
GPU Accelerated API for Alignment of Genomics
Sequencing Data

Nauman Ahmed, Hamid Mushtaq, Koen Bertels and Zaid Al-Ars
Computer Engineering Laboratory, Delft University of Technology, Delft, The Netherlands

{n.ahmed, h.mushtaq, k.l.m.bertels, z.al-ars}@tudelft.nl

Abstract—Sequence alignment is a core step in the processing
of DNA and RNA sequencing data. In this paper, we present
a high performance GPU accelerated set of APIs (GASAL) for
pairwise sequence alignment of DNA and RNA sequences. The
GASAL APIs provide accelerated kernels for local, global as
well as semi-global alignment, allowing the computation of the
alignment score, and optionally the start and end positions of the
alignment. GASAL outperforms the fastest CPU-optimized SIMD
implementations such as SSW and Parasail. It also outperforms
NVBIO, NVIDIA’s own CUDA library for sequence analysis
of high-throughput sequencing data. GASAL uses the unique
approach of also performing the sequence packing on GPU, which
is over 200x faster than the NVBIO approach. Overall on Tesla
K40c GASAL is 10-14x faster than 28 Intel Xeon cores and 3-4x
faster than NVBIO with a query length of 100 bases. The APIs
are included in an easy to use library to allow integration into
various bioinformatics tools.

Keywords-sequence alignment; GPU acceleration; software
API; NGS

I. INTRODUCTION

Next generation sequencing (NGS) technologies have
greatly reduced the DNA and RNA sequencing cost [1]. This
has enabled scientists to use sequencing for a variety of
applications, ranging from medicine to nutrition. Sequencing
determines the exact order of nucleotides in a DNA and RNA
sample. Sequencing machines provides sequencing informa-
tion in a computer readable data format, which is processed
by computer programs to extract meaningful result.

NGS data analysis programs perform a series of compu-
tational steps on sequenced data. Sequence alignment is an
important step in many core computer programs designed for
processing sequencing data including DNA and RNA read
mappers [2], [3], assemblers [4], [5], and sequencing error
correction programs [6]. Sequence alignment is the process of
editing two or more sequences using gaps and substitutions
such that they closely match each other.

NGS machines generate hundreds of gigabytes of data that
needs to be processed in a timely manner for the desired
purpose. Therefore, a library of sequence alignment algorithms
that is fast and highly optimized will help developers to de-
sign fast and accurate sequence analysis programs. Moreover,
such a library can be easily integrated in various programs
transparently. In sequence analysis programs, millions of in-
dependent pairwise alignments need to be performed. This is
an ideal situation for parallel programming where multiple
threads can be launched, each performing a single or a set

of pairwise alignments. GPUs are capable of executing the
same instructions on thousands of threads concurrently. In
this paper, we present GASAL, a GPU accelerated library for
pairwise sequence alignment of DNA and RNA sequences.
GASAL contains functions for all three types of alignment
algorithms i.e. local, global and semi-global. One-to-one as
well as all-to-all and one-to-many pairwise alignments can be
performed. Apart from NVBIO [7], NVIDIA’s own CUDA
library for sequence analysis of high-throughput sequencing
data, there is no GPU accelerated library for pairwise align-
ment that exploits the massive parallelism offered by GPUs
to deliver good performance. In addition to performing the
alignment step on GPU, we used the novel approach of
performing sequence packing on GPU as well, which shows
large speedups as compared to performing the same operation
on CPU. The library returns the score and the end position of
the alignment with the option of calculating the start position
of the alignment as well. GASAL is publicly available and can
be easily downloaded from GitHub [8] which also contains the
usage instructions. GASAL outperforms current state-of-the-
art CPU-optimized implementations of sequence alignment
algorithms as well as NVBIO.

This paper is organized as follows. Section II presents the
motivation for GASAL. Section III describes the GASAL
implementation. Section IV discusses the experimental results.
Section V concludes the paper.

II. MOTIVATION

GPU acceleration of sequence alignment has been the topic
of many research papers. Most of the previous work, such
as [9], [10] and [11], was focused on developing search
engines for databases of protein sequences. Alignment of DNA
and RNA sequences during the processing of high-throughput
NGS data poses a different set of challenges than database
searching as described below.

1) The sequences to be aligned in NGS processing are
generated specifically for each experiment. In contrast,
in database searching, the database of sequences is
known in advance and can be preprocessed for higher
performance.

2) In database search programs, one-to-all alignment is
performed in which a query sequence is aligned against
all the sequences in the database (may be regarded as
target sequences), whereas the processing of NGS data
requires one-to-one (e.g., in read aligners) one-to-all

(e.g., in multi sequence alignment) is performed. Due to
this, common performance improvement techniques in
database search programs, such as using query profile,
are not feasible in NGS data alignment.

3) Sequence alignment is only a step in a bigger NGS data
processing program rather than a standalone program,
introducing new challenges in integrating the alignment
step to the rest of the pipeline.

Despite these challenges, GPU acceleration of NGS data
alignment can take advantage of the following two observa-
tions:

1) In database search programs, each base of the sequence
has to represent 20 different possible amino acid values
and hence require 8-bits to represent each base. DNA
and RNA sequences are made up of only 5 bases (A, C,
G, T/U and N for ”unknown”) and can be represented
with a minimum of 3-bits. In this paper, we use an
easy-to-implement 4-bit representation. This reduces the
memory requirement by half as compared to database
searching (which uses 8 bits) and also reduces the GPU
global memory accesses.

2) The variation in sequence length is much smaller in
NGS data alignment as compared to database sequences,
making load balancing much easier.

Due to these differences, GPU accelerated database search
cannot be used to accelerate the alignment step in NGS data
processing programs. gpu-pairAlign [12] and GSWABE [13]
present only all-to-all pairwise local alignment of sequences
with the goal of computing the actual alignment (i.e., exact
position of matches, mismatches and gaps in the alignment).
All-to-all alignment is easier to accelerate on GPU. Since, only
one query sequence is being aligned to all other sequences, the
query sequence may reside in the GPU cache, substantially
reducing global memory accesses. On the other hand, in one-
to-one alignment each query sequence is different limiting
the effectiveness of caching these sequences. In many NGS
data processing applications, one-to-one pairwise alignment is
required (e.g., DNA read mapping). In DNA read mapping,
local alignment takes a substantial percentage of the total run
time. For example, in the BWA-MEM DNA read aligner the
local alignment takes about 30% of the total execution time
with 150bp (or base pairs) simulated reads (see Section IV-B),
while calculating only the score, start and end position. Global
alignment is used to compute the actual alignment for gener-
ating the output CIGAR. But, this computation takes around
5% of the total execution time.

None of the previously published research efforts have
developed any GPU accelerated sequence alignment library
that can be easily integrated in other programs that require
to perform pairwise alignments. NVBIO [7] is the only public
library that contains GPU accelerated functions for the analysis
of DNA sequences. Although this library contains a GPU
accelerated function for sequence alignments, its performance
is limited. Therefore, in this paper we present a GPU ac-
celerated library for pairwise alignment of DNA and RNA

Fig. 1. NVBIO data packing time as percentage of total execution
time

Fig. 2. Packing the sequences on GPU. b1, b2, . . . , are the bases

sequences, GASAL. The library contains functions that enable
fast alignment of sequences and can be easily integrated in
computer programs developed for NGS data analysis. Func-
tions for all three types of alignment algorithms (i.e., local,
global and semi-global) are available in GASAL. One-to-one
as well as all-to-all and one-to-many pairwise alignments can
be performed.

III. GASAL IMPLEMENTATION

In this paper, we have developed GASAL, a GPU acceler-
ated library for pairwise sequence alignment. The library func-
tion returns the alignment scores, end position and optionally
the start position of the alignment. The sequences are first
packed into unsigned 32-bit integers, followed by performing
the alignment. This section first describes the packing step,
followed by the alignment step.

A. Data packing

Sequences are received in the form of batches in which each
base is represented by one byte. However, DNA and RNA
sequences are made up of only 5 nucleotide bases, A, C, G,
T/U (T in case of DNA and U in RNA) and N (unknown base),
4 bits are enough to represent each symbol of a sequence. As
the registers in the GPU are 32-bits wide and each thread
can read from or write to at most 4 bytes to the memory, a
sequence can be packed in arrays of 32-bit unsigned integers
in which each base is represented by 4 bits. This will reduce
the amount of memory communication inside the GPU kernel.

Fig. 3. Data packing time, GASAL vs NVBIO. Y-axis is log-scale

NVBIO also packs the DNA and RNA sequences on CPU
using 4 bits for each base. As the the number of sequences in
a batch is quite large and the length of each sequence can be
hundreds of bases, packing the data on the CPU is very slow.

Figure 1 shows the percentage of data packing time in
the total execution time for local, global and semi-global
alignments in NVBIO. The input dataset and GPU platform
are described in Section IV-B. Figure 1 shows that in NVBIO
considerably large percentage of time in data packing. For
100, 150 and 300bp reads, packing consumes up to around
65%, 60% and 40% of execution time for all types of
alignments. Hence, NVBIO spends a large portion of the
total execution time in preparing the sequences to be aligned
on GPU. Based on this observation, we further improve the
performance by accelerating the data packing process on GPU.
Unpacked batches of sequences are transferred to the GPU
global memory before the data packing kernel is launched.
An unpacked batch is basically a concatenation of sequences
in which each base is represented by 8 bits. Figure 2 shows
the process of data packing on GPU. Each GPU thread loads
eight bases of a sequence at a time from global memory.
Each base is converted from 8-bit to 4-bit representation and
then packed into an unsigned 32-bit integer which is written
back to global memory. Figure 3 shows the speed up achieved
by packing the data on the GPU for the data sets. Figure 3
shows that our novel approach of packing the sequences on
GPU in GASAL is very fast as compared to sequence packing
performed by NVBIO on CPU. GASAL is at least 200x faster
than NVBIO. Only few tens of milliseconds are required to
pack the sequences in GASAL. Therefore, the data packing
time is completely eliminated.

B. GASAL alignment kernels

After packing the sequences, the sequence alignment kernel
is launched to perform pairwise alignment of the sequences.
The algorithm for the local alignment kernel is shown in
Algorithm 1. To find an alignment the cells of three identical
H , E and F matrices, shown in Figure 4, are computed. But,
computing a cell requires the values from the top, left, and top-
left cells. Therefore, there is no need to store the whole matrix.
Only a complete row of cells and a column of the tile, shown
shaded in color in Figure 4 are stored, reducing the memory
requirements. Each GPU thread executes the same kernel to

Algorithm 1: The local alignment kernel to find the score
and end positions of the alignment

Input: Two sequences S1 and S2 pack packed in sets of unsigned 32-bit
integers S1 pack and S2 pack in which each base occupies 4 bits:
S1 pack, S2 pack; length of S1 |S1| and S2 |S2|; score for match
match sc, mismatch penalty miss sc, gap open penalty gapo and gap
extension penalty gape

Output: maximum score max sc and end position end pos

1 Function GASAL LOCAL(k) begin
2 Initialize H and E arrays of size of |S1| containing zeros
3 max sc← 0
4 end pos← {0, 0}
5 for j ← 1 to |S2|/8 do
6 Initialize h and f and p arrays of size of 9 containing zeros
7 s2 reg ← S2 pack[j]
8 s2 idx← (j − 1) ∗ 8
9 s1 idx← 0

10 for i← 1 to |S1|/8 do
11 s1 reg ← S1 pack[i]
12 k ← 32
13 while k >= 4 do
14 // get 4 bits of s1_reg
15 s1 base← s1 reg[k, . . . , k − 3]
16 h[1]← H[s1 idx]
17 p[1]← H[s1 idx]
18 e← E[s1 idx]
19 l← 32
20 for m← 2 to 9 do
21 // get 4 bits of s2_reg
22 s2 base← s2 reg[l, . . . , l− 3]
23 s2 idx← s2 idx + (m− 1)
24 f [m]← max {h[m]− gapo, f [m]− gape}
25 e← max {h[m− 1]− gapo, e− gape}
26 // 0 is the padding base
27 if s1 base = 0 or s2 base = 0 then
28 h[m]← p[m] + 0

29 else if s1 base = s2 base then
30 h[m]← p[m]−match sc

31 else
32 h[m]← p[m]−miss sc

33 h[m]← max {h[m], f [m], e, 0}
34 if h[m] > max sc then
35 max sc← h[m]
36 end pos← {s1 idx, s2 idx}

37 p[m]← h[m− 1]
38 m← m + 1
39 l← l− 4

40 H[s1 idx]← h[m− 1]
41 E[s1 idx]← max {e, 0}
42 s1 idx← s1 idx + 1
43 k ← k − 4

44 return {max sc, end pos}

perform a pairwise alignment of the assigned sequences. Since,
the packed sequences already reside in the global memory,
there is no need to perform any transfer of data from host to
GPU to launch the kernel. The kernel uses the tiled approach
(shown in Figure 4), to reduce the number of global memory
accesses while computing the local alignment. In the tile-based
scheme, all the cells in the tile are computed by accessing the
global memory for retrieving the bases of S1 and S2 only
once. This is possible due to packing of data. Figure 4 shows
a 4 x 4 tile. Since, we have packed 8 bases in one unsigned
32-bit integer, our tile is 8 x 8. Each tile is computed column-
wise. After a tile is computed the adjacent tile on the right is
computed next. For example, the 4 x 4 tile shown in Figure 4
is the sixth in the order of computation.

Fig. 4. Identical H , E and F matrix

The kernel returns the alignment score and the end position
of the alignment on both sequences. Our library can also
compute the start position using the same packed sequences.
To find the start position we restart the computation, but now
from the end cell, in the backward direction and exit where
the score becomes equal to the previously found score. The
coordinate of the cells at the exit point gives the starting
positions of the alignment.

IV. EXPERIMENTAL RESULTS

A. Libraries compared with GASAL

We compared the performance GASAL against the fastest
available GPU and CPU libraries. For local alignment GASAL
is compared with NVBIO, as well as Striped Smith-Waterman
(SSW) [14] which is the fastest implementation of local align-
ment on CPU and uses SSE2 SIMD instructions. Performance
of global and semi-global alignment of GASAL is compared
against NVBIO and Parasail [15]. Parasail allows the user
to choose between SSE2 and AVX2 SIMD implementations.
It also consists of different vectorization approaches namely
scan, striped, diagonal, blocked. We have used the scan
approach implemented with AVX2 instructions as it is the
fastest for our dataset. For our dataset, SSW is faster than
Parasail for local alignment. For SSW and Parasail we varied
the number of threads from 1 to 28 to find the fastest running
times for these libraries. Therefore the execution time of the
SSW and Prasail reported in Section IV-D are the shortest
possible execution times on a high-end machine.

NVBIO does not contain any function that only
computes the start position of the alignment. The
alignment_traceback function of NVBIO computes
the actual alignment and also returns the start position, but
is very slow. To compute the start position with NVBIO we
make two copies of each sequence, one in original form and
other reversed. The alignment of original sequences is used
to compute the score and end position, while the reverse
sequence are aligned to compute the start position. Similarly,
Parasail also do not compute the start position. Therefore,
the original sequences are aligned to obtain score and end

TABLE I. Characteristics of the input dataset

Dataset Read Batch Target Batch
avg.
len.

max.
len.

No. of
seq.

avg.
len.

max.
len.

No. of
seq.

DS100 100 100 10e6 162 177 10e6
DS150 150 150 10e6 260 277 10e6
DS300 300 300 10e6 538 571 10e6

Fig. 5. Alignment kernel execution times for local alignment of
NVBIO and GASAL without computing the start position

position, then both sequences are reversed to calculate the
start position. SSW has the inbuilt ability to compute the start
position if asked to do so.

B. Input dataset and execution platforms

To evaluate the performance of GASAL we considered
the case of DNA read mapping. Read mappers have to per-
form billions of one-to-one pairwise alignments between short
segments of DNA and substrings of the reference genome.
In the rest of the paper, we will refer to the substrings of
the reference genome as target sequences. The length of the
read sequence is fixed, while the length of the target sequence
may vary. We simulated reads using Wgsim [16]. The reads
are used to generate the corresponding target sequence using
BWA-MEM. Three typical read lengths generated by Illu-
mina high-throughput DNA sequencing machines are used:
DS100, DS150 and DS300 representing 100, 150 and 300bp,
respectively. Table I shows the number of sequences in the
read and target batch and the corresponding maximum and
average length of the sequences in each batch. Minimum target
sequence length in each case is approximately equal to the
length of the read.

SSW and Prasail libraries are executed on a high-end
machine consisting of 2.4 GHz Intel Xeon processors with
a total of 28 two-way hyper-threaded cores and 192 gigabytes
of RAM. An NVIDIA Tesla K40c GPU is used to execute
GASAL and NVBIO kernels.

C. GASAL alignment kernel performance

Table II shows a comparison of the alignment kernel ex-
ecution times of NVBIO and GASAL (rounded off to the
closest integer). The times listed in the table represent the
times spent on only performing the pairwise alignments on the
GPU and do not include data packing and data copying time.
This table shows that the alignment kernel execution times of
NVBIO and GASAL are the same for most alignment types.

TABLE II. Alignment kernel times (in seconds) for NVBIO and GASAL

DS100 DS150 DS300
NVBIO GASAL NVBIO GASAL NVBIO GASAL

Local 3 3 7 7 31 30
Local with start 6 6 15 15 61 57

Semi-global 3 3 6 6 25 24
Semi-global with start 5 5 12 12 50 45

Global 3 3 6 6 25 25

TABLE III. Total execution times (in seconds) for SSW, Parasail, NVBIO and GASAL. SSW is used for local alignment, while Parasail is
used for global and semi-global alignment.

DS100 DS150 DS300
SSW/Parasail NVBIO GASAL SSW/Parasail NVBIO GASAL SSW/Parasail NVBIO GASAL

Local 39 13 4 50 20 8 61 51 31
Local with start 43 30 7 50 45 15 67 110 58

Semi-global 42 12 3 48 18 7 74 45 25
Semi-global with start 50 28 6 62 42 12 87 98 47

Global 43 12 3 57 19 7 78 45 26

Fig. 6. Total execution times for local alignment of SSW, Parasail,
NVBIO and GASAL without computing the start position

GASAL does show a performance advantage for alignments
of longer reads (DS300). Figure 5 shows a visual comparison
of the local alignment kernel execution times of NVBIO and
GASAL (as listed in the first row of Table II). The figure
shows that the alignment time increases as expected with
increasing read length. It also shows a slight advantage of
GASAL as compared to NVBIO. This indicates that the unique
data packing approach used in GASAL does not cause any
performance loss in alignment kernel execution as compared
to NVBIO while completely eliminating the data packing time.

D. Overall speedup

Figure 6 and Table III show the end-to-end performance of
SSW, Parasail, NVBIO and GASAL libraries for performing
one-to-one pairwise alignments. For NVBIO and GASAL, the
total execution time is the sum of data packing, data copying
and alignment kernel times.

1) Without computing start-position: Figure 6 shows the
performance of GASAL for performing the local alignment
without computing the start position. For 100bp read length,
GASAL performs the alignment in much less time as com-
pared to SSW and NVBIO, giving an overall speedup of
10x as compared to SSW and over 3x as compared to
NVBIO. With 150bp reads, GASAL is over 6x faster than
SSW and 2.5x faster than NVBIO. For 300bp reads, the

speedup over SSW and NVBIO is 2x and 1.6x, respectively.
Table III lists execution times for the rest of alignment types
without computing start position. For semi-global and global
alignments the speedup obtained by GASAL is even higher.
It is 14x, 7-8x and 3x over Prasail and 4x, 2.7x and 1.7x over
NVBIO for read lengths of 100, 150 and 300bp, respectively.
These results indicate that the speedup achieved by GASAL
and NVBIO over CPU implementations (SSW and Parasail)
decreases with longer reads. This is due to the fact that the
CPU implementations use the striped heuristic that limits the
computational complexity for longer reads, as compared to the
GPU implementations. The results also show that the speedup
achieved by GASAL compared to NVBIO decreases with
longer reads. The reason for this decreasing speedup over
NVBIO with increasing read lengths is the reduction in the
data packing percentage (Figure 1) of the overall application
as the alignment time continues to increase. GASAL speeds
up the data packing while its alignment kernel performance
remains similar to that of NVBIO.

2) With start-position computation: Table III also shows
the overall execution times with start-position computation.
With start-position computation, the speedup of GASAL over
NVBIO is nearly the same as without computing start-position,
since the alignment time simply doubles for both implemen-
tations when the start position is calculated. The executions
times of NVBIO are slightly higher than double due to the time
required to reverse the sequences. Computing local alignment
with start position using GASAL is 6x, 3x and 1.1x faster than
SSW for 100, 150 and 300bp reads, respectively. For semi-
global alignment, the speedup is 8x, 5x and 1.85x for 100, 150
and 300bp, respectively. The results also show that NVBIO
is slower than SSW/Parasail with start-position computation
for 300bp read length, while GASAL is still faster than
SSW/Parasail. The speedup of GASAL over SSW/Parasail is
less with start-position computation as without start-position
computation. This is due to the large caches in CPU as after
computing the end-position the sequences are already available
in cache and do not need to be fetched again from DRAM

Fig. 7. Percentage of data packing, data copying and alignment kernel
times in local alignment of GASAL

resulting in much less time to compute start-position.
Hence, GASAL is 2-4x faster than NVBIO and gives

more speedup over state-of-the-art SIMD libraries making
it a good choice for sequence alignment in high-throughput
NGS data processing. Moreover, GASAL is much easier to
use as compared to NVBIO. In NVBIO, the users have to
manage data packing and data copying themselves by calling
appropriate NVBIO functions. In GASAL, on the other hand,
the users call the required alignment function and all the data
packing and data copying operations are performed by the
alignment functions. Figure 7 shows the percentage of data
packing, data copying and alignment kernel time in the total
execution time of GASAL while computing the score and end-
position for local alignment. It shows that the alignment kernel
takes more than 80% of the time for 100bp reads and this
percentage goes above 90% for 150 and 300bp reads. Data
packing time is negligible. The percentages for semi-global
and global alignment are also nearly the same. Therefore, any
further improvement in the alignment kernel execution time of
GASAL will boost up its performance and directly increase
the overall speedup over other implementations.

V. CONCLUSIONS

In this paper, we presented GASAL, a high performance
and GPU accelerated library, for pairwise sequence alignment
of DNA and RNA sequences. The GASAL library provides
accelerated kernels for local, global as well as semi-global
alignment, allowing the computation of the alignment score,
and optionally the start and end positions of the alignment.
One-to-one as well as all-to-all and one-to-many pairwise
alignments can be performed. GASAL uses the novel approach
of performing the sequence packing on GPU, which is over
300-200x faster than the NVBIO, NVIDIAs own GPU library
for sequence analysis of high-throughput sequencing data ap-
proach. The paper compared GASAL’s performance with the
fastest CPU-optimized SIMD implementations such as SSW
and Parasail and NVBIO. Experimental results performed on
the Tesla K40c GPU show that GASAL is 10-14x faster than
28 Intel Xeon cores and 3-4x faster than NVBIO with a read
length of 100bp without computing start position. For 150bp
reads the speedup of GASAL over CPU implementations and
NVBIO is 6-8x and 2.5-3x, respectively. With 300bp reads
GASAL is 2-3x and 1.6-1.8x faster than CPU and NVBIO,

respectively. With start-position computation the speedup of
GASAL over NVBIO is the same as without start-position
computation. The speedup of GASAL over CPU implemen-
tations with start-position computation is 6-8x, 3-5x and 1.1-
1.85x for 100, 150 and 300bp reads, respectively. The library
provides easy to use APIs to allow integration into various
bioinformatics tools. GASAL is publicly available and can
be easily downloaded from: https://github.com/nahmedraja/
GASAL

ACKNOWLEDGMENT

This work is supported by the Faculty Development Pro-
gram of the University of Engineering and Technology Lahore,
Pakistan.

REFERENCES

[1] K. Wetterstrand, “DNA Sequencing Costs: Data from the NHGRI
Genome Sequencing Program (GSP),” Available at: www.genome.gov/
sequencingcosts, 2016, Accessed [15 October, 2016].

[2] B. Langmead and S. Salzberg, “Fast Gapped-Read Alignment with
Bowtie 2,” Nature Methods, vol. 9, pp. 357–359, 2012.

[3] “NovoAlign,” http://www.novocraft.com/products/novoalign/.
[4] X. Huang and S.-P. Yang, Generating a Genome Assembly with PCAP.

John Wiley & Sons, Inc., 2002.
[5] M. de la Bastide and W. McCombie, Assembling Genomic DNA Se-

quences with PHRAP. John Wiley & Sons, Inc., 2002.
[6] L. Salmela and J. Schröder, “Correcting Errors in Short Reads by

Multiple Alignments,” Bioinformatics, vol. 27, no. 11, pp. 1455–1461,
2011.

[7] J. Pantaleoni and N. Subtil, “NVBIO,” https://nvlabs.github.io/nvbio/,
2015.

[8] N. Ahmed, “GASAL,” https://github.com/nahmedraja/GASAL, 2017.
[9] Y. Liu, W. Huang, J. Johnson, and S. Vaidya, GPU Accelerated Smith-

Waterman. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
188–195.

[10] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: Accelerating
Smith-Waterman Protein Database Search by Coupling CPU and GPU
SIMD Instructions,” BMC Bioinformatics, vol. 14, no. 1, p. 117, 2013.

[11] L. Hasan, M. Kentie, and Z. Al-Ars, “DOPA: GPU-based Protein
Alignment Using Database and Memory Access Optimizations,” BMC
Research Notes, vol. 4, no. 1, p. 261, 2011.

[12] J. Blazewicz, W. Frohmberg, M. Kierzynka, E. Pesch, and P. Woj-
ciechowski, “Protein Alignment Algorithms with an Efficient Backtrack-
ing Routine on Multiple GPUs,” BMC Bioinformatics, vol. 12, no. 1, p.
181, 2011.

[13] Y. Liu and B. Schmidt, “GSWABE: Faster GPU-Accelerated Sequence
Alignment with Optimal Alignment Retrieval for Short DNA Se-
quences,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 4, pp. 958–972, 2015.

[14] M. Farrar, “Striped Smith-Waterman Speeds Database Searches Six
Times Over Other SIMD Implementations,” Bioinformatics, vol. 23,
no. 2, pp. 156–161, 2007.

[15] J. Daily, “Parasail: SIMD C Library for Global, Semi-Global, and Local
Pairwise Sequence Alignments,” BMC Bioinformatics, vol. 17, no. 1,
pp. 1–11, 2016.

[16] “Wgsim,” https://github.com/lh3/wgsim.

