
CI Lab
CE Lab
C≡Lab
CELab
I I Lab
C Lab Computer

Engineering
Laboratory

Computer
Engineering
Laboratory

Computer
Engineering
Laboratory

Delft
University of
Technology

Computer
Engineering
Laboratory

Computer
Engineering
Laboratory

D
e

l
f
t

U
n

i
v
e

r
s
i
t
y

o
f

T
e

c
h

n
o

l
o

g
y

Streaming FPGA Based Multiprocessor
Architecture for Low Latency
Medical Image Processing
Roelof Willem Heij CE-MS-2016-15

Abstract

In this work a fast and efficient implementation of a Field Programmable Gate Array
(FPGA) based, fixed hardware, streaming multiprocessor architecture for low latency
medical image processing is introduced. The design of this computation fabric is based
on the r-VEX Very Long Instruction Word (VLIW) softcore processor and is influ-
enced by architectures of modern Graphics Processing Unit (GPU) implementations.
The computation fabric is capable of exploiting several types of parallelism, including
pipelining, Instruction-level Parallelism (ILP) and Data-level Parallelism (DLP). The
multiprocessor in the fabric is implemented by a chain of r-VEX processors that func-
tion as a processor pipeline. A memory architecture to support the high throughput
of this processor pipeline has been created, making the computation fabric capable of
stream processing. The basic building blocks of this memory architecture are single
cycle accessible, dual port scratchpad memories. A total of 16 instances of the compu-
tation fabric are implemented on a Virtex-7 FPGA, creating an array of multiprocessors
that is capable of processing 43.52 images per second when running a typical medical
image processing algorithm workload on an operating frequency of 193 MHz. This
makes the implementation suitable for real-time medical image processing. The pro-
cessor pipeline depth of the computation fabric is generic, and can be changed accord-
ing to the requirements posed by the algorithm workload. This makes the architecture
flexible and general enough to handle changes and updates to the algorithm workload.

Streaming FPGA Based Multiprocessor

Architecture for Low Latency Medical Image

Processing

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Roelof Willem Heij
born in Krimpen aan den IJssel, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Streaming FPGA Based Multiprocessor

Architecture for Low Latency Medical Image

Processing

by Roelof Willem Heij

Abstract

In this work a fast and e�cient implementation of a FPGA based, fixed hardware, streaming
multiprocessor architecture for low latency medical image processing is introduced. The design
of this computation fabric is based on the ⇢-VEX VLIW softcore processor and is influenced by
architectures of modern GPU implementations. The computation fabric is capable of exploiting
several types of parallelism, including pipelining, ILP and DLP. The multiprocessor in the
fabric is implemented by a chain of ⇢-VEX processors that function as a processor pipeline. A
memory architecture to support the high throughput of this processor pipeline has been created,
making the computation fabric capable of stream processing. The basic building blocks of this
memory architecture are single cycle accessible, dual port scratchpad memories. A total of 16
instances of the computation fabric are implemented on a Virtex-7 FPGA, creating an array
of multiprocessors that is capable of processing 43.52 images per second when running a typical
medical image processing algorithm workload on an operating frequency of 193 MHz. This makes
the implementation suitable for real-time medical image processing. The processor pipeline depth
of the computation fabric is generic, and can be changed according to the requirements posed
by the algorithm workload. This makes the architecture flexible and general enough to handle
changes and updates to the algorithm workload.

Laboratory : Computer Engineering
Codenumber : CE-MS-2016-15

Committee Members :

Advisor: dr. ir. Zaid Al-Ars, CE, TU Delft

Chairperson: dr. ir. Stephan Wong, CE, TU Delft

Member: dr. ir. Chris Verhoeven, ELCA, TU Delft

i

ii

Dedicated to my fiancée Sarah, and to my parents

iii

iv

Contents

List of Figures ix

List of Tables xi

List of Acronyms xiv

Acknowledgements xv

1 Introduction 1
1.1 Context . 1
1.2 Problem definition . 1
1.3 Design constraints . 2
1.4 Related work . 3
1.5 Thesis outline . 3

2 Processors for image processing 5
2.1 Computation platform comparison . 5
2.2 ⇢-VEX analysis . 7

2.2.1 VLIW design philosophy . 8
2.2.2 ⇢-VEX design . 8
2.2.3 Instructions . 11

2.3 GPU analysis . 12
2.3.1 Parallelism . 12
2.3.2 GPU design . 12
2.3.3 Instructions . 15

2.4 Capability analysis . 17
2.4.1 Architecture . 18
2.4.2 Memory architecture . 18
2.4.3 Instruction Set Architecture . 18
2.4.4 Scheduling . 21

3 Image processing algorithms 23
3.1 Analyzing algorithms . 23

3.1.1 Basic metrics and analysis . 23
3.1.2 Analysis for parallel algorithm execution 25

3.2 General image processing algorithms overview 27
3.2.1 Image processing algorithm classes and types 27
3.2.2 Parallelizing image processing algorithms 30

3.3 Medical imaging algorithms . 31
3.4 Adaptation of algorithm workload . 31

v

3.4.1 Contents . 31
3.4.2 Requirement analysis . 31

4 Designing the computation fabric 35
4.1 Requirements . 35
4.2 Platform . 35
4.3 Processor architecture . 36
4.4 Instruction set architecture . 37
4.5 Memory architecture . 37

4.5.1 Memory type . 38
4.5.2 Memory hierarchy . 38
4.5.3 Caches . 39

4.6 Processor pipeline . 39
4.6.1 Multicore setup . 39
4.6.2 Peripherals . 39
4.6.3 Data handling . 40
4.6.4 Complete design . 40

4.7 Multi-fabric design . 40
4.8 Simulations . 42

5 Implementation 45
5.1 ML605 implementation . 45

5.1.1 Processor architecture . 45
5.1.2 Processor pipeline . 47
5.1.3 Operating frequency . 48
5.1.4 Multi-fabric implementation . 48

5.2 VC707 implementation . 48
5.2.1 Processor architecture . 49
5.2.2 Processor pipeline . 49
5.2.3 Operating frequency . 49
5.2.4 Multi-fabric implementation . 49

6 Measurements and results 51
6.1 Experimental setup . 51

6.1.1 Input dataset . 51
6.1.2 Used algorithm workload . 51
6.1.3 Processor configurations . 51
6.1.4 Resource utilization . 52

6.2 Evaluation results . 52
6.2.1 Varying memory sizes . 53
6.2.2 Streaming versus non-streaming 54
6.2.3 Processor architecture considerations 56
6.2.4 Image processing performance . 57
6.2.5 ML605 . 57
6.2.6 VC707 . 58

vi

7 Conclusion and recommendations 59
7.1 Conclusions . 59

7.1.1 Summary . 59
7.1.2 Main accomplishments and contributions 59

7.2 Recommendations for future work . 60

Bibliography 65

A Publication 67

vii

viii

List of Figures

2.1 Graphical overview of computation platform exploration for 8
2.2 Computer system with an Intel Central Processing Unit (CPU), adapted

from [1] . 13
2.3 Basic GPU architecture, adapted from [1] 14
2.4 Scheduling hierarchy in GPU system, with the accessible memory per

layer [1] . 17

3.1 Visual impression of two consecutive steps of a frame-based algorithm
that uses a sliding window. 29

4.1 Schematic representations dataflow in two possible designs 41
4.2 The final design for the computation fabric 42
4.3 The final design for a system with multiple instances of the computation

fabric . 42

5.1 Overview of the implemented processor for the computation fabric. The
gray shapes show how a processor pipeline can be formed by chaining
multiple processors. 47

5.2 Overview of the implemented computation fabric. 48

6.1 Execution times for configurations featuring a 32 KiB local memory . . 54
6.2 Execution times for streaming and non-streaming configurations with 32

KiB local memories and 8 KiB instruction caches. 55

ix

x

List of Tables

2.1 Overview of computation platform exploration 7
2.2 VLIW Example (VEX) and Parallel Thread Execution (PTX) overview

- Part 1 . 20
2.3 VEX and PTX overview - Part 2 . 21

3.1 Relevant selection of operators from Bachmann-Landau family 24
3.2 Complexity analysis of the selected algorithms 32
3.3 Profiling of created algorithm workload 32

4.1 Overview of FPGA specifications . 36
4.2 Simulation results for streaming and non-streaming implementation of

the computation fabric . 43

6.1 Processor configurations used for benchmarking 52
6.2 Execution times for configurations with varying memory sizes 53
6.3 Execution times for streaming and non-streaming configurations. The

values indicated in red are produced through interpolation, because of
limitations in the simulation environment. 55

6.4 Speedup for streaming and non-streaming configurations. 56
6.5 Resource utilization comparison standard rVEX and new design 56
6.6 Resource utilization for varying pipeline depths 58
6.7 Resource utilization per core and of peripherals 58
6.8 Total number of cores and processor pipelines that can be implemented

on the Virtex-6 FPGA . 58

xi

xii

List of Acronyms

AHB Advanced High-performance Bus

ALU Arithmetic Logic Unit

AMBA Advanced Microcontroller Bus Architecture

ASIC Applications Specific Integrated Circuit

BRAM Block Random Access Memory

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DLP Data-level Parallelism

DSP Digital Signal Processing

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

ILP Instruction-level Parallelism

ISA Instruction Set Architecture

LUT Look-Up Table

MIG Memory Interface Generator

OpenCL Open Computing Language

NOP No Operation

PCIe Peripheral Component Interconnect Express

PTX Parallel Thread Execution

RAM Random Access Memory

SFU Special Function Unit

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SM Streaming Multiprocessor

xiii

SP Streaming Processor

SRAM Static Random Access Memory

TLP Thread-level Parallelism

TPC Texture/Processor Cluster

VEX VLIW Example

VHDL Very High Speed Intergrated Circuit Hardware Description Language

VLIW Very Long Instruction Word

xiv

Acknowledgements

There are a lot of people that have helped me in the course of my thesis project. I want
to express my gratitude to all of you.

First I would like to thank my thesis advisor Zaid, for his endless patience and
support. Even at times when the work on my thesis project had seemingly come to
a standstill and I was completely drained of motivation, he would be nothing but en-
thusiastic and encouraging. I would also like to thank Stephan Wong for chairing my
committee, and Chris Verhoeven for being part of my committee.

Joost and Jeroen have also been extremely helpful and supportive. Whenever I
encountered trouble or issues in my work, I could always count on them to help me sort
them out.

I would also like to thank all the marvelous master students that have accompanied
me in the MSc Lab of the CE group. Especially Haji and Koray have really helped and
motivated me in the final months of my thesis project.

A special thanks goes to my parents, for supporting me in every possible way, in
spite of the enormous burden they bear.

Finally I would like to express my gratitude to my wonderful fiancée Sarah. She
has shown an incredible amount of patience and support on a daily basis. Words can’t
describe what she means to me.

Roelof Willem Heij
Delft, The Netherlands
November 27, 2016

xv

xvi

Introduction 1
1.1 Context

Image processing has become increasingly complex and resource consuming over the
years. Traditionally, the computers Central Processing Unit (CPU) took care of all
operations in a computer system, including image processing. In 1999, the introduction of
a designated piece of hardware suited for image processing on desktop computers, mainly
referred to as a Graphics Processing Unit (GPU), marked a new era for image processing
[2]. Nowadays there are various forms of processors which are widely used in everyday
life. These forms include CPU, GPU, Applications Specific Integrated Circuit (ASIC)
and Field Programmable Gate Array (FPGA). There is no single best solution for every
image processing task, so for each application one should consider all options in order to
acquire optimal performance.

Besides increasingly complex and resource consuming, image processing is also be-
coming more common and crucial in many sectors. Examples include health care, se-
curity and computer vision. Because of the high social, industrial and academic value
of image processing, a tremendous amount of research aiming to make image processing
faster and more e�cient is conducted. An example of this is the Almarvi (Algorithms,
Design Methods, and Many-core Execution Platform for Low-Power Massive Data-Rate
Video and Image Processing) project. This project is a collaboration between several
technical universities and several leading companies, and aims to reduce some of the
technical di�culties in this area [3]. The Delft University also takes part in this project.
To some extend, the work for this thesis project is conducted as a part of the Almarvi
project.

1.2 Problem definition

Image processing tasks are considered to be relatively compute intensive, and can con-
sume vast amounts of resources and time when performed in traditional, sequential ways
of computation. This is a problem in certain cases, for instance whenever images have to
be processed in real time. An example case where real time processing is paramount is
in medical imaging. Medical imaging is the technique that aims to visualize the interior
of a body. This technique has numerous clinical advantages for both the patient and the
surgeon. However, the high computational complexity of medical imaging makes real
time processing in a traditional way impossible.

Luckily some medical imaging processing algorithms are suited for parallel execution.
By parallelizing the execution of these algorithms, their execution time can be drastically
reduced. Using hardware that can provides good conditions for parallel execution, real
time processing can be made possible. The goal of this thesis project is to design a

1

2 CHAPTER 1. INTRODUCTION

computation fabric that is able to make real time image processing for medical imaging
applications possible.

One of the requirements for medical image processing hardware (or so-called com-
putation fabrics1) stated by Philips in the Almarvi project is that the performance of
the computation fabric desired for their commercial medical imaging product has to be
ensured over time. Medical imagers have a high expected lifetime of up to twenty years,
while that of the computation fabrics that support these products has a lifetime of around
five years. This unusually long lifetime requirement poses challenges on the development
and maintenance cycle of these computation fabrics. Since performance portability be-
tween computing platforms2 cannot always be ensured and re-designing, re-optimizing
and re-testing of computing platforms, it is desirable to have a fixed hardware platform.

Another requirement is that the medical image processing hardware should be able to
process images real-time. For this to be possible, a minimum performance of 15 processed
frames per second should be achieved. To allow the human eye to optimally interpret
the stream of processed images, a performance of 30 frames per second is desired.

Based on this problem definition, the following research questions can be formulated.

• Is it possible to design and implement a fixed hardware image processing compu-
tation fabric that meets the requirements to be used in commercial grade medical
imaging products?

• Can we create a computation fabric that is general enough to handle changes and
updates to the image processing algorithms used in the field?

1.3 Design constraints

The starting point of the computation fabric is the ⇢-VEX Very Long Instruction
Word (VLIW) softcore processor that is being developed by the Computer Engineer-
ing Department of the Delft University of Technology [4] [5]. Choosing the ⇢-VEX
processor as a starting point for our fabric mainly serves academic purposes. However,
a recent study indicated the remarkable processing power of the ⇢-VEX processor in
comparison to other, commercial grade softcore processors [6]. For academic purposes
the source code of this processor is made available, enabling us to implement it in our
image processing computation fabric [7].

The computation fabric should preferably be implemented on an FPGA. There
are two reasons for this. Firstly, Philips has indicated to be interested in FPGA-based
solutions. Secondly the ⇢-VEX processor developed by the Delft University of Technology
is a softcore processor that is designed and maintained on an FPGA. Because of this,
a complete toolchain and development environment are already available and ready for
use on an FPGA.

1We define a computation fabric as a piece of hardware dedicated to a certain task, like processors
and accelerators.

2We define a computing platforms as the physical types of hardware a computing fabric can be
implemented on. Examples are ASIC and FPGA.

1.4. RELATED WORK 3

1.4 Related work

Acceleration of image processing tasks is a large field in computing. A prior study on
using the ⇢-VEX processor for image processing applications is performed in [6]. This
thesis project aims to fulfill parts of the references for future work mentioned in that
paper.

There are numerous works on FPGA based image processing. In [8], an FPGA-
based compute fabric is proposed using the LE-1 softcore, which is based on the same
Instruction Set Architecture (ISA) as the ⇢-VEX, targeting medical image processing
applications. This work focuses solely on o↵ering a highly multi-threaded platform with-
out providing a memory hierarchy that can sustain the needed bandwidth through the
pipeline. A related study on accelerating workloads without compromising programma-
bility is [9], with one of the design points being a convolution engine as processing
element. A well-known prior e↵ort, and one of the inspirations of this work, uses soft-
core processors to provide adequate acceleration while staying targetable by a high level
compiler is the Catapult project [10]. The target domain is ranking documents for the
Bing search engine. A related e↵ort that aims to accelerate Convolutional Neural Net-
works is [11]. However, that project did not aim to conserve programmability but only
run-time reconfigurability, as the structure of this application does not change enough
to require this.

We are not aware of any other implementation of an independent FPGA based com-
putation fabric that supports streaming medical image processing. None of the related
works shows an implementation or a design of an independent FPGA based image pro-
cessor that uses streaming. Existing implementations and designs related to stream-
ing image processing on FPGAs all function as accelerators or co-processors [12][13][14],
while existing implementations and designs of independent (image) processors on FPGAs
do not use streaming [15][16][17][18][19].

1.5 Thesis outline

Chapter 2 provides background information on the characteristics of the ⇢-VEX softcore
processor and on image processing accelerators. A capability analysis based on this in-
formation will be used to point out what characteristics the desired computation fabric
should implement. Chapter 3 first gives a short introduction to algorithm analysis of
both sequential and parallel algorithms. This is followed by a broad overview of image
processing algorithms. After this, an algorithm workload for medical imaging purposes
is constructed. Chapter 4 describes the design of the computation fabric based on the
requirements posed by the constructed algorithm workload that is formulated in the
previous chapter. Chapter 5 shows how the design is implemented on an FPGA that is
able to communicate with several peripherals and a host machine. Chapter 6 describes
the measurement setup for the computation fabric and reports the results of these mea-
surements. Chapter 7 ends this thesis with a conclusion on the achieved results and
recommendations for future work.

4 CHAPTER 1. INTRODUCTION

Processors for image processing 2
The aim of this thesis project is to design and implement a computation fabric that
is capable of fast and e�cient execution of image processing algorithms. Preferably
it should also meet the desired requirements for a real-life use case, the Interventional
X-Ray System by Philips. Preferably the computation fabric should also be suited for
executing general purpose tasks. In order to be able to describe a design for this fabric,
it might be helpful to look into the designs of other (image) processors. Also looking into
other computation platforms might be helpful, even though the computation platform for
our computation fabric has already been chosen to be a Field Programmable Gate Array
(FPGA). Investigating other computation platforms will help to identify the strong
points and weak points of the FPGA compared to the other computation platforms,
which will in turn help us with design considerations when creating the computation
fabric.

This chapter will start with a computation platform comparison, exploring the pros
and cons of four computation platforms, namely the Central Processing Unit (CPU),
Graphics Processing Unit (GPU), FPGA and Applications Specific Integrated Circuit
(ASIC). This is followed by a study on two processors relevant to our computation
fabric. These are the ⇢-VEX processor, that will be used as starting point for our fabric,
and the GPU, which is designed with a special focus on image processing. The chapter
is concluded by a discussion on the pros and cons of the ⇢-VEX and the GPU in light
of our target application, in order to determine what parts and properties are desirable
for implementation in our fabric.

2.1 Computation platform comparison

Both Philips and the TU Delft have indicated that the FPGA is the platform of their
preference. However, as stated in Section 1.2, processors and accelerators can be imple-
mented on various types of hardware. There is no single best platform for all applications
types, since all of them have very di↵erent capabilities and limitations. For this reason,
all of the possible platforms will be shortly examined and compared in terms of various
characteristics. They are summarized below.

• Performance This metrics indicates the capability of processing operations and
data in a certain amount of time. Higher is better.

• Performance portability This metric indicates how well performance is main-
tained whenever the code that needs to be executed is ran on another device of the
same type. Higher is better.

5

[36–46]

6 CHAPTER 2. PROCESSORS FOR IMAGE PROCESSING

• Scalability This metric indicates the capability of improving the overall perfor-
mance by adding more hardware of the same sort. Higher is better.

• Applicability This metric indicates how wide the range of applications is that
can be executed e�ciently. Higher is better.

• Development time This metric indicates the time needed for developing an im-
plementing of a processor or accelerator and/or the porting of needed software to
this processor or accelerator. Less time is obviously better. However, to avoid
confusion in the overview; higher is better.

• Cost The metric indicates the cost of the hardware itself and does not take devel-
opment time or other costly factors into account. Less costs are obviously better.
However, to avoid confusion in the overview; higher is better.

CPU This platform is probably the most well-known and widespread of all. The
ubiquitous CPU is present in every computer, where it functions as the main controller
of the system. In order to fulfill this role, the CPU is capable of executing an enormous
amount of di↵erent operations and tasks. It is able to handle and perform tasks with high
complexity in an e�cient way. However, the CPU is not able to process vast amounts
of data or instructions per second because this is fundamentally in conflict with the
support of high complexity tasks. Performance is scalable to a certain extent. CPUs of
the same brand are in most cases backwards compatible and will deliver equal or better
performance when an application that is written for a certain CPU is ported to a newer
CPU. The development time for CPUs is low. They can be targeted using a large range
of programming languages. The cost of purchasing a consumer grade CPU is relatively
low.

GPU The time that GPUs were used for image processing only is long gone. The
capability of GPUs to be used as accelerators for all sorts of algorithms and other compute
intensive tasks is being exploited widely, especially in academia and the industry. A
small range of large problems can be executed orders of magnitude faster on GPUs
because of their ability to process huge amounts of data at once. However, portability
is a big issue. Equal or better performance can not be guaranteed when porting a
program to a newer GPU. In fact, there have even been reports of reduced performance
when porting programming code to newer devices. The performance of GPUs is very
scalable. The existence of GPUs of over a thousand cores and systems with multiple
GPUs support this fact. Development time for GPU is relatively low thanks to the
programming languages that allow programmers to target GPUs in an easy and familiar
way. The cost is comparable to that of the CPU.

FPGA While CPUs and GPUs are fixed pieces of hardware, FPGAs are repro-
grammable. Users can design their own desired hardware and upload it to the FPGA,
and revise it if necessary. This allows users to create piece of hardware that are tai-
lored to their needs. The FPGA is a large array that contains three types of basic
building blocks. These are the flip-flop register (mostly referred to as Register or Reg),

2.2. ⇢-VEX ANALYSIS 7

the Look-Up Table (LUT) and the Block Random Access Memory (BRAM). A syn-
thesis, implementation and routing tool can translate a hardware design to digital logic
that can be implemented in this array. The designs can be created in hardware pro-
gramming languages like Very High Speed Intergrated Circuit Hardware Description
Language (VHDL) or Verilog, which have stood the test of time very well. This guar-
antees the portability of hardware designs on FPGAs. Due to their nature FPGAs do
not support high clock frequencies like the other platforms, but compensate for this by
being optimized for the specific task that they are designed for. Research shows that
acceleration on FPGAs is scalable. Unfortunately development time of custom hardware
designs is extremely high, taking up to multiple years for complex designs. The price
of FPGA development boards is slightly higher than that of CPUs or GPUs, but is still
relatively low.

ASIC When implementing a custom VHDL or Verilog hardware design, ASIC is also
an option. ASIC are generally faster than FPGAs because they can run at a higher
frequency, but are not reconfigurable and generally have an even longer development
time. The production costs of producing a single ASIC are extremely high, but become
lower when producing larger quantities. ASICs theoretically have the same level of per-
formance portability as FPGAs, but typically outperform FPGAs in terms of scalability.

Conclusion Figure 2.1 and Table 2.1 show that FPGA is indeed a viable option
given that high performance portability, applicability and scalability are must-haves.
For this reason the FPGA based ⇢-VEX processor will be used as a starting point for the
design of the accelerator. However, since the GPU is designed especially to support the
processing of data in parallel by incorporating massive multithreading, inspecting this
platform might provide viable information on architectural design choices when designing
the image processing accelerator.

Table 2.1: Overview of computation platform exploration

Platform CPU GPU FPGA ASIC

Performance + ++ - +/-
Performance portability + - ++ ++
Scalability - ++ + ++
Applicability +/- - ++ +
Development time ++ + - –
Cost + + + -

2.2 ⇢-VEX analysis

For academic purposes it is desired that the main building block for our fabric is the ⇢-
VEX softcore Very Long Instruction Word (VLIW) processor developed by the Computer
Engineering department of the Delft University of technology that is based on the VLIW
Example (VEX) Instruction Set Architecture (ISA). In order to design an architecture
that incorporates this processor, it is important to understand its working, capabilities

8 CHAPTER 2. PROCESSORS FOR IMAGE PROCESSING

Performance

Applicability

Scalability

Development time

Cost

Performance portability

— CPU
— GPU
— FPGA
— ASIC

Figure 2.1: Graphical overview of computation platform exploration for

and limitations. This section will first explain the concepts of VLIW. This is followed
by a description of the architecture and working of the ⇢-VEX processor.

2.2.1 VLIW design philosophy

VLIW is not a precisely defined methodology, but rather an architectural design phi-
losophy. The VLIW methodology was introduced by Joseph Fisher et al. [20]. VLIW
processors are naturally capable of exploiting Instruction-level Parallelism (ILP)1, due
to the fact that they are able to issue multiple instructions at the same time. In this way
a VLIW processor is able to allow higher performance without adding any complexity to
its design while doing so. Exploiting this form of parallelism does require an ILP-oriented
compiler that can issue certain combinations of instructions in parallel, and possibly out
of order.

Because of its natural support of parallelism, VLIW processors are promising for
image processing tasks. One of the parameters that dictate the VLIW’s capability of
handling parallelism is its issue width. This indicates the width of the input size of the
processor, and dictates how much operations can be processed in parallel. Note that
the VLIW processor can only execute operations in parallel if the VLIW processor has
enough resources available to perform all of them, and if there are no data dependencies
between the operations.

2.2.2 ⇢-VEX design

Along with the VLIW design methodology, Joseph Fisher also introduced an accompa-
nying ISA, called VEX. The Computer Engineering group of the Delft University of

1ILP aims to increase the speed of a computing fabric by issuing and executing multiple instructions
in parallel.

2.2. ⇢-VEX ANALYSIS 9

Technology implemented a reconfigurable VLIW processor based on the VEX ISA, and
called the ⇢-VEX processor. This section will discuss the architecture and characteristics
of the ⇢-VEX. The current design of the ⇢-VEX is intended to be implemented on an
FPGA, which is connected to a regular x86 host machine through a USB connection.
Note that, even though the FPGA that implements the ⇢-VEX processor is connected
to a host machine, the ⇢-VEX is an independent processor. The host machine is only
used to program the FPGA and hand the scheduled instructions to the ⇢-VEX.

2.2.2.1 Reconfigurability

The spear points of the ⇢-VEX processor are the capabilities of reconfigurability and
parameterizability. These allow the ⇢-VEX processor to be tailored for a specific
application in order to achieve high performance without having to redesign the
processor in any way. The ⇢-VEX is can be dynamically reconfigured and parameterized
at design-time, and in same cases even at run-time. In its full form, the ⇢-VEX is
an eight-issue VLIW processor, created by combining four two-issue cores. Using this
structure, the issue-width of the ⇢-VEX can be parameterized to either two, four or
eight. Moreover, the ⇢-VEX supports an number of configurations that emulate multi-
core behavior. When configured as a multicore processor, all cores in the ⇢-VEX work
completely individual and have their own caches and memories. Possible configurations
for the ⇢-VEX are listed below.

The ⇢-VEX can be configured as:

• A single eight-issue processor

• A single four-issue processor

• Two four-issue processors

• A single two-issue processor

• Two two-issue processors

• Four two-issue processors

• One four issue-processor and two two-issue processors

2.2.2.2 Processor architecture

The architecture of the ⇢-VEX processor cores is an adaptation of the VEX processor,
an example implementation of a VLIW processor. It is an ST200 series core based
on technology jointly developed by Hewlett-Packard Laboraties and STMicroelectronics
[21]. The VEX processor was created by the Joseph Fisher, the inventor of VLIW
philosophy and employee of Hewlett-Packard Laboratories, to demonstrate the working
of his VLIW ISA, which is simply called the VEX ISA. This ISA is also used by the
⇢-VEX processor. Also the toolchain that was developed and released to accompany the
VEX processor is being used as a part of the ⇢-VEX toolchain [22].

10 CHAPTER 2. PROCESSORS FOR IMAGE PROCESSING

In its full form the ⇢-VEX processor features four two-issue ⇢-VEX cores working
together as a single eight-issue processor. Each of the two-issue cores implements a
seven-stage pipeline that supports instruction forwarding. Each core has its instruction
and data memory, implemented in the form of either caches of single-port memories.
The following resources are available for implementation in each core:

• Arithmetic Logic Unit (ALU)

• Multiplication unit

• Branch unit

• Load/Store unit

• General Register file (GR) consisting of 64 32-bit registers with 4 write and 8 read
ports

• Branch Register file (BR) with 8 1-bit registers

Out of the first four resources, the core can support a maximum of two. The last two
are present in every core.

2.2.2.3 Communication and peripherals

The ⇢-VEX processor allows internal communication between the cores, and between
the ⇢-VEX processor and peripherals. Whenever the processor is operating with an
issue-width of four or eight, the collaborating cores can communicate over an all-to-all
crossbar, relieving stress on the Advanced High-performance Bus (AHB) bus. Each core
is connected to an AHB bus, that allows communication with other ⇢-VEX processors,
peripherals and the host machine. AHB is an Advanced Microcontroller Bus Architecture
(AMBA)-based, open standard, on-chip bus developed by ARM. A debug bus allows
the host machine to keep track of about everything that’s going on inside the ⇢-VEX
processor.

2.2.2.4 Memory hierarchy

As stated in Section 2.2.2.2, each of the ⇢-VEX cores implements a general register file.
This register file is the lowest layer in the memory hierarchy, closest to the ⇢-VEX core.
It is used for storing intermediate results of operations and other information vital for
the working of the core.

The second layer in the memory hierarchy is formed by either cache memories or
regular, single-port memories, depending on the preferences of the user. The ⇢-VEX
supports cache memory as intrinsic parts of the ⇢-VEX system. The cache consists of a
separate data and instruction cache, both of which are reconfigurable in terms of size,
associativity and replacement policy. However, the caches are optional components of
the system and can be turned o↵ at design-time, in which case they are replaced by a
regular, single-port data and instruction memories.

Dynamic Random Access Memory (DRAM) forms the third layer of the memory
hierarchy. This memory is located o↵-chip, but on the FPGA development board. It

2.2. ⇢-VEX ANALYSIS 11

is significantly slower than the on-chip caches and memories, but accessing it is much
faster than accessing memory on the host machine.

The highest layer in the memory hierarchy is the memory located on the host machine,
and is in most cases represented by a hard disk drive. Accessing this memory is extremely
time consuming and costly, because of three reasons. Firstly, the paths from the ⇢-VEX
core to this memory are long, making communication very time consuming. Secondly,
the hard disk drive is relatively slow as compared to the others memory types. Thirdly
and finally, while data is being fetched from the host machine’s hard drive, the ⇢-VEX
processor is stalled, resulting in wasted time.

2.2.3 Instructions

Instructions for VLIW processors are more complex than instructions for conventional
processors. To optimally exploit ILP, the VLIW processor should be able to process
multiple operations in parallel. To accommodate this, two layers of abstraction are
added to the instruction. A VLIW instruction is a collection of so-called syllables. Each
syllable contains an operation. By using this model, the VLIW processor is capable
of parallel processing, even though it can only process one instruction at a time. VEX
operations are semantics-based and format-independent, so the same opcode can be used
regardless of the type of operands and the results.

2.2.3.1 ISA

As explained in Section 2.2.2.2, the ⇢-VEX processor implements the VEX ISA as in-
troduced by Joseph Fisher. The term ISA is somewhat confusing in this sense, since it
assumes a single instruction to correspond with a single operation. Since the ⇢-VEX is
a VLIW processor, this is not the case. As explained in the previous section, a single
instruction can contain a collection of operations. To avoid confusion, the contents of the
VEX ISA are referred to as operations rather than instructions. A complete overview of
all operations enlisted in the VEX ISA are listed in Table 2.2 and Table 2.3. A discussion
on the contents of this ISA can be found in Section 2.4.3, where the VEX ISA and the
ISA of the GPU are compared.

2.2.3.2 Scheduling and execution

The scheduling of operations on a VLIW platform is relatively complex. The scheduler
needs to order the instruction in such a way that the ILP is exploited optimally. To
allow for this the scheduler should be able to issue multiple operations simultaneously
and issue them out of order if necessary. When multiple operations are scheduled for
simultaneous execution, they should be independent of each other. If they do depend
on each other, the processor will experience race conditions during execution, which
might cripple the working of the processor or corrupt the data that is being processed.
If the scheduler can’t schedule enough operations to fill the entire width of the ⇢-VEX
processor, a remaining slot is filled with a No Operation (NOP).

Because this way of scheduling is complex, it requires a relatively large amount of
resources and time. Because of this, scheduling is handled by the host. Performing the

12 CHAPTER 2. PROCESSORS FOR IMAGE PROCESSING

scheduling on the FPGA would be a waste of precious resources. When the host machine
handles the scheduling, the VLIW processor is able to make optimal use of the FPGA
resources. On top of that, it makes sense to let the host machine handle scheduling, since
it is being performed during compilation of the source code, which is also performed by
the host CPU.

2.3 GPU analysis

The GPU is an indispensable component of a modern computer system. GPUs are
designed especially to handle all forms of image processing, but have also proven to be
extremely powerful hardware accelerators. The core assets of the GPU are its impressive
parallel processing capabilities [1]. What also makes GPUs attractive is the fact that
they are relatively cheap, easy to program and applicable in a broad application domain
that stretches way beyond image processing. This section aims to explain how the GPU
works, and what enables it to process massive amounts of data in parallel.

2.3.1 Parallelism

The GPU is a parallel processor, that exploits various sorts of parallelism. This section
introduces the types of parallelism exploited by the GPU. There are several types of
parallelism known in computing, and the GPU exploits nearly all of them. These in-
clude ILP, Data-level Parallelism (DLP) and Thread-level Parallelism (TLP). ILP is
already introduced in Section 2.2.1. DLP is exploited by performing a single operation
to multiple subsets of data. This increases the amount of data that is processed. Also,
the scheduling and instruction hardware is not increased in size or complexity. TLP is
exploited by performing di↵erent operations simultaneously in order to fully utilize the
available resources.

2.3.2 GPU design

Unlike a VLIW processor, or any other type of CPU, a computation accelerators like
the GPU is never used independently, but is always part of a larger computing system.
Even though it is used as an extension of a host machine, the GPU is equipped with
its own memory and processor. In most cases, the GPU is connected to the other
main components of the computing system via a high speed bus, like PCIe. Figure 2.2
illustrates a common configuration of computer system featuring a GPU.

2.3.2.1 Processor architecture

The parallel processor of the GPU is designed to process large quantities of data as fast
as possible. To achieve this, GPUs handle data in a stream. This means that new data
is transferred from and to the processor in a stream, whenever it’s needed. This reduces
the requirements for costly data storage on the chip itself. The processor needs to have
a high data throughput to process the continuous stream of data. To achieve this the
processor consists of a large amount of independent processing elements, called Streaming
Processor (SP) cores, that work together to process the vast amounts of data that are fed

2.3. GPU ANALYSIS 13

Figure 2.2: Computer system with an Intel CPU, adapted from [1]

to the processor. An SP core is a 32-bit floating point processor. These SP cores need
to be structured e�ciently so they can be targeted easily. A tree-like structure allows
communication between the highest and lowest architectural layers in just a few steps,
making it e↵ective in exploiting parallelism. A structure like this can be implemented
by introducing layers of abstraction to the architecture. A typical modern hierarchy
entails several hundred SP cores, divided over a few dozen groups, known as Streaming
Multiprocessor (SM) cores. If the leaves of the tree-like structure are represented by
the SP core, the branches are represented by these SM cores. The SM cores are able to
operate in an Single Instruction Multiple Data (SIMD)2-like mode. This mode, called
Single Instruction Multiple Threads (SIMT) in GPUs, allows control over multiple SP
cores by a single instruction source. This diminishes scheduling and operating overhead,
and makes parallel execution less complex. Besides approximately eight SP cores, each
SM core also contains two dedicated Special Function Unit (SFU) cores and two double
precision units, that aid the SP cores with performing complex operations. To allow the
SP cores to work the most e↵ectively, each SM core is divided into two so-called SP lanes,
each of which has control over half of the resources of the SM core. Sometimes two or
four SM cores are entailed within a so-called Texture/Processor Cluster (TPC), which
provides an additional layer in the hierarchy to further increase the parallel processing
capabilities of the structure.

A graphical representation of a typical modern architecture is shown in Figure 2.3.

2.3.2.2 Memory architecture

Thanks to its architecture, the parallel processor is able to process incredible amounts
of data in parallel. However, in order to able to benefit from this processing power the

2SIMD is a method for exploiting DLP, by applying a single instruction to multiple pieces of data.

14 CHAPTER 2. PROCESSORS FOR IMAGE PROCESSING

Figure 2.3: Basic GPU architecture, adapted from [1]

processor needs to have a way to provide all of its cores with data to work on. This
requires a hierarchical and parallel memory structure much like the processor hierarchy.
To this end, the GPU memory architecture has a few important characteristics. First of
all the memory banks used in the GPU are very wide, providing high data bandwidth.
The memory is fast, thanks to aggressive signaling techniques that improve the transfer
speed of the data. Also data compression techniques are used, to minimize the amount of
data that has to be transfered. Finally structures like caches and scratch-pad memories
are used to reduce the need for fetching data from outside the chip. Fundamentally, high
throughput is in conflict with low latency, and thus the GPU has to deal with relatively
long waiting times whenever o↵-chip data needs to be fetched. Luckily this does not
have to be a problem. The massive parallelism of the GPU can hide this latency, by
executing other tasks from other cores whenever some core is waiting for data.

Memory types The GPU uses several types of memory in the layered structure, each
with its own properties and purposes.

The highest level is the global memory, which is shared by the entire GPU and can
be accessed by all cores. It can even be accessed by the CPU of the computer system.
It is meant for communications among the cores and for storage of larger amounts of
data. It is implemented in o↵-chip DRAM. Transferring data from and to this DRAM
is relatively the most time consuming on-chip memory operation for the GPU.

The level below the global memory is the shared memory, which is exclusive to an SM
core. This shared memory is instantiated whenever it is needed and deleted when it is
no longer needed. This dynamic behavior ensures that the shared memory does not need

2.3. GPU ANALYSIS 15

to be large, allowing it to reside in the on-chip Static Random Access Memory (SRAM)
cells. Fetching from this type of memory takes significantly less time, due to the location
and the nature of the Random Access Memory (RAM) blocks in which it is implemented.
It is mainly used for communication among the SP cores that are working on the same
task.

The level below the shared memory is the private memory, which is specific to a single
SP core. Each of these is a assigned a specific section of o↵-chip DRAM on the GPU.
This memory is used for large portions of temporary data, such as private variables that
are too large for the registers of the SP core. Since accessing the o↵-chip DRAM is very
time consuming, modern GPU systems tend to cache portions of the private memory
on-chip.

The lowest level are the registers of the SP core. These are located in the SP core
itself. While the amount of data that can be stored in the registers is extremely small
as compared to the other memory types, they are vital to the working of the SP core.

Constant memory spaces Besides the three aforementioned memory spaces there
are two special read-only memory spaces. The first is called the constant memory. This
memory is located in o↵-chip DRAM and can be filled at compile time to the liking of the
programmer. Filling the constant memory with data that is needed during execution,
ensures that the GPU will have less need to fetch data from the host machine’s memory,
thus improving the performance of the GPU. The second constant memory space is the
texture memory, which holds large arrays of data and it also located in o↵-chip DRAM.
This memory can be used in the same way as the constant memory, but it is optimized
for spatial locality. This means that whenever data is placed in the texture memory
e�ciently (e.g. with unit stride), subsequent pieces of data can be transferred to the
processor e�ciently. Data from both the constant and the texture memory can be cached
on-chip.

2.3.3 Instructions

The GPU has it’s own dedicated ISA that is able to exploit the parallel capabilities of
processor. This section will discuss the contents of one particular GPU ISA and the
instruction scheduling procedure of the GPU.

2.3.3.1 ISA

Like every other processor, the GPU features a certain set of instructions that it can
executed. Commercial ISAs are often proprietary, because in disclosing these their re-
spective owners might give away vital information that could distort market competition.
For this reason, GPU manufacturers add an abstraction layer on top of their ISAs to hide
their proprietary information, while allowing the programmer to interface with the GPU.
NVIDIA, one of the largest GPU manufacturing companies calls the abstraction layer of
their ISA Parallel Thread Execution (PTX). NVIDIA supplies thorough documentation
of PTX, giving us a good impression of the GPUs ISA [23]. PTX is also covered in detail
in a widely used computer architecture book by Patterson and Hennessy [1].

16 CHAPTER 2. PROCESSORS FOR IMAGE PROCESSING

A detailed overview of the instructions included in the PTX ISA can be found in
Section 2.4.3, where it is compared to the VEX ISA.

2.3.3.2 Scheduling and execution

With the processor and memory architecture fine-tuned for high speed parallel processing
and the instructions available for doing so, the final challenge is in scheduling these
instruction in the best way possible. The scheduler does not target individual cores, but
targets the layers of the parallel processor. It uses multiple schedulers to do this. This
section aims to explain why and how the GPU does this.

Targeting the GPU As mentioned in the beginning of Section 2.3, the GPU always
functions as an accelerator and never in a stand-alone environment. To use the GPU,
it must be targeted via a host machine. To make targeting the GPU easier, multiple
programming frameworks have been introduced. Best known is Compute Unified Device
Architecture (CUDA), which is introduced by GPU manufacturer NVIDIA itself [24].
Another widely used framework that can be used to target GPUs is Open Computing
Language (OpenCL) [25]. Frameworks like these allow programmers to easily run work-
loads in parallel on a GPU. Obviously the programmer has to bear in mind how the
instructions will be scheduled on the GPU and how data is addressed by the GPU while
writing a parallel program, to gain optimal performance.

Scheduling hierarchy Scheduling of individual instructions to individual cores is
not a feasible option for the GPU. The large amount of individual cores would make this
option very time consuming. For this reason, instructions are scheduled in a hierarchy
that maps precisely to the architecture of the parallel processor.

The highest layer in this hierarchy is the so-called Grid. This is a vectorizable loop
that contains several smaller Thread Blocks, which form the second layer in this hierarchy.
The main idea is that a Grid is mapped to a TPC or SM core and the Thread Block is
mapped to an SP lane. The lowest level in the hierarchy is located inside the Thread
Block and is called a Thread. A Thread is mapped to an SP core, and is simply a sequence
of PTX instructions. Using a SIMT based approach, it is also possible to target multiple
SP cores with a single instruction. This structure enables the parallel processor to easily
issue a vast amount of instructions with minimal scheduling overhead.

Figure 2.4 shows the scheduling hierarchy along with the various types of memory
that are accessible by each layer, as introduced in Section 2.3.2.2.

Drawbacks However, there are obviously some downsides to this way of scheduling.
For instance a Thread is not independent, since it is only able to perform the same

task as every other Thread in the same Thread Block. It is for this reason that GPUs
only perform well for data-level parallel problems. Since our target application entails
these kind of problems, this is of no concern.

Also scalar execution cannot be done e�ciently given this scheduling hierarchy. In
a worse case scenario the GPU has to disable all but one SP cores in a lane to execute

2.4. CAPABILITY ANALYSIS 17

Figure 2.4: Scheduling hierarchy in GPU system, with the accessible memory per layer
[1]

instructions on scalar data. Even though this is a solution that causes enormous perfor-
mance loss, it is the best way to handle this kind of problems. The only other solution
would be to outsource such problems to the CPU of the host system, but the overhead
of the data transfer makes this option even less attractive.

Obviously the best performance is achieved when all threads follow the same path.
Whenever a branch occurs for some of the threads, the performance is decreased imme-
diately. To cope with this, the processor has a special branch synchronization stack that
manages threads that diverge and converge. Even so, branching is still the cause of a lot
of performance decrease in all sorts of processors, both parallel and others.

2.4 Capability analysis

The design presented in this thesis will aim to combine the benefits of both the GPU
design philosophy and the ⇢-VEX VLIW processor in a single computation fabric, using
the ⇢-VEX as a starting point. To create an e↵ective design the useless parts of the
⇢-VEX will have to be identified and removed, and the useful parts and properties of
the GPU will have to be ported to the FPGA based setting, and implemented in the
computation fabric.

18 CHAPTER 2. PROCESSORS FOR IMAGE PROCESSING

2.4.1 Architecture

The structure of the GPU is created specifically for image processing applications much
like our target application, while the ⇢-VEX processor is created for more general purpose
tasks. Thus it makes sense to adapt the architecture of the GPU. An architecture that
consists of multiple individual processor cores, that are able to handle data in a stream.
However, the number of processor cores that can be fit on an FPGA is significantly
smaller than the number of cores available on a GPU. Where the GPU can contain over
a thousand individual cores, the FPGA only has the capacity for about a hundred at
maximum. This means that massive multithreading on a single FPGA is not a realistic
option. However, other techniques to exploit parallelism can be implemented on FPGAs.
Pipelining is one of these techniques. Several cores can be connected to each other, and
form a processor pipeline. When each processor in this pipeline is dedicated to a task,
multiple operations can be performed on data that is being processed by this pipeline.
This increases the throughput of the processor, at the cost of latency.

2.4.2 Memory architecture

The memory hierarchy of our fabric should be able to support the high throughput of the
processor pipeline. This does not require many di↵erent memories in terms of size and
speed, but it requires fast and well-placed memories width a high bandwidth. Caching
techniques are not required, since data is never being reused in image processing tasks.
Each pixels is only being handled once. Placing the memories e�ciently and ensuring
single-cycle access will minimize their impact on the critical path of the fabric. The
critical path is defined as the longest possible path through the design. In order to be
able to meet the timing requirements, the design must be able to traverse this path within
a single clock cycle. The longer this path, the longer a clock cycle needs to take, causing a
lower operating frequency of the overall design. By structuring the memory hierarchy in
the same way as the processor pipeline, the data can be streamed through the processor
pipeline. This memory architecture e↵ectively removes the latencies related to fetching
data from o↵-chip memories that would occur in a pipeline-less design. The latencies
can be hidden entirely by implementing a technique like Direct Memory Access (DMA),
that enables a system to interface with external memories without the interference of a
processor. This can also be done in a streaming fashion, e↵ectively making the fabric a
low-latency streaming multiprocessor.

2.4.3 Instruction Set Architecture

The operations and instructions from the VEX and PTX ISAs are listed in Table 2.2
and Table 2.3. The two ISAs are shortly examined and compared in terms of usefulness
and applicability in our fabric. The instructions of both ISAs can be categorized in five
groups.

Arithmetic instruction The VEX ISA has fewer traditional arithmetic instructions
that the PTX ISA, but implements some exotic functions, like shift-and-add and sign
operation.

2.4. CAPABILITY ANALYSIS 19

Multiplication instructions While the PTX ISA provides a single instruction for
multiplications, the VEX ISA has a rich set of dedicated operations for this. These are
needed to be able to handle data that varies in terms of size and signedness, and are
implemented to support Digital Signal Processing (DSP) tasks.

What also stands out is the multiply-add instruction in the PTX ISA, which combines
a multiplication and an addition in a single instruction. In image processing, which is
the core task of a GPU, a multiplication and an addition in sequence are quite com-
mon. When trying to gain maximal speed and performance, it is important to make the
common case tasks fast. The multiply-add instructions aims to do just this.

The VEX ISA only supports division steps as an operation. This means that dividing
larger numbers using the VEX ISA will require a lot of these operations, making it quite
costly.

Special functions instructions This group only holds instructions of the PTX ISA,
which are executed by the aforementioned SFU core of the GPU. Among these are
functions like the sine, the cosine, the logarithm and the square root. Again, these
functions are implemented to make the common case fast. The VEX ISA does not
support any special functions.

Logical functions instructions This group contains all logical and binary opera-
tions, like AND, OR, XOR and bit-shift operations. The VEX ISA supports binary
and conditional implementations of most of these operations, while the PTX ISA only
supports conditional operations.

Memory access instructions This group lists all memory related instructions, like
load and store. These instructions provide communication between the processor and
memory. Again the PTX ISA implements just the needed basic operations, and the VEX
ISA has multiple operations to support di↵erent data sizes and signedness.

Control flow instructions Among these are regular instructions like instruction
calls and branches, and the PTX ISA also has an atomic instruction. This instruction
makes sure that the parallel tasks can be synchronized. Thanks to instructions like these,
parallel execution op GPUs can be kept uncluttered. The control flow instructions of
the VEX ISA are again rather large in number and allow for flexibility in the execution
of programs on the ⇢-VEX system. Since atomic execution of operations embedded in
an instruction is an intrinsic part of the VLIW design philosophy there is no dedicated
atomic operation in the VEX ISA.

Conclusion There is a large overlap between the two, so they are theoretically both
suitable. However, since the desired starting point is the ⇢-VEX, it makes sense to start
out with the VEX ISA. There are two major di↵erences between the two ISAs. Firstly,
the VEX ISA only supports signed and unsigned integers as data type, while PTX sup-
ports 8-, 16-, 32- and 64-bit signed and unsigned integers, untyped bits and floating
point signals. This makes PTX intrinsically more powerful, but also more exhaustive

20 CHAPTER 2. PROCESSORS FOR IMAGE PROCESSING

in terms of scheduling and resources. Secondly, the VEX ISA lacks support for special
functions, like square root or sine operations. These are beneficial when hard mathe-
matical workloads are executed. Also the multiply-add instruction from the PTX ISA
might be beneficial when it comes to performing image processing algorithms.

Table 2.2: VEX and PTX overview - Part 1

Instruction class VEX Instruction PTX Instruction Instruction description

Arithmetic ADD ADD Add
ADDCG Add with carry and generate carry
SUB SUB Subtract

REM Remainder
ABS Absolute value
NEG Negative value

MIN MIN Minimum
MINU Minimum unsigned
MAX MAX Maximum
MAXU Maximum unsigned
SH1ADD Shift left one and add
SH2ADD Shift left two and add
SH3ADD Shift left three and add
SH4ADD Shift left four and add
SXTB Sign extend byte
SXTH Sign extend half
ZXTB Zero extend byte
ZXTH Zero extend half

MOV Move
CVT.DTYPE Type conversion

Multiplication MUL Multiply
MPYLL Multiply signed low 16 x low 16 bits
MPYLLU Multiply unsigned low 16 x low 16 bits
MPYLH Multiply signed low 16 x high 16 bits
MPYLHU Multiply unsigned low 16 x high 16 bits
MPYHH Multiply signed high 16 x high 16 bits
MPYHHU Multiply unsigned high 16 x high 16 bits
MPYL Multiply signed low 16 x 32 bits
MPYLU Multiply unsigned low 16 x 32 bits
MPYH Multiply signed high 16 x 32 bits
MPYHU Multiply unsigned high 16 x 32 bits
MPYHS Multiply signed high 16 x 32 bits

and shift left 16 bits
MADD Multply and add
DIV Divide

DIVS Divide step

Special functions RCP Reciprocal
SQRT Square root
RSQRT Reciprocal square root
SIN Sine
COS Cosine
LG2 Binary logarithm
EX2 Binary exponentional

2.4. CAPABILITY ANALYSIS 21

Table 2.3: VEX and PTX overview - Part 2

Instruction class VEX Instruction PTX Instruction Instruction description

Logic AND Bitwise AND
ANDC Bitwise Complement and ADD
OR Bitwise OR
ORC Bitwise Complement and OR
XOR Bitwise exclusive OR

AND Conditional AND
ORL OR Conditional OR

XOR Conditional exclusive OR
NANDL Conditional NAND
NORL Conditional NOR

NOT One’s complement
CNOT C logical not

SHL SHL Shift left
SHR Shift right

SHR Shift right signed
SHRU Shift right unsigned
CPM Compare

SETP.CMP Compare and set predicate
SELP Select with predicate

SLCT Select if true
SLCTF Select if false

Memory access LDW LD.SPACE Load word
LDH Load halfword signed
LDHU Load halfword unsigned
LDB Load byte signed
LDBU Load byte unsigned
STW ST.SPACE Store word
STH Store halfword
STB Store byte

TEX.ND.DTYP Texture lookup
ATOM.SPC.OP Atomic read-modify-write

PFT Prefetch

Control flow GOTO Unconditional relative jump
IGOTO Unconditional absolute indirect jump
CALL CALL Call function
ICALL Unconditional absolute indirect call
BR BRANCH Conditional branch
BRF Conditional relative branch on false
RETURN RET Return from function call
RFI Return from interupt
XNOP n Multicycle NOPs

BAR.SYNC Barrier synchronization
EXIT Terminate thread execution

2.4.4 Scheduling

Scheduling for the ⇢-VEX is complex, but does help to exploit ILP. This is an impor-
tant feature that is beneficial for the performance of our computation fabric. Besides

22 CHAPTER 2. PROCESSORS FOR IMAGE PROCESSING

the complexity, scheduling for the ⇢-VEX has no significant downsides. The SIMT ap-
proach of the GPU scheduler might be interesting for our computation fabric, since it
decreases the complexity of scheduling. Incorporating this approach into the design of
our computation fabric might improve its performance.

Image processing algorithms 3
In order to dictate the requirements for our computation fabric, it is needed to under-
stand what workloads it will be expected to process. The primary function of the fabric
will be to perform all functionalities required for it target application; medical imag-
ing. This chapter aims to analyze the complexity of this application, and deduce the
requirements posed by it. Medical image processing, and image processing in general, is
mostly performed by applying a number of algorithms to an image, altering the contents
of the image to the needs of the user. To indicate the complexity of image processing
algorithm it is necessary to understand the basics of algorithm analysis. The first part
of this chapter will thus discuss basic algorithm analysis. Secondly, an overview of image
processing algorithm classes is discussed, along with a short discussion of few example
algorithms from each class. Finally a medical image processing algorithm workload is
constructed using a number of these example algorithms. The requirements posed by
this algorithm workload are used in the design of our computation fabric.

3.1 Analyzing algorithms

Describing the complexity of algorithms is a basic task in computer science. The com-
plexity is expressed in terms of required resources, such as execution time and memory
space, to execute one or more algorithms. Most often a complexity analysis is performed
when multiple algorithms need to be compared, in order to see which one is most suited
to perform the target application on a given platform. However, in case of this research
it is the other way around. The target application and algorithms are known, and the
platform should be optimized for this. The complexity of these algorithms needs to be
analyzed to describe the requirements of the computation fabric that has to be imple-
mented.

3.1.1 Basic metrics and analysis

In order to be able to analyze algorithms, certain standards and metrics have been intro-
duced. Algorithms are mostly analyzed asymptotically to describe their complexity and
behavior when large sets of input data are involved. The Bachmann-Landau notation
helps to express the complexity asymptotically [26]. This family of operators describes
various kinds of bounds on asymptotic growth rates. Table 3.1 shows the relevant op-
erators for algorithm analysis from this family, along with their meaning. Out of these,
the Big O notation is the most useful for the purposes of this analysis, since it discusses
the upper bound of computational complexity for large data sets. Images for our target
application consist of several thousand or million pixels, they can be regarded as large
sets. Note that the asymptotic upper bound is always expressed as O(nx), where n is

23

24 CHAPTER 3. IMAGE PROCESSING ALGORITHMS

the size of the data set.

Table 3.1: Relevant selection of operators from Bachmann-Landau family

Operator f(n) = O(g(n)) f(n) = ⌦(g(n)) f(n) = ⇥(g(n))
Pronunciation Big O Big Omega Big Theta
Definition |f(n)| k · |g(n)|

for some positive
k

f(n) � k ·g(n) for
some positive k

k1 · g(n) f(n)
k2 · g(n) for some
positive k1, k2

Explanation f is bounded
above by g
asymptotically

f is bounded be-
low by g asymp-
totically

f is bounded both
above and below
by g asymptoti-
cally

Algorithm analysis is usually limited to determining the complexities of required time
and memory. The Bubble sort algorithm will be used to demonstrate how these three
complexities can be found. Pseudocode for this algorithm is in Algorithm 1.

Algorithm 1 Sequential implementation of the bubble sort algorithm

1: procedure Bubble sort(a[n]) . Produces a sorted list with n elements
2: for i from 1 to n do
3: for j from 0 to n do
4: if a[j] > a[j + 1] then
5: temp a[j]
6: a[j + 1] a[j]
7: (a[j] temp
8: end if
9: end for

10: end for
11: end procedure

The bubble sort algorithm takes array a that consists of n elements as input. It
compares two elements of the array at a time, and works from the first until the last
element. Whenever the first element is larger than the second, the two are swapped.
It then continues to compare the second and the third element, and so on. In this
way the largest number in the array will end up at the end of the array when after
one iteration. At this point a total of n � 1 comparisons have been performed. The
algorithm continues to iteratively sort the array in this fashion until all elements are
in the correct place. The result is a sorted array, in which a following element is never
smaller than its predecessor. Note that there is an easy and obvious optimization for this
algorithm, which is not applied here in order to keep the example as simple as possible.
It is possible to reduce the number of comparisons by one every iteration, since each
iteration the highest encountered element will be shifted to the end of the array and
thus does not need to be compared anymore.

3.1. ANALYZING ALGORITHMS 25

Time complexity To find the asymptotic bounds of required execution time, the eas-
iest way is to determine the order of the amount of operations that need to be performed
by the algorithm when working on a dataset of size n. The asymptotic bound indicates a
worst case performance. It might be so that there is no possible input for the algorithm
that would ever realize this worst case situation. Therefor, an analysis that looks for
these sort of bounds is also referred to as pessimistic. Pessimistic analysis will indicate
high constraints and requirements, but whenever these are lived up to, there is no chance
for the system to fail in the execution of this algorithm. The bubble sort algorithm con-
sists of two nested for loops that surround an if-statement. In a worst case situation
both for loops are executed wholly, along with the if-statement. This means that a total
of n�1 ·n ·1 operations will be performed. In Bachman’s Big O notation this means that
the algorithm has a worst case time complexity of O((n�1) ·n ·1) = O(n ·n ·1) = O(n2).

Memory complexity This metric indicates the highest amount of memory that is
allocated by the algorithm at a single time. The bubble sort algorithm performs a single
comparison at a time. So at most it operates on two pieces of data simultaneously,
but never more. For this reason the worst case memory complexity for the bubble sort
algorithm is of order O(2) = O(n0) = O(1), since it considers two elements of the array
during a comparison.

3.1.2 Analysis for parallel algorithm execution

Up to this point the analysis assumed a single core system that sequentially executes the
algorithm. However, when a multicore computing system is considered, the complexities
change. Again the bubble sort algorithm is used as example, but this time it is adapted
for parallel execution. Parallel execution can be implemented by many techniques, such
loop parallelization and divide and conquer. The goal of all parallelization approaches is
to divide the total work into smaller chunks that can be processed individually. One of
the most basic techniques for parallel execution is parallelizing the loops of the algorithm.
Of course this is only possible if no dependencies exist between the iterations of loops.
We apply this approach to the bubble sort algorithm. The outer loop of the the bubble
sort algorithm can not be parallelized, since each following iteration is dependent on the
previous one. Executing steps of the outer loop in parallel or out of order would falsify
the outcome of the algorithm. The inner for loop of the algorithm can be parallelized,
but a trick is needed. Since a comparison checks and possibly swaps two elements at
a time, the multiple cores cannot work on neighboring elements. For this reason, each
core will be assigned two unique pieces of neighboring data. In the even iterations of
the outer loop, the inner loop will compare and possibly swap the first and second,
the third and fourth, the fifth and sixth etc. pieces of data. In the uneven steps the
second and third, fourth and fifth, sixth and seventh etc. array elements are handled.
This approach is called odd-even transposition. Pseudocode for this parallel algorithm
is shown Algorithm 2. The parallelized for loop is indicated by parfor.

Now it is clear how the bubble sort algorithm can be parallelized, its complexities
can be determined.

26 CHAPTER 3. IMAGE PROCESSING ALGORITHMS

Algorithm 2 Parallel implementation of the bubble sort algorithm

1: procedure Bubble sort(a[n]) . Produces a sorted list with n elements
2: for i from 1 to n do
3: parfor j in 0 .. 2 .. 4 .. [..] .. n do
4: if i % 2 = 0 then
5: if a[j] > a[j + 1] then
6: temp a[j]
7: a[j + 1] a[j]
8: (a[j] temp
9: end if

10: end if
11: if i % 2 = 1 then
12: if a[j + 1] > a[j + 2] then
13: temp a[j]
14: a[j + 1] a[j]
15: (a[j] temp
16: end if
17: end if
18: end parfor
19: end for
20: end procedure

Time complexity Parallel computing was introduced as a measure to reduce execu-
tion time om workloads, so obviously time complexity is an important metric in parallel
computing. Determining the time complexity is not very di↵erent in parallel algorithm
analysis as compared to sequential algorithm analysis. Given that the inner loop of the
bubble sort algorithm can be handled in parallel as described in the previous section, it
can be executed in O(1) time given that a su�cient number of processors is available.
This complexity is determined by dividing the size n of the data set by a the maximum
number of n/2 processors that can operate on the data at the same time. This results

in a complexity of O(n/2
n

) = O(1/2) = O(1). However, the iterations of the outer loop
are dependent of each other and cannot be performed in parallel, leaving the time com-
plexity of the outer loop at O(n). The total time complexity of the parallel algorithm
comes down to O(1) ·O(n) = O(n).

Number of processors Parallelization poses a trade-o↵ between execution time and
the number of used resources. The number of processors used for parallelization varies
between two and the logical upper bound posed by the algorithm. For bubble sort the
maximum number of needed cores is (n/2), since each iteration only half of the array
can be used for computations. For this reason the number of processor cores is of order
O(n/2) = O(n).

Total cost The combination of time complexity and the number of used processor
cores makes up the total cost of the parallel algorithm. It is defined as Total cost =

3.2. GENERAL IMAGE PROCESSING ALGORITHMS OVERVIEW 27

Time complexity · Number of processors. In this case this comes down to Total cost =
O(n) ·O(n) = O(n2).

Speedup and e�ciency In order to determine if a parallel algorithm is e�cient,
the speedup per processor is the principal measure. Speedup is defined as the sequential
time complexity divided by the parallel time complexity. For this example the speedup
is of order O(n2)/O(n) = O(n). Whenever the order of the speedup is equal to or greater
than the order of the number of processors, the algorithm is said to be scalable. The
e�ciency of a parallel algorithm is defined as the speedup over the number of processors
used. The e�ciency of the bubble sort algorithm is O(n)/O(n) = O(1), which indicates
that it is viable for parallelization.

3.2 General image processing algorithms overview

The processing of digital images is relative compute intensive and is performed by special
image processing algorithms. This section will first give a short introduction on the
various classes of image processing algorithms. Then the possibilities of parallelizing
image processing algorithms are shortly discussed.

3.2.1 Image processing algorithm classes and types

Image processing entails quite a broad spectrum of operations on visual data. Image pro-
cessing is applied in numerous fields throughout our entire society and industry. Because
of this wide application domain it is hard to give an overview of all types of algorithms.
Therefore, a selection of algorithms is presented that is su�ciently representative for the
challenges posed by the medical imaging target application. A few of these algorithms
will be used to compose an algorithm workload for our computation fabric. The algo-
rithms are divided in a number of basic classes. Note that all algorithms operate on an
image in the same way. Images are processed from left to right, and from top to bottom.
So the images are processed in lines.

Image scaling Algorithms in this class are able to resize an image by either shrinking
or enlarging it. The most common way of doing this is called interpolation. Whenever
an image needs to be enlarged the number of pixels in the image increases. The values
of the new pixels are determined via a technique called interpolation. A new pixel is
placed between two or more existing pixels and is assigned a value based on the already
existing neighboring pixels. When scaling an image down, a selection of existing pixels
is removed.

Nearest Neighbor interpolation This is a very naive interpolation algorithm.
Whenever a new pixel needs to be added via interpolation, it is simply assigned the value
of the nearest neighbor. No averaging or other calculations are performed.

28 CHAPTER 3. IMAGE PROCESSING ALGORITHMS

Bi-linear interpolation Contrary to the nearest neighbor variant, this algorithm
is not naive at all and is computationally intensive. Pixel values in both horizontal
and vertical direction are used to calculate new pixel values whenever new pixels are
introduced by interpolation.

Color correction and conversion Enhancing the color or contrast of images helps
to improve the overall quality of the image. It can also be used to remove or alter color
information of an image. An example algorithm class that removes color information,
and thus converts images to grayscale format, is grayscaling. An example that enhances
color information is histogram equalization. Both of these will be discussed shortly.

Gray scaling Gray scaling algorithms take the coloring information of an image
and use that to determine the weight of the shade of gray that needs to be used. The
calculation that determines the appropriate shade can be implemented in numerous ways,
varying from easy to relatively complex. In all cases, gray scaling algorithms operate on
a single pixel at a time, resulting in a relatively low complexity.

Histogram equalization A histogram of the image is created, indicating the pixel
values in an image and the frequency of their occurrence. This results in a distribution
that in most cases does not cover the entire available color spectrum. This algorithm
stretches the distribution over the entire spectrum to relatively increase the di↵erence
between the pixel values thus increasing the color contrast in the image. This algorithm
needs to process the image two times. A first time to generate the histogram and a second
time to update all pixel values, making it complexer than the gray scaling algorithm.

Spatial and temporal filtering Filtering techniques are often used in pre-processing
steps of image processing in order to remove noise or other unwanted artifacts from the
source images in order to improve the working of algorithms that need to extract data
from the image. They are very compute intensive, since they operate in a frame-based
manner. This means that they do not consider on a single pixel at a time, but consider
a frame or window of pixels surrounding the pixel that is being operated on. This frame
is typically has dimensions of 3x3 or 5x5 pixels. A filter of the same size is applied to
this frame. A filter window is always a square with an odd number of pixels on each
side. Regarding all the values in the window, the center pixel value is calculated. This
way of operation makes filtering a very powerful tool that is capable of many di↵erent
and complex applications, but does require more time and resources to be performed.
More time is required since the number of operations needed to calculate the results
is multiplied by the number of pixels in the filter. More resources are required since
multiple lines of the images should be considered simultaneously. So when applying a
5x5 filter to an image, at least five lines of the image should be kept in scope.

Image processing algorithms that apply filtering can be executed more e�ciently
by applying a so-called sliding window. This methods aims to reduce the rate of data
fetching by keeping data that is needed in following steps in scope. When a frame
based operation is completed, the windows ’slides’ to the next pixel and continues to

3.2. GENERAL IMAGE PROCESSING ALGORITHMS OVERVIEW 29

manipulate it. There is a lot of overlap between the data in the sliding window in
consecutive iterations. Each iteration n2 � n elements of the window can be reused,
where n indicates the height and width of the window. A graphical representation of
two consecutive steps of an algorithm that uses the sliding window technique is shown in
Figure 3.1. The red square indicates the operating window of the frame-based algorithm.
The blue rectangle in the second step indicates the data that can be reused, and should
be kept in scope for optimal performance.

Figure 3.1: Visual impression of two consecutive steps of a frame-based algorithm that
uses a sliding window.

Median filter Median filtering replaces each pixel value with the median pixel
value of all the pixels in the filter window in order to reduce the noise in the source
image. If there are two median pixel values the average of these is used. This algorithm
is requires a sorting algorithm to make a distribution of pixels values in the window.

Convolution Convolution is a widely used mathematical operation that modifies
a source function by applying a second function to it, thus producing a resulting third
function. In case of image processing the source function is the image, the second function
is a filter and the third function is the resulting output image. Contrary to the median
filter the convolution filter is not fixed and can be tuned to the users liking. This makes
the convolution filter extremely flexible and powerful. Practical applications of the this
algorithm include sharpening, edge detection, embossing and mean filtering.

30 CHAPTER 3. IMAGE PROCESSING ALGORITHMS

Feature extraction Algorithms in this class aim to let the computer discern features
in an image. Examples of features than can be extracted from are readable text, faces
or shapes. Feature extraction is mostly used to assist humans in interpreting images,
but can also be used in computer vision. In computer vision the computer does not only
extract information from an image, but also interprets the extracted information itself.
Example algorithm subclasses in the feature extraction class are edge detection, thresh-
olding and motion detection algorithms. Two edge detection algorithms are described
below. Edge detection algorithms aim to accentuate areas where contrast between neigh-
boring pixels is highest, indicating edges in the image. Like filtering algorithms, edge
detection algorithms are usually window-based, making them generally compute inten-
sive.

Sobel edge detection Two 3 by 3 convolution kernels make up the so-called
Sobel operator. The combination of these two is used to find the gradient magnitude in
two directions at a specific point in a grayscale image. By using two filters, the complex-
ity of this algorithm is relatively high, even higher than the complexity of convolution
algorithms.

Canny edge detection This is probably the best known and widespread edge
detection algorithm available [27]. It is regarded as highly accurate and very compute
intensive, since it implements a five step pipeline of operations including Gaussian filter-
ing, non-maximum suppression and hysteresis. This algorithm is highly accurate, and is
also the most complex algorithm of all the examples.

3.2.2 Parallelizing image processing algorithms

The fact that images is build out of individual pixels makes them viable for Data-level
Parallelism (DLP). Each pixel is an independent piece of data, making it possible to
run pixel based images in parallel easily. However, algorithms that require an entire
image at once or need to operate on an image more than once are harder to parallelize.
There will be no in depth discussion on how to parallelize this type of images, since the
selection of algorithms used in medical imaging applications does not use the types of
algorithms, as is described in Section ??. A third category of algorithms are the window
based algorithms, that operate on a small selection of pixels at the same time. It is a
bit more tricky to parallelize these algorithms than the pixel based ones, but not at all
impossible. When parallelizing this type of algorithms, one should keep in mind that
not only the data that is being operated on should be available, but also the surrounding
data it.

Also pipelining is an e↵ective technique in parallelizing image processing tasks. How-
ever, pipelining is only e↵ective whenever multiple operations have to be performed on
the same data, and when the algorithms are of the same computational complexity.
Luckily this is the case for medical imaging algorithms, as is explained in the following
section. In pipelining, multiple processing stages are chained together. This technique
can be implemented in both software and hardware.

3.3. MEDICAL IMAGING ALGORITHMS 31

3.3 Medical imaging algorithms

A subsection of image processing algorithms is used for the medical imaging. The source
of the algorithms used in commercial medical imagers is proprietary software of the
respective owners and could not be disclosed even for academic purposes.

3.4 Adaptation of algorithm workload

Based on the outline of the workload in the previous section, an algorithm workload
adaptation was created. This section discusses the contents of the algorithm workload
and the requirements it poses for our computation fabric.

3.4.1 Contents

The first step in the image processing pipeline is an interpolation algorithm used to scale
the size of the source image. The bi-linear and nearest neighbor interpolation algorithms
both have the same computational complexity making them equally feasible. Because
of its slightly higher flexibility, we select the bi-linear interpolation algorithm for the
evaluation. Secondly, a gray scaling algorithm is applied. This algorithm is selected
because it operates on single pixels of the input dataset. The third stage is a convolution
filter that sharpens the image, followed by the final stage, an embossing convolution
filter. The last step of the algorithm workload from the previous section, merging of
the resulting images, could not be implemented in time and is thus omitted from our
algorithm workload at this point.

3.4.2 Requirement analysis

In this section, the requirements posed to the computation fabric by the compiled algo-
rithm workload are analyzed. First the computational complexities of the algorithms are
analyzed. Secondly the size of the programming code that is used to run the algorithm
on the computation fabric is profiled.

Computational complexities An overview in terms of complexities for sequential
and parallel execution of the image processing algorithms that have been selected for our
algorithm workload can be found in Table 3.2. All of these metrics are presented like
before, in big O notation. The letter n indicates the number of pixels the image that
the algorithm is operating on. This value is typically 960 · 960 = 921, 600 for medical
imaging applications. The letter f indicates the number of pixels in the filter that the
algorithm is applying to the image. This value is typically 3 · 3 = 9 or 5 · 5 = 25, which
is significantly smaller than the value of n.

All algorithms roughly have a similar time complexity for sequential and parallel
execution. The space complexity is also low, which eases parallelization significantly,
since it allows the cores in our fabric to keep all relevant data in their registers and
removes the need for large on-chip memories. The algorithms are all equally suitable for
parallelization, as is shown by the order of processors that can execute the algorithms

32 CHAPTER 3. IMAGE PROCESSING ALGORITHMS

in parallel. This fact is reflected in the statistics on cost, speedup and e�ciency. Since
the algorithms are roughly equal in all terms, they are perfectly suited to be applied in
a pipeline. The convolution algorithm will most likely be the bottleneck in the pipeline
due to its slightly higher complexity, caused by the filter it applies. Since the filter size
is relatively small, the e↵ects of this bottleneck will be of minor significance.

Since this algorithm workload relies heavily on pipelining, a hardware design that ac-
commodates this is desirable. Our computation fabric should thus implement a pipeline
structure of processors, through which the data can stream.

Table 3.2: Complexity analysis of the selected algorithms

Execution
model

Metric
Bi-linear
interpolation

Gray scale Convolution

Sequential
Time complexity O(n) O(n) O(n · f)
Space complexity O(1) O(1) O(f)

Parallel

Time complexity O(1) O(1) O(f)
Processors O(n) O(n) O(n)
Cost O(n) O(n) O(n · f)
Speedup O(n) O(n) O(n)
E�ciency O(1) O(1) O(1)

Code size Also the size of the kernel code of the algorithms in the workload is
inspected, along with the additional programming code in which their embedded. The
results of this analysis are included in Table 3.3. The algorithms are all close to 1 KiB
in size, while the size of the entire program is close to 6 KiB, indicating an overhead of
about 2 KiB. Initialization is especially an important factor of this overhead. The large
initialization is needed to ensure all cores in the processor pipeline are running when the
actual kernels start running.

Since the size of the entire program is around 6 KiB, an instruction cache or memory
of at least this size will give optimal results.

Table 3.3: Profiling of created algorithm workload

Component Size (KiB)
Bi-linear interpolation 0.88
Gray scale 0.78
Convolution (Sharpen) 1.03
Convolution (Emboss) 1.00
Loop overhead 0.63
Initialization 1.25
Rest 0.13
Total 5.69

3.4. ADAPTATION OF ALGORITHM WORKLOAD 33

Image lines To support pixel-based and frame-based algorithms, it is desirable to
always have a least five lines of an image in scope, as is explained in Section 3.2.1.

34 CHAPTER 3. IMAGE PROCESSING ALGORITHMS

Designing the computation

fabric 4
This chapter aims to present a design for our computation fabric. First the requirements
for the computation fabric formulated in the previous chapters will be summarized. Then
the Field Programmable Gate Array (FPGA) platform for design is introduced. This is
followed by descriptions of the design of the processor core architecture, the Instruction
Set Architecture (ISA) and the memory architecture. Then, a design for the complete
computation fabric is introduced. Finally, a design that contains multiple instances of
this fabric is introduced. The chapter closes with simulation results of a single instance
of the computation fabric.

4.1 Requirements

The previous chapters have led up to a design that combines and incorporates the advan-
tages of the Very Long Instruction Word (VLIW) and Graphics Processing Unit (GPU)
design philosophies and is optimized for the targeted medical imaging algorithms in a
fashion that allows the exploitation of parallel processing. The following requirements
for the design of the computation fabric have been determined.

1. The processor cores in the computation fabric should be

based on the ⇢-VEX processor

as small as possible

able to operate in a processor pipeline

2. The computation fabric should

be implemented on an FPGA

be capable of handling at least five image lines simultaneously

have an instruction memory or cache of at least 6 KiB in size

4.2 Platform

Section 1.3. Two FPGA boards were provided by the Delft University of Technology,
both of which are also used for the development of the ⇢-VEX processor. These are the
Virtex-6 FPGA ML605 Evaluation Kit [28] and the Virtex-7 FPGA VC707 Evaluation
Kit [29], both developed by Xilinx Inc. An overview of the specifications of these two
boards is included in Table 4.1. Block Random Access Memory (BRAM)36 indicates
that the size of each BRAM on the FPGAs is 36 kB. The ML605 FPGA board features
the Virtex-6 XC6VLX240T-1FFG1156 FPGA and 512 MB of Random Access Mem-
ory (RAM). The VC707 features the Virtex-7 XC7VX485T-2FFG1761C FPGA. The

35

36 CHAPTER 4. DESIGNING THE COMPUTATION FABRIC

available VC707 does not feature onboard RAM. Even though the VC707 is a newer and
better FPGA board, the ML605 FPGA board will be mainly used for the implementa-
tion of our computation fabric. The reason for this are the availability of onboard RAM,
and the availability of a decent toolchain. The toolchain for development on the VC707
is still in early stages and known to exhibit unstable behavior in certain situations.

Table 4.1: Overview of FPGA specifications

Available resources Reg Look-Up Table (LUT) BRAM36
Virtex-6 XC6VLX240T-1FFG1156 301440 150720 416
Virtex-7 XC7VX485T-2FFG1761C 607200 303600 1180

4.3 Processor architecture

Since the desired platform for the computation fabric is FPGA, it makes sense to take
the ⇢-VEX processor as a starting point for the design of the computation fabric. The ⇢-
VEX processor should be modified to optimally exploit parallel processing opportunities.
To best support parallel processing, the FPGA should be equipped with as many cores
as possible. This requires the cores to be as small as possible. The current design of
the full-sized eight-issue ⇢-VEX is far from small. The reconfigurability properties and
communication between internal components of the processor require excessive amounts
of resources. Stripping all unnecessary components from the ⇢-VEX will expectedly
drastically decrease the resource usage per core. This stripped down ⇢-VEX will contain
a single two-issue core. This e↵ectively disables all possible internal communication of
this core, since it is the only core in the ⇢-VEX processor at this point. Reducing the
processor size from an issue width of eight to two will expectedly reduce the resource
utilization of the processor by a factor of more than four, since three cores and the costly
all-to-all communication crossbar are removed from the processor.

Since six of the eight lanes of the ⇢-VEX processor are removed in the stripping
process, the compute power of the core that remains is a mere quarter of that of the
eight-issue ⇢-VEX processor. However, the new core is much less complex and will have
a shorter critical path. This means that the operating frequency of the core can be
increased, compensating for the loss of computing power. While the full-size ⇢-VEX
is able to operate properly at a maximum frequency of 30 MHz, the stripped core is
expected to work at a frequency of 100 MHz or higher. This expectation is based on
preliminary synthesis results of ⇢-VEX processors that implement a single two-issue core.

Pipeline exploration might bring about ways of increasing the clock frequency even
more. By identifying the most time consuming steps in a pipeline and providing them
with an addition time slot the critical path can be lowered allowing the operating fre-
quency to be increased at the cost of additional latency caused by the lengthened pipeline.
For the ⇢-VEX system, and generally for most compute systems, the most time consum-
ing stage is the one where data is being transferred from and to memory. As described
earlier, data fetching can require a lot of time. Giving this stage an extra time slot in

4.4. INSTRUCTION SET ARCHITECTURE 37

the pipeline will improve the timing results of the design, but might also require changes
in the compiler or to the design itself.

4.4 Instruction set architecture

Since the ⇢-VEX platform is taken as a starting point for the system, the VLIW Ex-
ample (VEX) ISA is used. This ISA contains all needed instructions for the targeted
applications. In the analysis of the VEX and PTX ISAs in Section 2.3.3.1 the lack of
the multiply-add instruction and special functions support in the VEX ISA were noted.
Adding the special functions to the VEX ISA might be useful for certain use cases, but
the algorithms included in the designed algorithm workload from Section 3.4 only use
fairly basic operations and would not benefit significantly from these dedicated instruc-
tions. However, the multiply-add instruction would be a useful extension of the VEX
ISA, since the combination of a multiplication follow by an addition is very common in
windows-based image processing algorithms. An obvious example for this is the con-
volution algorithm, that performs a multiplication on every pixel in the filter window
and sums up the results of these in a single variable. Unfortunately, implementing new
instructions does require changes to the compiler. This is out of scope for this project,
but can be listed as an interesting topic for future improve of the computation fabric.

4.5 Memory architecture

Neither the ⇢-VEX or the GPU have a memory architecture that is ideal for our imple-
mentation. The memory architecture of the ⇢-VEX is too simplistic for our purposes,
providing only regular cache memories to each core. Moreover, cache memories are only
profitable for applications that reuse data. Image processing algorithms don’t generally
do this. Apart from the filters used by the image processing algorithms, which are small
enough to be stored in the core’s registers, no data is ever reused. On the other hand,
the architecture of the GPU is too complex for our purposes. Its layered structure would
be too costly to implement on an FPGA. Moreover, a memory architecture like that of
the GPU is only beneficial in the case of a very large number of processor cores, which is
not a reasonable option on the selected FPGAs. The memory architecture in our fabric
should be optimized for high throughput, to support the processor pipeline that our
computation fabric will implement. This also diminished the needed amount of reads
and writes from and to o↵-chip memory, and allows the data to be streamed through
the design. A means to achieve high throughput is by enabling communication between
neighboring cores using bu↵er memories. This method brings about two advantages.
Firstly, the bus connecting all the cores and peripherals is greatly relieved when it is not
longer used for data transfers, enhancing the working of the fabric overall. Secondly,
this bu↵er memory is not present in either the ⇢-VEX or the GPU design, allowing to
introduce a new type of memory that can be customized to support the needs of our
computation fabric.

38 CHAPTER 4. DESIGNING THE COMPUTATION FABRIC

4.5.1 Memory type

As explained in the previous section, a bu↵er memory should be implemented. To
optimize this memory type for parallel processing, it should meet a number of conditions.
First of all, it should be fast, allowing single cycle access. Secondly, it should feature two
ports, making it suited for streaming of data by allowing two cores to interface with it
simultaneously. Finally, it should be as small and simple as possible, ensuring a resource
usage that is as small as possible. A memory type that satisfies all these conditions is a
dual port scratchpad memory [30] [31]. Scratchpad memories are plain memory blocks
with no logic or control at all. This makes them small, fast and easy. The downside is
that the programmer needs to manually select where the data should be stored in the
memory, and whether it is stall valid or not. The two ports allow the memory to be
attached to two cores, becoming a part of the streaming processor pipeline.

4.5.2 Memory hierarchy

One of the spear points of the design is high throughput. To ensure this, e�cient use
of on-chip memory is paramount. This means that enough memory should be available
to accommodate streaming su�cient data through the design. Luckily, the ⇢-VEX uses
relatively more LUTs and flip-flops than BRAMs, which are the needed resources for
the local scratch pad memories. It should thus be possible to create an architecture in
which the cores and memories can e↵ectively coexist.

To support high throughput, each core in the design should be able to access a
memory as fast as possible, preferably in a single cycle. This can only be achieved when
a dual port scratch pad memory is connected to each core to function as a local memory.
It should be possible for a core to access its own local memory and the local memory of
a neighboring core, in order to support streaming. When this is not possible, all tra�c
between the cores must be routed via the bus, which is not capable of handling this much
tra�c and is slower than interfacing with the local memory directly. With a memory
architecture where local memories are connected to the cores directly, the requirement
of low latency and high throughput should be guaranteed.

To meet the application’s demand it is desirable to be able to store at least five
lines1 of the image at a time. For a typical medical image this would come down to
960 · 5 = 4800 pixels. Given that each pixel has a size of 16 bits, this image fraction
has a size of nearly 10 KiB. Since double bu↵ering2 is implemented in the fabric, the
minimum size of a local memory should be at least 20 KiB. The closest value to this
that can be realized is 32 KiB.

Sharing one larger memory with multiple cores was also a considered as a possible
approach, and is used in the architecture of the GPU. However, this is not a viable option
for our design. Memories with more than two ports require extraordinary amounts of
resources, leading up to ine�cient use of available BRAMs on the FPGA. A hybrid
solution between this shared memory and the local memory would be sharing a single or

1Having five image lines in scope allows the fabric to run frame-based algorithms using 5 by 5 filters.
2Double bu↵ering divides the local memory into two bu↵ers. One of the bu↵ers contains a complete

frame, that a processor can read from and operate on. The other bu↵er is used by the processor to build
the new frame in. Whenever a new frame is completed, the bu↵ers change their role.

4.6. PROCESSOR PIPELINE 39

double port memory with multiple cores. In this scenario, a policy regarding accessing
the memory is needed, preventing the cores from creating hazardous situations in the
memory that occur whenever multiple cores access the same location in a memory at the
same time. This inevitably introduces stalls on memory accesses, which increases the
latency of the targeted design even more.

4.5.3 Caches

As described in Section 2.4.2, data and instruction caches are not essential components in
a streaming multiprocessor, and should preferably not be implemented in the design. The
individual cores do not need any sort of data memory other than their internal register
file. The data memory is not needed by the processor at all, since no intermediate results
are likely to be stored. An instruction memory is needed, and should be at least 6 KiB
in size, as determined in Section 3.4.2.

4.6 Processor pipeline

Now that the design of a single ⇢-VEX processor and the optimal memory hierarchy have
been determined, the optimal architecture for a streaming multicore processor pipeline
design will be described. This section will discuss how the the ⇢-VEX cores should be
connected to each other, and how they should be enabled to interface with peripherals.

4.6.1 Multicore setup

As described in Section 4.5.2, each ⇢-VEX processor has its own local memory and is
able to interface with the local memory of a neighboring core. To connect multiple ⇢-
VEX cores to each other in a way that allows streaming of data, a non-circular daisy
chain should be created. The length of this chain is determined by the minimal number
of desired steps in the image processing algorithm workload introduced in 3.4. Based
on the created algorithm workload, the chain should consist of four processors and local
memories. It is important to note that the latency of a design such as this pipeline is
limited by the stage that performs the most compute intensive stage. This brings about
the need of load balancing in order to optimize the processing speed of the pipeline.

4.6.2 Peripherals

The ⇢-VEX processor itself has no means to directly interact with resources outside of
the FPGA. To add features that allow this, the open-standard on-chip AMBA AHB bus
by ARM, a Memory Interface Generator (MIG) by Xilinx [32] and the IP library GRLIB
by Cobham Gaisler AB [33] are used. GRLIB contains a wealth of components that can
be implemented to the design, and is designed to work with the AHB bus. Xilinx’ MIG
enables communication with the FPGA board’s o↵-chip Dynamic Random Access Mem-
ory (DRAM), which is needed for debugging and storage of possible intermediate results.
Used components from GRLIB include a demuxer, that is used for debug purposes, and
the dual port RAM block that is used to implement the local memories introduced in
Section 4.5.1. Obviously these additional features are useful and necessary for the design

40 CHAPTER 4. DESIGNING THE COMPUTATION FABRIC

at this point, but they will impact the resource utilization and operating frequency of
the computation fabric negatively. Data paths through the generated memory interface
will expectedly form the critical path of the fabric.

4.6.3 Data handling

Ideally, the computation fabric should not only be able to stream data through the
processor cores, but also between the FPGA board and the host machine. A technique
that allows this type of data handling is called Direct Memory Access (DMA). Whenever
certain data is needed, a dedicated DMA controller on the FPGA can load this data from
an external memory source, like the hard drive of the host machine, directly. Without
this technique either the ⇢-VEX or the CPU of the host machine would have to process
the data transfer. When operating on large sets of data in real-time, as is the case in
our medical imaging use case, this type of data transfer would cripple the system by
continuously claiming one of the processors. The DMA is able to fetch data from the
hard drive on its own, while the host’s CPU and the ⇢-VEX can continue to work. In
this way the latency of transferring data is e↵ectively hidden. When the DMA controller
is implemented, interfacing with the o↵-chip DRAM is no longer needed. This means
that generated memory interface can be removed, removing its negative influence on the
critical path. This allows the fabric to operate at an even higher frequency. Figure 4.1
shows schematic representations of the data flow in two implementations. Figure 4.1a is
the implementation without DMA, where the Central Processing Unit (CPU) of the host
machine has to handle data transfers from the host machine’s hard disk to the DRAM of
the computation fabric. Figure 4.1b shows a configuration that uses a DMA controller.
It is clear to see that in such a configuration no processor is involved in transferring data
between the host machine and the FPGA board.

4.6.4 Complete design

All the choices from this chapter lead up to a final design for our computation fabric. The
design consists of a processor pipeline of four two-issue ⇢-VEX processors, each of which
has been expanded with a local memory for data streaming. The number of processors
in the processor pipeline is generic, and can be changed at design-time. All processors
of the processor pipeline are connected to an Advanced High-performance Bus (AHB)
bus. The computation fabric is handed it’s image data by a DMA controller that can
interface with the host machine. A schematic representation of the design is shown in
Figure 4.2.

4.7 Multi-fabric design

The design of the computation fabric as presented in the previous chapter exploits
Instruction-level Parallelism (ILP) and pipelining as forms of parallelism. ILP is sup-
ported due to the nature of the ⇢-VEX processor, which is embedded in the computation
fabric. Pipelining is supported because of the way the ⇢-VEX processors are connected
within the computation fabric.

4.7. MULTI-FABRIC DESIGN 41

(a) Dataflow for a design without a DMA controller

(b) Dataflow for a design with a DMA controller

Figure 4.1: Schematic representations dataflow in two possible designs

In order to also support Data-level Parallelism (DLP), multiple instances of our
computation fabric should implemented on an FPGA. In such a structure, a number
of lines can be assigned to each instance. Since these instances should all perform the
same operations on the data that is provided to them, they can be controlled by a
single instruction handler. In doing so, DLP is exploited. Figure Figure 4.3 shows
a representation of such a design, where a single instruction memory targets multiple
instances of the fabric, which receive their data from the host machine, through a DMA
controller.

42 CHAPTER 4. DESIGNING THE COMPUTATION FABRIC

Figure 4.2: The final design for the computation fabric

Figure 4.3: The final design for a system with multiple instances of the computation
fabric

4.8 Simulations

In order to be able to assess the e↵ect of a local memory based streaming memory
hierarchy in a ⇢-VEX based system, a simulation tool called Simrvex is used [34]. This
tool is an adaptation of xSTSim, a more generic simulation tool for processors from the
ST200 family [35]. Both tools can be made available for academic use. This custom made
tool allows the user to easily simulate ⇢-VEX based designs, along with peripherals like
scratchpad memories. The system described in Section 4.6.4 was implemented in the
simulation tool. The system was realized using four ⇢-VEX cores, four local memories

4.8. SIMULATIONS 43

and a framebu↵er to provide visual feedback of the designs working. Each core is able to
read from and write to the local memory that is closest, and read from the local memory
that is closest to the previous core. The first core will read the data from source (i.e.
the main memory), operate on the data and store it in its local memory. From there the
next core can read and process the data, and so on. The image processing algorithms
workload construction in Section 3.4 was used for the simulation.

The most important feature of the design, that needs verification by simulation the
most, is the streaming memory hierarchy. For this reason, simulations using a streaming
and a non-streaming approach were conducted, in order to assess the impact of the
streaming memory hierarchy on the design. In the streaming implementation, only the
first and the last processor in the processor pipeline interface with the main memory.
The data between through the pipeline is being streamed. Each processor has a local
memory. In non-streaming implementation, each processor reads the needed data from
the main memory of the cache memory of one of the neighboring processors. No data is
being streamed. Results of these simulations can be found in Table 4.2. The simulations
indicate a speedup of approximately 1.3 times, whenever streaming of data through the
computation fabric is enabled. Based on these simulation results, it is safe to assume
that implementing the streaming memory hierarchy using small, on-chip local memories
is beneficial for the performance of the computation fabric, and e↵ort to implement it
will not be in vain.

Table 4.2: Simulation results for streaming and non-streaming implementation of the
computation fabric

Problem size
Clock cycles (106)

Speedup
Streaming No streaming

240 x 240 1742650 2178813 1.25
480 x 480 6822069 8870680 1.30
960 x 960 27704093 35433015 1.28

44 CHAPTER 4. DESIGNING THE COMPUTATION FABRIC

Implementation 5
This chapter describes the implementations of our computation fabric based on the de-
sign choices described in the previous chapters. A total of two implementations has
been created. One fully functional implementation is completed on the ML605 Field
Programmable Gate Array (FPGA) board. Another, not fully functional, implementa-
tion was created on the VC707 FPGA board in order to be able to indicate maximum
achievable results on the available FPGA boards. This chapter will discuss both imple-
mentations in order.

5.1 ML605 implementation

The implementation on this FPGA board is completely functional, and is used to acquire
all measurement results shown in Chapter 6. This section describes how the design is
implemented on this FPGA board.

5.1.1 Processor architecture

The first phase of implementation is getting rid of unnecessary components of the ⇢-VEX
processor, and making it as small as possible. The second phase is adding the needed
functionalities that are not yet present to the processor.

5.1.1.1 Minimizing

The configuration files of the ⇢-VEX allow various changes in the system’s architecture
without having to change any of the source code. By editing the configuration files
the following changes have been introduced to the design. The issue width of the core
has been reduced to two. Due to this the ⇢-VEX processor now exists out of a single
core with an issue width of two. Forwarding, traps and tracing have been disabled. The
performance counters of the core have been maintained in order to track its performance,
but those of the caches have been disabled. The caches could not be removed entirely,
since they were too closely connected to the processor’s core. Removing them would
result in complex issues concerning the data and control flow in the processor. However,
the cache sizes have been reduced to a minimum. The data cache size has been reduced
to a minimum of 1 KiB. The instruction cache is implemented at di↵erent sizes of 2,
4, 8 and 16 KiB in order to asses the impact on the resource utilization of the design.
Obviously it is important to ensure that the entire algorithm workload can be stored
in the instruction cache for optimal performance. However, assessing the impact of
varying cache sizes on the resource utilization of the fabric might be useful to indicate
its applicability when working on algorithm workloads of other sizes. As the profiling in

45

46 CHAPTER 5. IMPLEMENTATION

Section 3.4.2 indicates, our algorithm workload has a size of approximately 6 KiB, with
taking overhead into account. For this reason, the cores in our implementation will at
least need instruction caches of 8 KiB.

5.1.1.2 Rebuilding

With all unnecessary components and properties of the ⇢-VEX removed, new features
can be introduced. The first of these is realized by another change in the configuration
files; the introduction of multiplication units to the ⇢-VEX processor core. In most of
the algorithms multiplication is a common operation so it is good to equip all cores with
dedicated multiplication units. The second change is the introduction of a local memory
to each core. As described in Section 4.5.1, this local memory is a fast, dual port RAM
block that is used as a scratchpad. One of the ports is connected to the core the local
memory belongs to and the other is routed directly to the next core. Sizes of 16, 32 and
64 KiB are used for the local memories, in order to estimate their impact on the design.
Larger local memories allow the images to be processed in larger chunks, which reduces
the number of needed steps to process a single image. On the other hand, larger local
memories do require more resources on the FPGA. Note that for optimal performance
of the frame based algorithms from the algorithm workload, a minimal size of 32 KiB is
required for each local memory, as is explained in Section 4.5.2.

To ensure correct routing of data transfers an address decoder was added to the
processor. Whenever the ⇢-VEX core issues a read or write operation, the address is fed
to the decoder. Whenever this address is in the range of the local memory associated
with the core issuing the operation, the address decoder forwards the address to the
local memory. In case of a write, the decoder also forwards the write enable flag, the
write mask and the write data. In case of a read, only the read enable flag is sent along
with the address. Whenever a read operation is performed on an address that is in the
range of the local memory associated with the neighboring core, the address decoder
forwards the previously described information to the local memory of the neighboring
core along with the stall signal of the core issuing the operation. This signal informs the
neighboring local memory how long it should continue to o↵er the data that is being read
from its local memory to the requesting core. Whenever the core that issued the read
operation successfully received the required data it will stop stalling and the neighboring
local memory can stop o↵ering the data.

5.1.1.3 Final processor

The implementation of the processor as described in the previous section meets almost
all the requirements and design specifications formulated in the previous chapter. The
only design specification that is not met is the removal of the data cache. A graphical
representation of the final processor implementation is shown in Figure 5.1. The pro-
cessor design is represented in black. The gray parts of the schematic show how the
processor could be connected to other processors to form a processor pipeline.

5.1. ML605 IMPLEMENTATION 47

Figure 5.1: Overview of the implemented processor for the computation fabric. The gray
shapes show how a processor pipeline can be formed by chaining multiple processors.

5.1.2 Processor pipeline

At this point we have a single two-issue ⇢-VEX processor with a single-cycle accessible
local memory that can be accessed by the core it’s connected to, and a neighboring core.
A top level entity was constructed, that connects four of these processors and the periph-
erals discussed in Section 4.6.2. These peripherals provide essential functionalities to the
design, but do have their impact on resource utilization and operating frequency. The
number of desired cores in the streaming pipeline is implemented as a generic, allowing
the pipeline depth to be altered at design-time. All processors and peripherals are con-
nected to each other over the AHB bus. The local memories of the ⇢-VEX processors are
connected to each other directly. A graphical representation of this complete system is
shown in Figure 5.2. The figure shows that wraparound is supported. This means that
the last core in the processor pipeline is able to communicate with the first one. This is
a consequence of the implementation of the processor pipeline length as generic. At this
time, there is no practical use for the wraparound functionality, but it might possibly be
useful and there is no harm in maintaining it for now. Also the figure shows that all cores
in the processor pipeline are connected to the Advanced High-performance Bus (AHB)
bus, and are thus able to communicate with peripherals if necessary. The image does
not show a Direct Memory Access (DMA) controller, since this component could not
be implemented. Even though a DMA controller is available in GRLIB, it could not be
implemented within the time frame of this thesis project. The fabric uses the FPGA’s
onboard Dynamic Random Access Memory (DRAM) for storage of images. It uses a
memory interface generated by the Memory Interface Generator (MIG) to address the
DRAM.

48 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Overview of the implemented computation fabric.

5.1.3 Operating frequency

The eight-issue ⇢-VEX system su↵ered from a long critical path, caused by the reconfig-
urability and internal all-to-all communication possibilities. This limited the operating
frequency of the ⇢-VEX processor to a maximum of 37.5 MHz. Now that these prop-
erties have been removed, the critical paths are drastically shortened and the operation
frequency of the system can be increased significantly. Our computation fabric is able
to run stable at a frequency of 120 MHz on the ML605 FPGA.

Changing the pipeline in order to achieve an even higher frequency did not succeed
at this point. Providing the data memory access stage an additional slot did not bring
about the desired results, but corrupted the working of the processor.

5.1.4 Multi-fabric implementation

Only a single instance of the computation fabric has been implemented on the ML605
FPGA board. Results gathered by using this implementation are used to interpolate
expected results on an ML605 FPGA board filled with multiple instances of the compu-
tation fabric.

5.2 VC707 implementation

The implementation on the VC707 FPGA board is not completely functional, since it
lacks both a DMA controller and any form of DRAM on the board. This, and the lack of
a good interface with the host machine, make it impossible to run the created algorithm
workload on this FPGA. However, several design choices that could not be implemented
on the ML605 FPGA board can be implemented on this board. Also, since this board
uses newer technology than the ML605 FPGA board, the operating frequency could be

5.2. VC707 IMPLEMENTATION 49

increased further.

5.2.1 Processor architecture

The architecture of the processor in this implementation is roughly the same as that in the
ML605 implementation. For this reason, only the di↵erences between the implementation
of this processor and that in the ML605 implementation are indicated in this section.

Several unnecessary components of the processor that could not be removed in the
ML605 implementation can be removed here. The reason for this is that the ML605
implementation uses a configuration of the ⇢-VEX processor that was created to feature
GRLIB, and the VC707 implementation uses a standalone implementation of the ⇢-VEX
processor. A feature of the processor core that could be removed in this implementation
is the cache. Both the data and instruction cache were removed. The instruction cache
has been replaced by an instruction memory.

Since the local memory was a component from GRLIB, it had to be created by hand.
This has been done successfully.

5.2.2 Processor pipeline

Like the ML605 implementation, this implementation also features a pipeline with four
cores. However, since it implements the standalone ⇢-VEX processor configuration,
there are no peripherals. There is no AHB bus, no MIG and no DMA. This means that
the critical paths in this implementation are significantly shorter and less resources are
consumed. However, due to the lack of these peripherals and the lack of DRAM, this
implementation is not functional and can not be used to generate measurement results.

5.2.3 Operating frequency

This implementation is significantly faster than the ML605 implementation, and can
operate a frequency of 193 MHz. This is possible due to the lack of a generate memory
interface. Also, the instruction pipeline of the processor could be expanded for this
implementation without corrupting its working. On top of that, the VC707 features a
Virtex-7 FPGA that is superior to the Virtex-6 FPGA of the ML605. This might also
be one of the factors that allow this extraordinary high operating frequency.

5.2.4 Multi-fabric implementation

In order to evaluate the maximal achievable performance on the available FPGA boards,
the Virtex-7 FPGA has been filled entirely with instances of the computation fabric. A
total of 16 instances of the computation fabric could be fitted on the FPGA.

50 CHAPTER 5. IMPLEMENTATION

Measurements and results 6
6.1 Experimental setup

This section describes the method used to evaluate various aspects of the developed
computation fabric, in terms of the input dataset, the used image processing algorithms,
as well as the processor configuration. The used evaluation criteria include the Field
Programmable Gate Array (FPGA) resource utilization, operating frequency and per-
formance in frames per second. Also a comparison with the full-size eight-issue ⇢-VEX
processor is made.

6.1.1 Input dataset

The dimensions of the selected image are 2560 by 1920 pixels, since the ratio of these
dimensions works well with our testing environment. The image is resized to other di-
mensions in order to determine the scalability of system performance. Each pixel is
represented by a 32-bit value, as opposed to the 16-bit pixel value used in commer-
cial medical imagers. Using the bilinear interpolation algorithm that is introduced in
Section 3.2.1, the image is scaled down to 1280 by 960 and 640 by 480 pixels.

6.1.2 Used algorithm workload

The workload of algorithms based on a typical medical image processing pipeline, as
introduced in Section 3.4, is used. The first step in the image processing pipeline is
an interpolation algorithm used to scale the size of the source image. Secondly, a gray
scaling algorithm is applied. This algorithm is selected because it operates on single
pixels in the input dataset. The third stage is a convolution filter that sharpens the
image, followed by the final stage, an embossing convolution filter.

6.1.3 Processor configurations

With the use of the described input dataset and algorithm workload, our computation
fabric is benchmarked. First of all, we benchmark both architectural configurations:
the streaming as well as the non-steaming architectures, and compare their execution
times. In addition, due to the importance of optimal memory hierarchy in our streaming
architecture, the sizes of local memory and the instruction cache are parameterized to
create various processor configurations. This helps in analyzing the design space of the
computation fabric and evaluate the impact of the memories on the performance of the
processor. All of the configurations implement a streaming-processor pipeline depth of
four processors, each of which has a two-issue core running at 120 MHz. Using these

51

52 CHAPTER 6. MEASUREMENTS AND RESULTS

configurations, the optimal trade-o↵ between resource utilization and performance can
be found.

Table 6.1: Processor configurations used for benchmarking

Configurations Resources
LM size
(KiB)

I$ size
(KiB)

Reg LUT BRAM36 BRAM18

16 2 39894 52035 67 55
16 4 40047 52247 67 55
16 8 40549 52882 67 55
32 2 40074 52973 83 55
32 4 40376 53582 83 55
32 8 40901 53188 83 55
64 2 40260 54466 115 55
64 4 40418 53514 115 55
64 8 40936 54368 115 55

6.1.4 Resource utilization

For this evaluation, we used the Virtex-6 FPGAML605 Evaluation kit by Xilinx. Specifi-
cations of this FPGA board can be found in Section 4.2. Implementing the configurations
described in the previous section on this board leads up to the configurations listed in
Table 6.1. This table also includes the resource utilization for each configuration. The
number of used registers and look-up tables is not significantly impacted by the changing
memory sizes. The table also shows that the size of the instruction memory does not
impact the Block Random Access Memory (BRAM) utilization for sizes up to 8 KiB. At
a size of 16 KiB, the number of needed BRAMs increases. Increasing the size of the local
memory has limited influence on the number of BRAMs used, which indicates that we
are able to increase the size of the local memory to meet the needs of our application.
Note that all BRAMs on the board are 36 KiB in size. So a BRAM36 indicates a fully
used BRAM, and a BRAM18 indicates that only half of a BRAM is used.

6.2 Evaluation results

In this section, the results of the performed evaluations are presented. We first discuss
the impact of the computation fabric’s memory sizes on the computational performance.
Based on these results the optimal memory configuration for our application domain
is determined. Secondly, we present a comparison between a streaming and a non-
streaming variant of this configuration to show the impact of streaming on the fabric’s
computational performance. Thirdly, we perform a quantitative comparison between our
fabric and the baseline ⇢-VEX processor. Fourthly and finally, we calculate the expected
performance when multiple copies of our fabric are placed on the specific FPGA boards
introduced in Section 4.2.

6.2. EVALUATION RESULTS 53

6.2.1 Varying memory sizes

Using the configurations shown in Table 6.1, the timing results listed in Table 6.2 are
obtained with the use of the input datasets described in Section 6.1.1. The table shows
that varying the size of the local memory has limited impact on performance, reducing
execution times by only a few percent. Given the fact that increasing the size of the
local memory does not result in any performance gain, a small local memory size should
be selected. This ensures a minimal usage of FPGA resources without compromising
the fabric’s computational performance. However, in order to optimally support medical
imaging tasks, the size of the local memory should be at least 32 KiB, as explained in
Section 4.5.2. A design with local memories of 64 KiB and instruction caches of 16 KiB
was too complex to implement on the FPGA, and hence no results are obtained for this
configuration.

Table 6.2: Execution times for configurations with varying memory sizes

Configuration Clock cycles (106)
LM size
(KiB)

I$ size
(KiB)

2560 x 1920
image size

1280 x 960
image size

640 x 480
image size

16 2 2,416.71 612.29 155.31
32 2 2,390.68 603.04 152.43
64 2 2,378.82 597.57 151.47
16 4 732.43 189.67 48.66
32 4 709.95 180.08 45.86
64 4 695.74 175.61 45.17
16 8 398.55 100.32 26.12
32 8 377.21 94.72 23.85
64 8 366.41 92.60 24.24
16 16 393.28 98.23 24.87
32 16 373.04 93.70 23.99
64 16 - - -

To give a clear insight in the fabric’s computational performance when implementing
a 32 KiB local memory, a graph showing the execution times for all configurations with
such a memory is shown in Figure 6.1. Note that a logarithmic scale is used to indicate
the execution times. Increasing the instruction cache size up to 8 KiB reduces the
execution times significantly. Instruction cache sizes of 16 KiB and beyond do not result
in further increase in performance. This can be explained by the profiling analysis of the
algorithm workload from Section 3.4.2. Whenever the instruction cache is large enough
to fit all the instructions of the source code it will no longer experience cache misses, and
thus provide maximal performance. We see significant loss of performance when using
smaller instruction cache sizes, and no increase in resource utilization when we increase
the instruction cache size to 8 KiB.

Based on our findings we select the configuration that features a 32 KiB local memory
and an 8 KiB instruction cache as the one that accommodates to our needs in the best
way.

54 CHAPTER 6. MEASUREMENTS AND RESULTS

2 4 8 16

102

103

2,391

710

377

373

603

180

95

94

152

46

24 24

Instruction cache size (KiB)

E
xe
cu

ti
on

ti
m
e
(1
06

cy
cl
es
)

2590*1920 1280*960 640*480

Figure 6.1: Execution times for configurations featuring a 32 KiB local memory

6.2.2 Streaming versus non-streaming

Using the configuration with a local memories of 32 KiB and instruction caches of 8 KiB,
the e↵ect of handling data in a streaming fashion is determined. This leads up to the
results in Table 6.3 and Table 6.4. The first shows the execution times for bot types of
configurations, the second one shows the speedup of the streaming configurations. For
reference, measurements for configurations with instructions cache sizes other than 8 KiB
have also been included. A graphical representation of the data listed in Table 6.4, is
shown in Figure 6.2. Note that a logarithmic scale is used to indicate the execution times.
Enabling streaming of data results in speedup of up to 7.59 times. This is significantly
higher than the results of the simulations in Section 4.8. The reason for this lies within
two factors; memory accesses and bus tra�c. Both will be briefly discussed.

Memory accesses Whenever data is being streamed, it has to be fetched and returned
just once. Handling data in a traditional, non-streaming way requires the data to be
fetched and returned between every processing stage, leading up to four times more
memory accesses for our use case. Since accessing the memory is a very time consuming
operation, this explains the significantly higher execution times of the non-streaming
configuration.

Bus tra�c Another factor that increases execution time of this configuration is the
bus tra�c. The fabric implements four cores that all have a connection to the same
bus, that they will all use simultaneously to fetch and return data when operating in a
non-streaming way. The bandwidth of the bus is too limited to accommodate the total

6.2. EVALUATION RESULTS 55

amount of data that the four cores try to transport over it, causing the cores to stall
until bandwidth becomes available on the bus, thus increasing the execution time even
more.

2590*1920 1280*960 640*480

102

103

377

95

24

2,106

710

165

Instruction cache size (KiB)

E
xe
cu

ti
on

ti
m
e
(1
06

cy
cl
es
)

Streaming configuration Non-streaming configuration

Figure 6.2: Execution times for streaming and non-streaming configurations with 32 KiB
local memories and 8 KiB instruction caches.

Table 6.3: Execution times for streaming and non-streaming configurations. The val-
ues indicated in red are produced through interpolation, because of limitations in the
simulation environment.

Configuration Clock cycles (106)

Streaming
I$ size
(KiB)

2560 x 1920
image size

1280 x 960
image size

640 x 480
image size

No 2 4,096.59 1,213.15 291.85
Yes 2 2,390.68 603.04 152.43
No 4 2,317.61 782.03 183.11
Yes 4 709.95 180.08 45.86
No 8 2106.36 710.42 165.15
Yes 8 377.21 94.72 23.85
No 16 2109.10 711.43 165.43
Yes 16 373.04 93.70 23.99

56 CHAPTER 6. MEASUREMENTS AND RESULTS

Table 6.4: Speedup for streaming and non-streaming configurations.

Configuration Speedup
I$ size
(KiB)

2560 x 1900
image size

1280 x 960
image size

640 x 480
image size

2 1.71 2.01 1.91
4 3.26 4.34 3.99
8 5.58 7.50 6.92
16 5.65 7.59 6.90

6.2.3 Processor architecture considerations

We compare the streaming multiprocessor computation fabric to the standard imple-
mentation of the ⇢-VEX processor in terms of computational performance, applicability,
resource utilization and operating frequency. From this we can deduce how much more
powerful our fabric is as compared to the standard ⇢-VEX implementation for our se-
lected application domain.

6.2.3.1 Computation performance

The standard ⇢-VEX implementation features an eight-issue processor, which is created
by combining four two-issue cores. Our fabric features four individual two-issue cores.
The only benefit the standard ⇢-VEX implementation has over our computation fabric is
the ability of operand forwarding in the pipeline of the processor. This technique can pre-
vent pipeline stalls in certain situations. Because of this, the computational performance
of the standard ⇢-VEX implementation for non-streaming workloads is slightly better
when the operating frequency of the implementations is not taken into account. Also in
terms of flexibility, our computation fabric outperforms better than the standard ⇢-VEX
implementation, since our fabric is able to operate in streaming and a non-streaming
mode.

6.2.3.2 Resource utilization

Our fabric is smaller than the standard ⇢-VEX implementation, as can be seen in Ta-
ble 6.5. The main reason for this is the absence of the all-to-all crossbar in our fabric,
which is a large and costly component of the eight-issue processor. The simple and direct
connections between the cores in our fabric come at a very low cost and allow the cores
to communicate as well, and even allow streaming.

Table 6.5: Resource utilization comparison standard rVEX and new design

Platform Resources
Reg LUT BRAM36 BRAM18

Default design 40376 53582 83 55
Default ⇢-VEX 54676 84453 57 137

6.2. EVALUATION RESULTS 57

6.2.4 Image processing performance

In order to be able to express the computational performance of our fabric in practical
terms, the maximum number of images that can be processed each second is determined.
This metric is known as frames per second. First we calculate the achievable number of
processed frames per second on the ML605 FPGA board, where a single instance of our
fabric is implemented. We estimate the maximum number of times our fabric fits on the
Virtex-6 FPGA, and calculate the expected number of processed frames per second on
this platform whenever it is filled completely with multiple instances of our computation
fabric. Then we repeat these calculations for the Virtex-7 implementation of the VC707
FPGA board, and calculate the maximum achievable number of processed frames per
second on the VC707 FPGA board given the achieved implementation results presented
in the previous chapter

6.2.5 ML605

Firstly the number of frames that can be processed per second by a single instance of
the computation fabric is determined. This result is then used to estimate the maximum
achievable number of processed frames per second.

Frames per second per instance A single image, or frame, as used in typical
medical imaging products has a size of 960 by 960 pixels. Interpolating the data from
Table 6.2 for an image with these dimensions, an performance indication can be given.
An image sized 1280 by 960 pixels is 1.33 times larger than a 960 by 960 pixels images.
Processing an image sized 1280 by 960 requires 94.72 million clock cycles. From this
we can deduce that processing an image sized 960 by 960 pixels would require roughly
71.04 million clock cycles. At an operating frequency of 120 MHz, this would mean that
a single instance of our computation fabric can process approximately 1.69 frames per
second.

Maximum number of frames per second on Virtex-6 Since our fabric does not
only implement two-issue cores, but also a number of peripherals, it is not trivial to
determine the resource utilization of a single two-issue core and calculate the maximum
number of cores that can be placed on the FPGA board. To be able to determine the
resource utilization of a single core, and the resource utilization of the peripherals a
number of configurations of our fabric that feature di↵erent processor pipeline depths
were implemented. Configurations with a depth of 2, 4, 6 and 8 cores were implemented.
Their resource utilization can be found in Table 6.6. From this table the resources per
core and the overhead caused by the peripherals can be determined. The results of this
are listed in Table 6.7. Using these numbers and number of Table 4.1, the maximum
number of cores per Virtex-6 FPGA can be calculated. Results of these calculations
can be found in Table 6.8. Assuming a four-stage streaming-processor pipeline, the
computation fabric would fit four times on a Virtex-6 FPGA. Multiplied by the earlier
determined 1.69 frames per second, an e�ciently filled Virtex-6 FPGA would be able to
process up to roughly 1.69 · 4 = 6.76 frames per second. A minimum of 15 frames per
second is needed to let the human eye interpret the stream of images without significant

58 CHAPTER 6. MEASUREMENTS AND RESULTS

di�culty. For optimal interpretation a minimum of 30 frames per second is required.
The implementation of our computation fabric on the Virtex-6 FPGA does not meet
these requirements, making it not suitable for real-life applications.

Table 6.6: Resource utilization for varying pipeline depths

Pipeline depth Resources
Cores Reg LUT BRAM36 BRAM18
2 33265 36120 55 29
4 40376 53582 83 55
6 46890 69203 111 81
8 53695 85466 139 107

Table 6.7: Resource utilization per core and of peripherals

Resources Reg LUT BRAM36 BRAM18
Core 3393 8190 14 13
Peripherals 26592 20143 27 3

Table 6.8: Total number of cores and processor pipelines that can be implemented on
the Virtex-6 FPGA

Component
Maximum amount of possible instances per resource
Reg LUT BRAM36 BRAM18

Core 81 16 28 64
Processor Pipeline 20 4 7 16

6.2.6 VC707

Firstly the number of frames that can be processed per second by a single instance of
the computation fabric is determined. This result is then used to estimate the maximum
achievable number of processed frames per second.

Frames per second per instance As determined in Section 6.2.5, processing of a
single image of 960 by 960 pixels requires roughly 71.04 million clock cycles. At an oper-
ating frequency of 193 MHz, this would mean that a single instance of our computation
fabric can process approximately 2.72 frames per second.

Maximum number of frames per second on Virtex-7 Since a total of 16 in-
stances of our computation fabric can be implemented on a Virtex-7 FPGA, the maxi-
mum achievable number of frames per second is expected to be 2.72 · 16 = 43.52. This
number is significantly higher than the 30 frames per second requirement introduced
in Section 6.2.5, making the implementation of our computation fabric on the Virtex-7
FPGA applicable for real-time image processing.

Conclusion and

recommendations 7
This chapter concludes the work for this thesis project. First a summary of the per-
formed work and achieved results is given. This is followed by an overview of main
accomplishments and achievements of this work. The chapter then discusses a list of
future work opportunities regarding our computation fabric.

7.1 Conclusions

7.1.1 Summary

In Chapter 1 the problem statement and research questions for this thesis project were
posed, along with an overview of prior work related to the work of this thesis. Chapter 2
provided background information on the various types of platforms suited for image pro-
cessing with their pros and cons, followed by background information on the designs of
both the ⇢-VEX Very Long Instruction Word (VLIW) processor developed by the Delft
University of Technology, and modern Graphics Processing Unit (GPU) architectures.
The useful properties and techniques from both of these with regards to the design of
our computation fabric are summed up at the end of that chapter. Chapter 3 gives back-
ground information on algorithms. General algorithm complexity analysis is explained
for both sequential and parallel computation. Image processing algorithm classes are
introduced along with examples from each class. A number of these are used to con-
struct an algorithm workload for a typical medical imaging use case. The computational
requirements posed by this workload of algorithms are determined. Chapter 4 discusses
the design choices for our computation fabric. The memory architecture, core archi-
tecture and multiprocessor design overview are the most important parts of the design.
Simulation results are included to support the design considerations. Chapter 5 discusses
the implementation of our computation fabric. It first discusses the implementation of a
minimal size ⇢-VEX processor suited for medical imaging purposes. This is followed by
a description of the implementation of the complete streaming multiprocessor computa-
tion fabric. Chapter 6 presents and evaluates the results of the conducted measurements
using our computation fabric and describes both achieved and expected performance
results.

7.1.2 Main accomplishments and contributions

In Section 1.2, the two following research questions were introduced.

• Is it possible to design and implement a fixed hardware image processing compu-
tation fabric that meets the requirements to be used in commercial grade medical
imaging products?

59

60 CHAPTER 7. CONCLUSION AND RECOMMENDATIONS

• Can we create a computation fabric general enough to handle changes and updates
to the image processing algorithms used in the field?

The computation fabric that is presented in this work is a fast and e�cient implemen-
tation of a fixed hardware streaming multiprocessor architecture for low latency medical
image processing. The computation fabric consists of a processor pipeline that supports
streaming through so-called local memories, that are highly optimized for the target
application. A total of 16 instances of the computation fabric can be implemented on
a modern Virtex-7 Field Programmable Gate Array (FPGA) board and can run at an
operating frequency of 193 MHz. This implementation can process up to 43.52 frames
per second, which makes this architecture very suitable for real-time image processing.
By achieving this, all requirements for the first research question have been fulfilled.

The processor pipeline depth of the computation fabric is generic, and can be changed
according to the requirements posed by the algorithm workload. This makes the archi-
tecture flexible and general enough to handle changes and updates to the algorithm
workload. This fulfills the requirements posed by the second research question.

The results of this work help to advance the academic development of the ⇢-VEX
processor and its applications. Because of its academic and industrial value, a paper
discussing the implementation of our computation fabric was written. This paper was
submitted to ARC2017, the international symposium on Applied Reconfigurable Com-
puting. The paper can be found in Appendix A of this work.

7.2 Recommendations for future work

Various functionalities and techniques that might further improve and exploit the capa-
bilities of our computation fabric remain unexplored at this moment. A number of these
are discussed in this section.

Instruction set architecture As discussed in Section 4.4, our fabric will likely
benefit from an Instruction Set Architecture (ISA) extension. Especially implementing
the combined multiply-add instruction is likely to be beneficial for the performance of
our computation fabric.

Direct memory access Transferring data between the host and the FPGA board
requires processor time of the host processor in the current implementation of our com-
putation fabric. However, it is possible to transfer this data without wasting precious
processor time of either the host processor or our computation fabric. A way of achiev-
ing this is using a Direct Memory Access (DMA) controller. Such a controller is able to
interface with a memory directly, without the intervention of a processor. This means
that, under certain conditions, the DMA controller can transfer data while both the
host machine and our computation fabric can continue performing their work. The most
important condition for DMA to work is the guarantee of hazard-free working condi-
tion. This means that while the DMA controller is interfacing with a certain part of the
memory, no other component in the entire system is allowed to address this specific part
of the memory. In order for our fabric to operate on a stream of input data, a DMA

7.2. RECOMMENDATIONS FOR FUTURE WORK 61

controller is essential. Without it, the continuous stream of images would simply cripple
the performance of the host processor, rendering the entire system inoperable.

Lockstep execution Theoretically it is possible to let all the cores in the streaming
multiprocessor operate in lockstep. Lockstep is an operation mode that enforces all cores
to run synchronously. In most cases lockstep execution is used for fault tolerance, but it
might also be suited for parallel processing. By enabling lockstep execution, the need for
memories in between the individual cores of the streaming multiprocessor is removed,
since all the cores will hand their data to the next core in the processor pipeline at the
exact same time. Lockstep execution requires a means of continuous synchronization of
instructions between the cores, for example by sharing an instruction memory or program
counter.

Implementation of Virtex-7 FPGA As explained in Section 5.2, the implementa-
tion of the computation fabric was ported to a VC707 FPGA board that features a larger
and faster FPGA than the ML605 FPGA that was used for our performance measure-
ments. In this implementation the technically unnecessary caches and Memory Interface
Generator (MIG) of the ⇢-VEX processor were removed from the implementation, al-
lowing a higher operating frequency and a lower resource utilization. Unfortunately it is
not yet possible to run applications on this implementation, since it lacks a proper bus
that allows communication with the host machine. To really uncover the potential of
the VC707 FPGA board, proper communication with the host should be implemented.
However, since the VC707 FPGA board does not feature any form of main memory, this
implementation step should preferably be accompanied by the introduction of a DMA
controller to the design.

Pipeline exploration The operating frequency of our fabric is much higher than
that of the standard ⇢-VEX implementation. However, even higher operating frequencies
might be achieved by exploring the limiting stages in the processor instruction pipeline
and granting this stage one or more additional time slots. Explorations on the VC707
FPGA board have already shown possible frequencies of up to 200 MHz.

Implementation in Spark The last suggestion for future work is one that lies outside
the design and implementation of the fabric itself. It is a suggestion to implement
our computation fabric into a Spark environment. Spark is a cluster based computing
framework developed and maintained by Apache, that enables massive parallelization.
Since it is open source, our fabric can be implemented as a component in a custom-made
Spark environment. A team of researchers from the Computer Engineering group of
the Delft University of Technology has obtained remarkable successes with computation
platforms in a Spark environment, that might be even improved further when our fabric
is added to this specific computing framework.

62 CHAPTER 7. CONCLUSION AND RECOMMENDATIONS

Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A
Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[2] NVIDIA Corporation. (1999) NVIDIA Launches the World’s First Graphics
Processing Unit: GeForce 256. [Online]. Available: http://www.nvidia.com/object/
IO 20020111 5424.html

[3] Almarvi. (2014) Algorithms, Design Methods, and Many-core Execution Platform
for Low-Power Massive Data-Rate Video and Image Processing. [Online]. Available:
http://www.almarvi.eu/

[4] S. Wong, T. van As, and G. Brown, “⇢-VEX: A Reconfigurable and Extensible Soft-
core VLIW Processor,” in International Conference on Field-Programmable Tech-
nology (ICFPT), December 2008.

[5] S. Wong and F. Anjam, “The Delft Reconfigurable VLIW Processor,” in Proc. 17th
International Conference on Advanced Computing and Communications, Bangalore,
India, December 2009, pp. 244–251.

[6] J. Hoozemans, S. Wong, and Z. Al-Ars, “Using vliw softcore processors for image
processing applications,” in Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), 2015 International Conference on. IEEE, 2015, pp.
315–318.

[7] Computer Engineering Laboratory, EEMCS Delft University of Technology. (2016)
-VEX Project Site -vex the dynamically reconfigurable vliw processor. [Online].
Available: http://rvex.ewi.tudelft.nl/

[8] D. Stevens, V. Chouliaras, V. Azorin-Peris, J. Zheng, A. Echiadis, and S. Hu, “Bio-
threads: A novel vliw-based chip multiprocessor for accelerating biomedical image
processing applications,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 6, no. 3, pp. 257–268, June 2012.

[9] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing the limits
of accelerator e�ciency while retaining programmability,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). IEEE,
2016, pp. 27–39.

[10] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A reconfigurable fabric for
accelerating large-scale datacenter services,” IEEE Micro, vol. 35, no. 3, pp. 10–22,
2015.

63

http://www.nvidia.com/object/IO_20020111_5424.html
http://www.nvidia.com/object/IO_20020111_5424.html
http://www.almarvi.eu/
http://rvex.ewi.tudelft.nl/

64 BIBLIOGRAPHY

[11] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung,
“Accelerating deep convolutional neural networks using specialized hardware,” Mi-
crosoft Research Whitepaper, vol. 2, 2015.

[12] S. M. Chai, S. Chiricescu, R. Essick, B. Lucas, P. May, K. Moat, J. M. Norris,
M. Schuette, and A. Lopez-Lagunas, “Streaming processors for next-generation mo-
bile imaging applications,” IEEE Communications Magazine, vol. 43, no. 12, pp.
81–89, Dec 2005.

[13] P. Wang and J. McAllister, “Streaming elements for fpga signal and image pro-
cessing accelerators,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, no. 6, pp. 2262–2274, June 2016.

[14] D. Seidner, “Improved low-cost fpga image processor architecture with external line
memory,” in 2013 IEEE International Conference on Industrial Technology (ICIT),
Feb 2013, pp. 1128–1133.

[15] M. V. G. Rao, P. R. Kumar, and A. M. Prasad, “Implementation of real time
image processing system with fpga and dsp,” in 2016 International Conference on
Microelectronics, Computing and Communications (MicroCom), Jan 2016, pp. 1–4.

[16] G. Bieszczad, “Soc-fpga embedded system for real-time thermal image processing,”
in 2016 MIXDES - 23rd International Conference Mixed Design of Integrated Cir-
cuits and Systems, June 2016, pp. 469–473.

[17] N. Masud, J. Nasir, M. S. Nazir, and M. Aqil, “Fpga based multiprocessor embedded
system for real-time image processing,” in 2015 15th International Conference on
Control, Automation and Systems (ICCAS), Oct 2015, pp. 436–438.

[18] S. McBader and P. Lee, “An fpga implementation of a flexible, parallel image pro-
cessing architecture suitable for embedded vision systems,” in Proceedings Interna-
tional Parallel and Distributed Processing Symposium, April 2003, pp. 5 pp.–.

[19] S. O. Cisneros, J. R. D., P. M. Villalobos, C. A. T. C., H. Hernndez-Hector, and
J. J. R. P., “An image processor for convolution and correlation of binary images
implemented in fpga,” in 2015 12th International Conference on Electrical Engi-
neering, Computing Science and Automatic Control (CCE), Oct 2015, pp. 1–5.

[20] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW Ap-
proach to Architecture, Compilers and Tools. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2005.

[21] STMicroelectronics. (2012) RM0245 Reference manual st200 run-time archi-
tecture. [Online]. Available: http://www.st.com/content/ccc/resource/technical/
document/reference manual/fc/2a/dc/5e/37/ed/41/09/CD17521848.pdf/files/
CD17521848.pdf/jcr:content/translations/en.CD17521848.pdf

[22] Hewlett-Packard Laboratories. (2009) VEX Toolchain. [Online]. Available:
http://www.hpl.hp.com/downloads/vex/

http://www.st.com/content/ccc/resource/technical/document/reference_manual/fc/2a/dc/5e/37/ed/41/09/CD17521848.pdf/files/CD17521848.pdf/jcr:content/translations/en.CD17521848.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/fc/2a/dc/5e/37/ed/41/09/CD17521848.pdf/files/CD17521848.pdf/jcr:content/translations/en.CD17521848.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/fc/2a/dc/5e/37/ed/41/09/CD17521848.pdf/files/CD17521848.pdf/jcr:content/translations/en.CD17521848.pdf
http://www.hpl.hp.com/downloads/vex/

BIBLIOGRAPHY 65

[23] NVIDIA Corporation. (2016) Parallel Thread Execution ISA application guide.
[Online]. Available: http://docs.nvidia.com/cuda/pdf/ptx isa 5.0.pdf

[24] ——. (2016) CUDA C Programming Guide design guide. [Online]. Available:
https://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf

[25] Khronos. (2016) The OpenCL Specification. [Online]. Available: https:
//www.khronos.org/registry/cl/specs/opencl-2.2.pdf

[26] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 1909.

[27] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, Jun. 1986. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.1986.4767851

[28] Xilinx Corporation. (2012) ML605 Hardware user guide. [Online]. Available:
https://www.xilinx.com/support/documentation/boards and kits/ug534.pdf

[29] ——. (2016) VC707 Evaluation Board for the Virtex-7 FPGA user guide.
[Online]. Available: https://www.xilinx.com/support/documentation/boards and
kits/vc707/ug885 VC707 Eval Bd.pdf

[30] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel, “Scratchpad
memory: a design alternative for cache on-chip memory in embedded systems,” in
Proceedings of the Tenth International Symposium on Hardware/Software Codesign.
CODES 2002 (IEEE Cat. No.02TH8627), May 2002, pp. 73–78.

[31] P. R. Panda, N. D. Dutt, and A. Nicolau, “E�cient utilization of scratch-pad
memory in embedded processor applications,” in Proceedings of the 1997
European Conference on Design and Test, ser. EDTC ’97. Washington,
DC, USA: IEEE Computer Society, 1997, pp. 7–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=787260.787762

[32] Xilinx Corporation. (2010) Memory Interface Solutions user guide. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip documentation/ug086.
pdf

[33] Cobham Gaisler AB. (2016) GRLIB IP Library user’s manual. [Online]. Available:
http://www.gaisler.com/products/grlib/grlib.pdf

[34] J. Hoozemans. (2016) Fast functional simulator for the st200 series of processors.
[Online]. Available: https://bitbucket.org/joosthooz/sim-rvex

[35] ERA. (2013) Embedded Reconfigurable Architectures downloads. [Online]. Avail-
able: http://www.era-project.org/index.php?option=com content&view=article&
id=56&Itemid=60

http://docs.nvidia.com/cuda/pdf/ptx_isa_5.0.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
http://dx.doi.org/10.1109/TPAMI.1986.4767851
https://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
http://dl.acm.org/citation.cfm?id=787260.787762
https://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf
http://www.gaisler.com/products/grlib/grlib.pdf
https://bitbucket.org/joosthooz/sim-rvex
http://www.era-project.org/index.php?option=com_content&view=article&id=56&Itemid=60
http://www.era-project.org/index.php?option=com_content&view=article&id=56&Itemid=60

66 BIBLIOGRAPHY

[36] C. Pham-Quoc, Z. Al-Ars, and K. Bertels, “Heterogeneous hardware accelerator
architecture for streaming image processing,” in Proc. International Conference on
Advanced Technologies for Communications, Hochiminh City, Vietnam, October
2013, pp. 374–379.

[37] V. Kritchallo, B. Braithwaite, E. Vermij, K. Bertels, and Z. Al-Ars, “Balancing
high-performance parallelization and accuracy in canny edge detector,” in Proc.
29th International Conference on Architecture of Computing Systems, Nuremberg,
Germany, April 2016.

[38] C. Pham-Quoc, Z. Al-Ars, and K. Bertels, “Automated hybrid interconnect design
for fpga accelerators using data communication profiling,” in Proc. 28th Interna-
tional Parallel Distributed Processing Symposium Workshops, Phoenix, USA, May
2014.

[39] H. Du Nguyen, Z. Al-Ars, G. Smaragdos, and C. Strydis, “Accelerating complex
brain-model simulations on gpu platforms,” in Proc. 18th Design, Automation Test
in Europe Conference, Grenoble, France, March 2015.

[40] L. Hasan, M. Kentie, and Z. Al-Ars, “Dopa: Gpu-based protein alignment using
database and memory access optimizations,” BMC Research Notes, vol. 4, pp. 1–
11, July 2011.

[41] E. Houtgast, V. Sima, K. Bertels, and Z. Al-Ars, “Gpu-accelerated bwa-mem ge-
nomic mapping algorithm using adaptive load balancing,” in Proc. 29th Interna-
tional Conference on Architecture of Computing Systems, Nuremberg, Germany,
April 2016, pp. 130–142.

[42] S. Ren, K. Bertels, and Z. Al-Ars, “Exploration of alternative gpu implementations
of the pair-hmms forward algorithm,” in Proc. 3rd International Workshop on High
Performance Computing on Bioinformatics, Shenzhen, China, December 2016.

[43] N. Ahmed, V. Sima, E. Houtgast, K. Bertels, and Z. Al-Ars, “Heterogeneous hard-
ware/software acceleration of the bwa-mem dna alignment algorithm,” in Proc. In-
ternational Conference on Computer Aided Design, Austin, USA, November 2015,
pp. 240–246.

[44] S. Ren, V. Sima, and Z. Al-Ars, “Fpga acceleration of the pair-hmms forward algo-
rithm for dna sequence analysis,” in Proc. International Workshop on High Perfor-
mance Computing on Bioinformatics, Washington DC, USA, November 2015.

[45] J. Peltenburg, S. Ren, and Z. Al-Ars, “Maximizing systolic array efficiency to accel-
erate the pairhmm forward algorithm,” in Proc. IEEE International Conference on
Bioinformatics and Biomedicine, Shenzhen, China, December 2016, pp. 758–762.

[46] E. Houtgast, V. Sima, G. Marchiori, K. Bertels, and Z. Al-Ars, “Power-efficiency
analysis of accelerated bwa-mem implementations on heterogeneous computing plat-
forms,” in Proc. International Conference on Reconfigurable Computing and FP-
GAs, Cancun, Mexico, December 2016.

Publication A
A paper discussing the implementation of our computation fabric was written. This
paper was submitted to ARC2017, the international symposium on Applied Reconfig-
urable Computing. This paper discusses focuses mainly only the implementation of the
computation fabric on the VC707 FPGA board.

67

VLIW-based FPGA Computation Fabric with
Streaming Memory Hierarchy for Medical

Imaging Applications

Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

Delft University of Technology
j.j.hoozemans@tudelft.nl, r.w.heij@student.tudelft.nl, j.van.straten-1@tudelft.nl,

z.al-ars@tudelft.nl

Abstract. In this paper, we present and evaluate an FPGA acceleration
fabric that uses VLIW softcores as processing elements, combined with a
memory hierarchy that is designed to stream data between intermediate
stages of an image processing pipeline. These pipelines are commonplace
in medical applications such as X-ray imagers. By using a streaming
memory hierarchy, performance is increased by a factor that depends on
the number of stages (7.5⇥ when using 4 consecutive filters). Using a
Xilinx VC707 board, we are able to place up to 75 cores. A platform
of 64 cores can be routed at 193MHz, achieving real-time performance,
while keeping 20% resources available for o↵-board interfacing.
Our VHDL implementation and associated tools (compiler, simulator,
etc.) are available for download for the academic community.

1 Introduction

In contemporary medical imaging platforms, complexity of image processing
algorithms is steadily increasing (in order to improve the quality of the output
while reducing the exposure of the patients to radiation). Manufacturers of med-
ical imaging devices are starting to evaluate the possibility of using FPGA accel-
eration to provide the computational resources needed. FPGAs are known to be
able to exploit the large amounts of parallelism that is available in image process-
ing workloads. However, current workflows using High-Level Synthesis (HLS) are
problematic for the medical application domain, as it impairs programmability
(increasing time-to-market) and maintainability. Additionally, some of the image
processing algorithms used are rather complex and can yield varying quality of
results. Therefore, in this paper, we propose a computation fabric on the FPGA
that is optimized for the application domain, in order to provide acceleration
without sacrificing programmability. By analyzing the structure of the image

Part of this work has been supported by the ALMARVI European Artemis project
nr. 621439.

2 Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

processing workload type (essentially a pipeline consisting of multiple filters op-
erating on the input in consecutive steps), we have selected a suitable processing
element and designed a streaming memory structure between the processors.

The image processing workload targeted in this paper consists of a number
of filters that are applied to the input data in sequence. Each filter is a stage
in the image processing pipeline. The input stage of a filter is the output of the
previous stage - the stages stream data to each other. Making sure these transfers
are performed as e�ciently as possible is crucial to provide high throughput.

The processing element used in this work is based on a VLIW architecture.
These type of processors are ubiquitous in areas such as image and signal pro-
cessing. They are known for their ability to exploit Instruction-Level Parallelism
(ILP) while reducing circuit complexity (and subsequently power consumption)
compared to their superscalar counterparts. In the medical imaging domain,
power consumption is not a main concern, but as image processing workloads
can be divided into multiple threads easily, a reduction in area utilization will
likely result in an increase in total throughput.

The remainder of this paper is structured as follows: Section 2 discusses
related work, Section 3 discusses the implementation details, Section 4 and 5
present the evaluation and results, and Section 6 provides conclusions and future
work.

2 Related work

A prior study on using VLIW-based softcores for image processing applications
is performed in [1], showing that a VLIW-based architecture has advantages
over a scalar architecture such as the MicroBlaze in terms of performance versus
resource utilization. In [2], an FPGA-based compute fabric is proposed using the
LE-1 softcore (based on the same Instruction Set Architecture - VEX), target-
ing medical image processing applications. This work focuses solely on o↵ering
a highly multi-threaded platform without providing a memory hierarchy that
can sustain the needed bandwidth through the pipeline. A related study on
accelerating workloads without compromising programmability is [3], with one
of the design points being a convolution engine as processing element. A well-
known prior e↵ort, and one of the inspirations of this work, uses softcores to
provide adequate acceleration while staying targetable by a high level compiler
is the Catapult project [4]. The target domain is ranking documents for the Bing
search engine. A related e↵ort that aims to accelerate Convolutional Neural Net-
works is [5]. However, this project did not aim to conserve programmability (only
run-time reconfigurability), as the structure of this application does not change
enough to require this. In the image processing application domain, [6] provides a
comparison of convolution on GPU or FPGA using a Verilog accelerator, [7] and
[8] present resource-e�cient streaming processing elements, and [9] introduces a
toolchain that targets customized softcores.

VLIW-based FPGA Computation Fabric for Medical Imaging 3

3 Implementation

The computation fabric developed in this work consists of two facets; the pro-
cessing elements and the memory hierarchy, as shown in Figure 1. The imple-
mentation of both will be discussed in this section. Then, the process of designing
a full platform using these components is discussed.

2-issue

core

Instr.

memory

Data

memory

2-issue

core

Instr.

memory

Data

memory

Decoder

Debug access bus

20 MHz

200 MHz

2-issue

core

Instr.

memory

Data

memory

DecoderDecoder

Data

source

Data

sink

Stream unit Stream unit Stream unit

Fig. 1. Organization of a single stream of processing elements (Stream unit) and the
streaming connections that link the data memories. Each processor can access the
memory of its predecessor. Each processor’s memories and control registers can be
accessed via a bus that runs on a low clock frequency to prevent it from becoming a
timing-critical net.

3.1 Processing elements

This section describes the design and implementation of our fabric. The proces-
sor cores in the fabric are derived from the ⇢-VEX processor [10]. The ⇢-VEX
processor is an VLIW processor based on the VEX ISA introduced by Fisher et
al [11]. The ⇢-VEX processor has both run-time and design-time reconfigurable
properties, giving it the flexibility to run a broad selection of applications in an
e�cient way.

Image processing tasks are highly parallelizable in multiple regards; 1) The
code is usually computationally dense, resulting in high ILP, and 2) Every pixel
can in theory be calculated individually and it is easy to assign pixels to threads
(by dividing the image into blocks). In other words, there is an abundance of
Thread-Level Parallelism (TLP). Exploiting TLP is usually more area e�cient
than exploiting ILP - increasing single-thread performance comes at a high price
in power and area utilization and will quickly show diminishing returns. This is
why GPUs exploit TLP as much as possible by using many small cores. There-
fore, the processing elements of our fabric will use the same approach and we
will use the smallest 2-issue VLIW configuration as a basis. This will still al-
low it to exploit ILP by virtue of having multiple issue slots and a pipelined
datapath. By placing multiple instances of our fabric on an FPGA, TLP can
be exploited in two dimensions; by processing multiple blocks, lines or pixels
(depending on the filter) concurrently, and by assigning each step in the image

4 Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

processing pipeline to a dedicated core (pipelining on a task level in contrast to
the micro-architectural level).

To explore the design space of the processor’s pipeline organization, we have
measured code size and performance of a 3x3 convolution filter implemented
in C. This convolution code forms a basis with which many operators can be
applied to an image depending on the kernel that is used (blurring, edge de-
tection, sharpening) so it is suitable to represent the application domain. The
main loop can be unrolled by the compiler using pragmas. Figure 2 lists the
performance using di↵erent levels of loop unrolling for di↵erent organizations
of a 2-issue ⇢-VEX pipeline; the default pipeline with 5 stages and forward-
ing, one with 2 additional pipeline stages to improve timing, and one using the
longer pipeline and with Forwarding (FW) disabled to further improve timing
and decrease FPGA resource utilization. Loop unrolling will allow the compiler
to fill the pipeline latency with instructions from other iterations. The perfor-
mance loss introduced is reduced from 25% to less than 2% when unrolling 8
times. Additionally, disabling forwarding reduces the resources utilization of a
core allowing more instances to be placed on the FPGA (see Figure 3).

0 2 4 8
0

50

100

150

99
92

88 87

104

92
88 86

126

101
93

88

Loop Unroll factor

E
x
ec
u
ti
on

ti
m
e
(M

cy
cl
es
)

5-stage Forwarding

7-stage Forwarding

7-stage no Forwarding

Fig. 2. Execution times of a 4-stage image processing pipeline on a single stream of 4
processors using di↵erent loop unrolling factors.

3.2 Memory hierarchy

In our fabric, processing elements are instantiated in ‘streams’ of configurable
length. This length should ideally be equal to the number of stages in the image
processing pipeline. Each stage will be executed by a processor using the output
of the previous processor. A connection is made between each pair of ⇢-VEX
processors in a stream, so that a core can read the output of the previous step
(computed by the previous core in the stream) and write the output into its own
data memory (making it available for reading by the next core in the stream).

VLIW-based FPGA Computation Fabric for Medical Imaging 5

The memory blocks are implemented using dual-port RAM Blocks on the FPGA.
Each port can sustain a bandwidth of one 32-bits word per cycle per port, so
both processors connected to a block (current, next) can access a block without
causing a stall. The blocks are connected to the processors by means of a simple
address decoder between the memory unit and the data memories.

The first and last core should be connected to DMA (Direct Memory Access)
units that move data to and from input and output frame bu↵ers (eventually
going o↵-board).

3.3 Platform

The VHDL code of the components is written in a very generic way and there
are numerous parameters that can be chosen by the designer. First of all, the ⇢-
VEX processor can be configured in terms of issue width, pipeline configuration,
forwarding, traps, trace unit, debug unit, performance counters, and caches. Sec-
ondly, there is an encompassing structure that instantiates processors in streams.
The number of streams and length per stream are VHDL generics.

4 Experimental setup

This section describes the method used in the to evaluate various aspects of
the developed computation fabric, in terms of the input dataset, the used image
processing algorithms, as well as the processor configuration. The used evalu-
ation criteria include the FPGA resource utilization, operating frequency and
performance in frames per second. Also a comparison with the baseline ⇢-VEX
processor is made.

4.1 Input dataset

Since the target application of the designed system is related to medical image
processing, an X-ray sample image is used as input for the evaluation. Typi-
cal medical imagers work with images that have a size of 1000 by 1000 pixels.
The dimensions of our benchmark images are 2560 by 1920 pixels. The image
is resized to other dimensions in order to determine the scalability of system
performance. Each pixel is represented by a 32-bit value (RGBA). Using a tech-
nique described in the following section, the image may be scaled down to 1280
by 960 and 640 by 480 pixels.

4.2 Used algorithms

A workload of algorithms based on a typical medical image processing pipeline
is used. The first step in the image processing pipeline is an interpolation al-
gorithm used to scale the size of the source image. The bi-linear and nearest
neighbor interpolation algorithms both have the same computational complex-
ity making them equally feasible. Because of its slightly higher flexibility, we

6 Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

select the bi-linear interpolation algorithm for the evaluation. Secondly, a gray
scaling algorithm is applied. This algorithm is selected because it operates on
single pixels in the input dataset. The third stage is a convolution filter that
sharpens the image, followed by the final stage, an embossing convolution filter.

The block-based filters in this workload (the convolution steps) operate on 3
by 3 pixel windows. In order to e�ciently stream these filters, 3 lines of pixels
from the input image need to be available in the local memories. For a typical
medical image this would come down to 1000 ⇥ 3 = 3000 pixels. Given that
each pixel has a size of 32 bits, this image fraction has a size of nearly 12 kiB.
Double bu↵ering is needed in order to allow a processor in a stream to work on
his current output block, while keeping his previous output stable for the next
processor in the stream to use it as input. Therefore, the minimum size of a local
memory should be at least 24 kiB. The closest value to this that can be realized
is 32 kiB.

5 Evaluation results

5.1 Resource utilization

We have synthesized the platform using various configurations targeting the Xil-
inx VC707 evaluation board. As stated, the pipeline organization of the process-
ing elements has influence on the resource utilization and timing. In Figure 3, 4
options have been evaluated using the standard synthesis flow (unconstrained).
With forwarding enabled, the platform completely fills the FPGA using 64 cores.
When forwarding is disabled, this can be increased to 75.

Additionally, we have performed a number of runs where we created sim-
ple placement constraints that steered the tool towards clustering the cores per
stream so that they are aligned on the FPGA in accordance with their stream-
ing organization. A single stream consisting of 4 cores achieves an operating
frequency of 200MHz. Using 16 streams, timing becomes somewhat more di�-
cult as the FPGA fabric is not homogeneous (some cores will need to traverse
sections of the chip that are reserved for clocking, reconfiguration and I/O logic,
and the division of RAM Blocks is not completely uniform). Still, this config-
uration achieves an operating frequency of 193 MHz at 80% LUT utilization,
leaving room for interfacing with o↵-board electronics.

5.2 Streaming vs non-streaming

In this section, the e↵ect of handling data in a streaming fashion is measured. The
results are depicted in Figure 4. Enabling streaming of data results in speedup
of 7.5 times. Note that the di↵erence will increase with the number of stages, so
the fabric will perform better with increase complex image processing pipelines.

VLIW-based FPGA Computation Fabric for Medical Imaging 7

Pipeline organization Cores Resource utilization Freq.
Forwarding Stages LUT FF BRAM (MHz)
Enabled 7 64 99% 29% 81% 149
Enabled 5 64 93% 26% 81% 103
Disabled 7 75 96% 33% 95% 162
Disabled 5 75 98% 30% 95% 143
Disabled 7 4 5% 2% 5% 200
Disabled 7 64 82% 28% 81% 193

Fig. 3. FPGA Resource Utilization and clock frequency of di↵erent platform configu-
rations. The layout of the 64-core, 193MHz platform on the FPGA is depicted on the
right.

5.3 Image processing performance

To be able to express the computational performance of our fabric in practical
terms, the maximum number of images that can be processed each second is
determined.

Processing an image sized 1280 by 960 requires 94.72 million clock cycles (see
Figure 4). Using 16 streams At an operating frequency of 193 MHz, this would
mean that our fabric can process approximately 34 frames per second.

6 Conclusion

In this paper, we have introduced and evaluated an implementation of a FPGA-
based computation fabric that targets medical imaging applications by providing
an image processing pipeline-oriented streaming memory hierarchy combined
with high-performance VLIW processing elements. We have shown that the

2590*1920 1280*960 640*480

102

103

377

95

24

3,016

710

165

Image size

E
x
ec
u
ti
on

ti
m
e
(M

cy
cl
es
)

Streaming Non-Streaming

Fig. 4. Execution times of a 4-stage image processing pipeline on a streaming versus
non-streaming platform using di↵erent image sizes

8 Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

streaming memory hierarchy is able to reduce bandwidth requirements and in-
crease performance by a factor of 7.5 times when using a single stream of only 4
processing stages. The platform stays fully targetable by a C-compiler and each
core can be instructed to perform an individual task. The platform is highly
configurable and designers can modify the organization to best match their ap-
plication structure. For future work, there is room for further design-space ex-
ploration of the processing elements in terms of resource utilization versus per-
formance, introducing design-time configurable instruction sets, increasing the
clock frequency, and other architectural optimizations. The platform, simulator
and toolchain are available for academic use at www.rvex.ewi.tudelft.nl.

References

1. J. Hoozemans, S. Wong, and Z. Al-Ars, “Using VLIW Softcore Processors for
Image Processing Applications,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), 2015 International Conference on, pp. 315–
318, IEEE, 2015.

2. D. Stevens, V. Chouliaras, V. Azorin-Peris, J. Zheng, A. Echiadis, and S. Hu,
“BioThreads: a novel VLIW-based chip multiprocessor for accelerating biomedi-
cal image processing applications,” IEEE transactions on biomedical circuits and
systems, vol. 6, no. 3, pp. 257–268, 2012.

3. T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing the
limits of accelerator e�ciency while retaining programmability,” in 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pp. 27–39, IEEE, 2016.

4. A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al., “A Reconfigurable Fabric
for Accelerating Large-Scale Datacenter Services,” IEEE Micro, vol. 35, no. 3,
pp. 10–22, 2015.

5. K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung,
“Accelerating Deep Convolutional Neural Networks using Specialized Hardware,”
Microsoft Research Whitepaper, vol. 2, 2015.

6. L. M. Russo, E. C. Pedrino, E. Kato, and V. O. Roda, “Image Convolution Pro-
cessing: A GPU versus FPGA Comparison,” in 2012 VIII Southern Conference on
Programmable Logic, pp. 1–6, March 2012.

7. P. Wang, J. McAllister, and Y. Wu, “Soft-core Stream Processing on FPGA: An
FFT Case Study,” in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 2756–2760, May 2013.

8. P. Wang and J. McAllister, “Streaming Elements for FPGA Signal and Image Pro-
cessing Accelerators,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, pp. 2262–2274, June 2016.

9. B. Bardak, F. M. Siddiqui, C. Kelly, and R. Woods, “Dataflow toolset for Soft-core
Processors on FPGA for Image Processing Applications,” in 2014 48th Asilomar
Conference on Signals, Systems and Computers, pp. 1445–1449, Nov 2014.

10. S. Wong and F. Anjam, “The Delft Reconfigurable VLIW Processor,” in Proc. 17th
International Conference on Advanced Computing and Communications, (Banga-
lore, India), pp. 244–251, December 2009.

VLIW-based FPGA Computation Fabric for Medical Imaging 9

11. J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW Ap-
proach to Architecture, Compilers, and Tools. 500 Sansome Street, Suite 400, San
Francisco, CA 94111: Morgan Kaufmann Publishers, 2005.

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Context
	Problem definition
	Design constraints
	Related work
	Thesis outline

	Processors for image processing
	Computation platform comparison
	-VEX analysis
	VLIW design philosophy
	-VEX design
	Instructions

	GPU analysis
	Parallelism
	GPU design
	Instructions

	Capability analysis
	Architecture
	Memory architecture
	Instruction Set Architecture
	Scheduling

	Image processing algorithms
	Analyzing algorithms
	Basic metrics and analysis
	Analysis for parallel algorithm execution

	General image processing algorithms overview
	Image processing algorithm classes and types
	Parallelizing image processing algorithms

	Medical imaging algorithms
	Adaptation of algorithm workload
	Contents
	Requirement analysis

	Designing the computation fabric
	Requirements
	Platform
	Processor architecture
	Instruction set architecture
	Memory architecture
	Memory type
	Memory hierarchy
	Caches

	Processor pipeline
	Multicore setup
	Peripherals
	Data handling
	Complete design

	Multi-fabric design
	Simulations

	Implementation
	ML605 implementation
	Processor architecture
	Processor pipeline
	Operating frequency
	Multi-fabric implementation

	VC707 implementation
	Processor architecture
	Processor pipeline
	Operating frequency
	Multi-fabric implementation

	Measurements and results
	Experimental setup
	Input dataset
	Used algorithm workload
	Processor configurations
	Resource utilization

	Evaluation results
	Varying memory sizes
	Streaming versus non-streaming
	Processor architecture considerations
	Image processing performance
	ML605
	VC707

	Conclusion and recommendations
	Conclusions
	Summary
	Main accomplishments and contributions

	Recommendations for future work

	Bibliography
	Publication

