throughout the paper we
will use these three read datasets as the original read datasets.
Last tens of bases of the second reads of these datasets are
clipped to form the incomplete read datasets.

B. Workflows

As described above we have reduced the DNA sequencing
delay by starting the genome analysis while the second read
in the paired-end DNA read data is still being sequenced.
Therefore, the values of the last bases of the second read and
their corresponding base quality scores are unknown to us.
We have designed a prediction stage PredictReads that
predicts the values of the unknown bases of the second read
and their corresponding base quality scores. We have tested the
efficacy of our prediction stage using two different workflows.
Figure 2 shows Workflow-1 and Workflow-2, respectively, of
our prediction scheme.

Workflow-1 (WF-1) starts with a FASTQ file in which
the last bases of the second read and their corresponding
base quality score values are unknown. It first maps the
incomplete read dataset using BWA-MEM. The mapped reads
are sorted (w.r.t. mapping position) using Picard’s SortSAM.
The unknown bases of the second read and their corresponding
base quality score are predicted using our PredictReads
stage. The predicted bases and their corresponding base quality
scores are appended at the end of the second read. This
SAM file is then converted into a FASTQ file using Picard’s
SAMToFASTQ utility. The output of the SAMToFASTQ is a



Fig. 3: Set of overlapping reads mapped to a reference genome.
Lines with arrowheads are the reads

FASTQ which is a completed read dataset. This FASTQ file
is used as an input for a run of the whole GATK pipeline of.

Workflow-2 (WF-2) starts with the same first three stages
(from BWA-MEM to PredictReads) of WF-1. WF-2 then
sorts the SAM output file of the read prediction stage and con-
tinues to execute the remaining stages in the GATK pipeline
after SortSAM. The read prediction stage of WF-2 is slightly
different from the read prediction stage of WF-1. Apart from
predicting the unknown bases of the second read and their
corresponding base quality scores, the read prediction stage
of WF-2 has to also predict/correct some additional fields of
the input SAM file, as described in Section III-C3.

C. Read prediction

The core of the the proposed scheme is the read prediction
stage. Read prediction has to perform the following: 1) Predict
the values of the unknown bases of the second read, 2) Predict
the base quality scores of the unknown bases of the second
read, and 3) Predict some additional fields of the input SAM
file in case of WF-2.

1) Predicting unknown bases: We predict the unknown
bases by detecting the overlap between the incomplete second
read and the reads that are mapped close by. Figure 3
shows a set of overlapping reads mapped to a reference
genome. The black-colored read is an example of an
incomplete second read, while the gray-colored reads are
the overlapping reads. The reads containing dotted lines
are the incomplete second reads, where the dots show the
unknown bases. The arrow on the reads indicate the direction
of mapping. We tested various prediction schemes. Here we
will describe two prediction schemes that give the best results:

Scheme-1: For each unknown base we take a majority
vote of the bases from the overlapping reads to predict the
value of the unknown base. An unknown base having no
overlap is substituted with the reference genome base located
at the corresponding position. The number of bases having
no overlap is quite low for high coverage data. For 150x
coverage data with the last 30 bases unknown in the second
read, there are only 2.22% unknown bases with no overlap.
Moreover, only 3.64% of the unknown bases have less than
10 overlapping bases. Hence, in most of the cases the majority
vote is taken among a large number of overlapping bases.

Scheme-2: In the second scheme, we predict the unknown
bases of the incomplete second read by matching the known
bases of the incomplete second read with the overlapping

Fig. 4: Prediction accuracy of unknown bases

Fig. 5: Average base quality profile of WES 150x dataset.

reads. The overlapping read that is matching most closely
is used to predict the unknown bases. The bases of the
overlapping read covering the unknown bases are used to
complete the unknown bases of the incomplete second read.
If the overlapping read does not cover all the unknown bases
of the incomplete second read, then the remaining unknown
bases are predicted using prediction scheme 1.

Figure 4 shows the effectiveness of scheme 1 and scheme 2
in completing the unknown bases in the incomplete reads.
The figure shows percentage of the incomplete seconds
reads that the scheme is able to complete perfectly (i.e., the
completed second reads becoming exactly the same as the
original second read). The original read data set has 150x
coverage. The figure shows that prediction scheme 1 results
in more accurate prediction of unknown bases as compared
to prediction scheme 2. Therefore, in this work we will use
prediction scheme 1 to predict the unknown bases.

2) Predicting unknown base quality scores: For predicting
the base quality scores, we observe the fact that the slope of
the average base quality score pattern generated by Illumina
machines for the first read and the second read is nearly the
same. We used FastQC [12] to plot the average base quality
score of the first and second read across the read length.
Figure 5 shows a plot of the average base quality score values
across the entire read for the 150x original read dataset. It
clearly shows that the slope of the average base quality score
pattern of the first read and the second read is nearly the same.

To predict the base quality scores of the unknown bases of
the second read, we modeled the base quality score pattern



of the last n unknown bases of the first read with a piece-
wise linear function. The number of “pieces” in our piece-wise
linear model is equal to n unknown− 1. Assuming that the
slope of the base quality score pattern of the second read is
same as the average of that of the first read, our piece-wise
linear model is able to correctly predict the unknown base
quality scores of the second read.

3) Predicting additional SAM fields: In the workflow
WF-2 (Section III-B, apart from predicting the unknown
bases and their corresponding base quality scores, we also
need to predict some other SAM fields in the read prediction
stage. These are: A. Mapping position of the completed
second read B. CIGAR string of the completed second read.

A. Mapping position of the completed second read: In
both workflows WF-1 and WF-2, mapping using BWA-MEM
is the first stage. Therefore, if the incomplete second read
is mapped on the reverse strand of the reference genome,
then its mapping position in the SAM file will always be
n unknown positions ahead of the original second read,
assuming that there are no deletions and soft clipping in the
last n unknown bases of the original second read. In our
prediction of the mapping position, we assume that there
are no deletions and soft clipping in the last n unknown
number of bases of the original second read, and hence,
subtract n unknown from the mapping position of the
incomplete second read to form the mapping position of the
completed second read. If the mapped incomplete second
read has soft clipping at the beginning of the read we do
not perform this operation. Figure 6 shows a plot of the
correctly mapped reads in the completed read dataset. The
original read dataset has 150x coverage. A read is regarded
as correctly mapped if its mapping position is same as the
mapping position of the read in the original read dataset.
The percentage of correctly mapped reads are shown for two
cases: 1) 150x wf1 representing the case of WF-1, which is
the percentage of correctly mapped reads after the completed
read dataset is remapped using BWA-MEM, and 2) 150x wf2
representing the case of WF-2, which is the percentage
of correctly mapped reads in the completed read dataset,
in which the mapping positions of the completed second
reads are predicted using the method describe above. The
plot shows that the reads in WF-2 have very high mapping
accuracy. On the other hand, remapping the reads after the
prediction of the unknown bases of the second read, as done
in WF-1, greatly reduces mapping accuracy.

B. CIGAR string of the completed second read: In WF-
2, we reevaluate the CIGAR string of the completed second
read by performing a semi-global alignment between the
completed second read and the substring of reference genome.
Let T be the reference genome and T [a, b] be its substring
starting from reference position a and ending at position b.
The substring of the reference genome used in the semi-global
alignment is T [p−10, p+qlen+10], where p is the predicted
mapping position of the completed second read and the qlen

Fig. 6: Percentage of correctly mapped reads

Fig. 7: (a) Effectiveness plot for 50x coverage data. (b)
Effectiveness plot for 100x coverage data. (c) Effectiveness
plot for 150x coverage data.

is the length of the completed second read. If the mapped
incomplete read is soft clipped at either end, the CIGAR
string is not reevaluated. Instead, the first or last operation in
the CIGAR string of the incomplete second read is extended
by n unknown depending upon the mapping strand of the
incomplete second read. If the incomplete second read is
mapped on the reverse strand, the first CIGAR operation is
extended and vice versa.



IV. RESULTS

For evaluating our proposed scheme we implemented the
read prediction stage in practice. Our read prediction stage
is capable of predicting the unknown bases, unknown base
quality scores and the additional SAM fields as described in
Section III-C. The prediction of additional SAM fields is only
required in WF-2. Our prediction stage requires the reference
genome and base quality profile of the first read as input
in addition to the SAM file of the DNA reads mapped and
sorted w.r.t. mapping position. We used UCSC hg19 as the
reference genome. We also used 1000G phase1, dbsnp 138
and Mills and 1000G gold standard as the known SNP and
indel sites for the BaseRecalibrator stage. All the Picard
and GATK tools are run with default settings. BWA-MEM
also is run with default settings except the use of -M option,
essential for Picard compatibility.

We first run the GATK pipeline with original read dataset
to generate orig the set of variant calls (VCF file) that we
compare our techniques with. We then clipped the last tens of
bases of the original second reads to generate incomplete read
dataset. The set of variant calls (VCF file output) of the GATK
pipeline computed for the incomplete read dataset will be
called as incomplt. To test our prediction scheme, we predict
the unknown bases, unknown base quality scores and some
additional SAM fields (only in WF-2). The sets of variant calls
generated by running WF-1 and WF-2 of Figure 2 are called
as complt wf1 and complt wf2, respectively. Precision and
recall (sensitivity) can be defined as:

precision =
TP

TP + FP
× 100% (1)

recall =
TP

TP + FN
× 100% (2)

where TP, FP and FN are the true positives, false positives
and false negatives, respectively, . In order to evaluate the
effectiveness of the predictive analysis workflows defined in
this paper, we use the area under the precision-recall (APR)
curve as our metric. APR indicates the effectiveness of a
pipeline in identifying as much as possible correct variants
(high TP) while identifying as little as possible incorrect
variants (low FP). In the ideal case, APR is equal to 100%,
and the closer the APR is to 100%, the more effective the
workflow is. This definition of APR is the same as the one
used by [13] to evaluate the effectiveness of various variant
calling pipelines. The APR is calculated for complt wf1,
complt wf2 and incomplt, with respect to orig. We use RTG
tools [14] to calculate the precision-recall graph. This is then
further used to evaluate the APR of our workflows.

Figure 7 shows the effectiveness in terms of APR of
incomplt, complt wf1 and complt wf2 with respect to
orig, while clipping 10, 20, .. up to 70 bases of the original
second read. Figures 7a, 7b and 7c show the APR plot for
50x, 100x and 150x coverage data, respectively. Scheme-1
explained in Section III-C1 is used to predict the unknown
bases in the second read. The figures show that the APR
decreases almost linearly with increasing number of unknown

Fig. 8: The difference between the APR of WF-1 and
incomplt for a range of n unknown and coverage values.

Fig. 9: Increase in the APR after assuming original values for
mapping position, unknown base quality score or unknown
base value.

bases. At the same time, the overall APR of all sets of
variant calls increases as the data coverage is increased from
50x to 150x. The figures also show that WF-1 is the most
effective workflow to accurately call variants of incomplete
reads, consistently achieving a higher APR than WF-2 and
incomplt for all cases. For an increasing n unknown, the
APR of WF-2 gets gradually closer to that of WF-1, but
never actually reaching it. Although WF-2 has a much higher
read mapping accuracy than WF-1 (according to Figure 6),
Figure 7 shows that WF-1 has a better APR than WF-2 for
all cases. This degradation in APR of WF-2 as compared to
WF-1 can be attributed to the prediction scheme (scheme-1
of Section III-C1) that we used to predict the the unknown
bases. In scheme-1, we take a majority vote of the bases from
the overlapping reads to predict the value of the unknown
base. This majority vote may cause a true variant to be
overshadowed and hence, being missed in WF-2. On the other
hand, in WF-1 the unknown bases of the incomplete second
read are predicted, and then the completed read dataset is
remapped to the reference genome. This causes some of the
reads to be mapped to a different position than the initial
mapping and hence, do not overshadow a true variant.

Figure 8 shows a plot of the difference between the
APR of WF-1 and incomplt for a range of n unknown.
As pointed earlier, the figure shows that WF-1 is always
better than incomplt. The difference is initially small but
increases with increasing n unknown, then peaks at around



n unknown = 50, and finally falls back down. The plot also
shows that the difference in the APR of WF-1 and incomplt
is much higher at lower coverage than at higher coverage.
For n unknown = 50, the difference is 5.7% and 3.2% for
50x and 150x coverage, respectively. This means that with
increasing coverage the APR of incomplt increases at a much
higher rate than WF-1. Therefore, our method of predicting
unknown bases and their corresponding base qualities has a
bigger comparative impact on the APR with lower coverage
as compared to incomplt.

We also studied the effect of accurate prediction of dif-
ferent parameters of the incomplete second read. We make
three different assumptions in WF-1. 1) orig pos: We assume
that the mapping position of the reads going into the read
prediction stage of WF-1 is exactly the same as mapping
position of the reads in the original read dataset. The un-
known bases and the corresponding base quality scores are
predicted as described in Section III-C1 (scheme-1) and III-C2,
respectively. 2) orig qual: We assume that the unknown base
quality scores of the incomplete second read are predicted with
ideal accuracy (i.e., they are exactly the same as in original
second read). The unknown bases of the incomplete second
read are predicted as described in Section III-C1(scheme-
1). 3) orig base: We assume that the unknown bases of
only those incomplete second reads in which the mapping
positions are correct (same as that of original second read),
are predicted with ideal accuracy (i.e., they are exactly the
same as in original second read). The mapping positions of the
incomplete second reads are predicted using the same method
as described in Section III-C3. Unknown base quality scores
of the incomplete second read are predicted as described in
Section III-C2. Figure 9 shows the increase in APR for each of
the three cases. ∆APR = 150x y wf1−150x complt wf1,
y is orig pos, orig qual or orig base. Figure 9 shows that
the assumption of accurate prediction of the unknown base
values (orig base) causes a much higher increase in APR
as compared to the other two assumptions. For orig qual,
the increase in APR is quite small. Hence, there is a very
little room for improvement in our method of predicting the
unknown base quality scores. For n unknown = 50, accurate
prediction of unknown base quality scores and read mapping
positions cause an increase of 0.45% and 2% in the APR,
respectively. On the other hand, accurately predicting the value
of the unknown bases of only those incomplete second reads
which have been mapped correctly can help to increase the
APR by 3.8%. Therefore, we can conclude that the method of
predicting unknown bases can be further improved to achieve
more effectiveness.

V. CONCLUSION

In this paper, we proposed a predictive genome analysis
approach based on the idea of starting the genome analysis
before the DNA sequencing is completely finished. We intro-
duced an additional stage in the GATK pipeline to predict the
unknown bases and their corresponding base quality scores,
due to incomplete DNA sequencing. Two workflows were

proposed to achieve this purpose. The results showed that our
method of predicting the unknown bases and quality scores
achieves more than 90% similarity with the analysis performed
on the full dataset for 50 unknown bases (slashing more than
a day of sequencing time).

We also measured the impact of accurate prediction of
unknown bases, unknown base quality scores and the read
mapping position to improve the effectiveness of the work-
flows in identifying the variants. Results show that our base
quality and read mapping position prediction scheme is highly
accurate. with 50 unknown bases, ideal prediction of the
value of the base quality scores and read mapping position
gives only 0.45% and 2% higher similarity with analyzing
the full dataset, respectively. However, accurately predicting
the value of those unknown 50 bases can achieve a 3.8%
higher similarity, meaning that more effective base prediction
methods can achieve an even higher analysis accuracy.
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