
Memoryless RNS-to-Binary Converters for the {2n+1 − 1, 2n, 2n − 1}Moduli Set

Kazeem Alagbe Gbolagade1,2, George Razvan Voicu1, and Sorin Dan Cotofana1

CE Lab, Delft University of Technology, The Netherlands1 and UDS, Navrongo, Ghana2.

Abstract

In this paper, we propose two novel memoryless reverse
converters for the moduli set {2n+1 − 1, 2n, 2n − 1}.
The first proposed converter does not entirely cover the
dynamic range while the second proposed converter covers
the entire dynamic range. First, we simplify the Chinese
Remainder Theorem in order to obtain a reverse converter
that utilizes mod-(2n+1 − 1) operation. Second, we fur-
ther reduce the resulting architecture to obtain a reverse
converter that uses only carry save adders and carry prop-
agate adders. FPGA implementation results indicate that,
on average, the proposed limited dynamic range converter
achieves about 42% area reduction. However, the second
proposed converter provides only 29.48% area reduction
when compared with the most effective equivalent state
of the art converter. Both of the proposed converters also
exhibit a small speed improvement over the state of the art
equivalent converter.

Keywords-Residue Number System, Reverse Converter,
Chinese Remainder Theorem, Memoryless Converter.

I.. Introduction

The Residue Number System (RNS) is a non-weighted
number system that utilizes remainders to represent num-
bers. RNS has received considerable attention in arithmetic
computation and Digital Signal Processing (DSP) appli-
cations such as digital filtering, Fast Fourier Transform,
Discrete Cosine Transform, etc. This is due to the follow-
ing inherent properties of RNS: parallelism, modularity,
fault tolerance, and carry-free operations [1], [2]. Moduli
Selection and Data Conversion are the two most important
issues for a successful RNS utilization. Data Conversion
can be categorized into forward and reverse conversions.
The forward conversion involves converting a binary or
decimal number into its RNS equivalent while the reverse
conversion is the inverse operation, i.e., it involves con-
verting RNS number into binary or decimal. Relatively,
reverse conversion is more complex. Many algorithms have
been designed for performing the reverse conversion with

different choices of moduli sets, e.g., {2n, 2n− 1, 2n +1}
[2], {2n, 2n+1 − 1, 2n − 1} [3], [4]. Recently, the mod-
uli set {2n, 2n+1 − 1, 2n − 1} was proposed in [3] by
removing the modulus (2n + 1) from the 4-moduli set
{2n − 1, 2n, 2n + 1, 2n+1 − 1} proposed in [5]. This is
due to the fact that performing the modulo (2n + 1)-type
arithmetic is complex and degrades the entire RNS system
performance in terms of both area and delay.

In this paper, two new memoryless residue to binary
converters for the {2n+1 − 1, 2n, 2n − 1} moduli set
are proposed. First, we simplify the Chinese Remainder
Theorem (CRT) to obtain a reverse converter that uses
mod-(2n+1 − 1) instead of both mod-(2n+1 − 1) and
mod-(2n − 1) required by the converter in [3]. Second,
we further simplify the resulting architecture in order to
obtain a reverse converter that utilizes only Carry Save
Adders (CSAs) and Carry Propagate Adders (CPAs). We
resolve the dynamic range limitation problem and obtain
another reverse converter, which is practically evaluated
to be better than the one in [4]. Theoretically speaking,
the proposed converters are faster than the one in [4].
Experimentally, with no delay penalty, the proposed lim-
ited dynamic range converter achieves about 42% area
reduction, while the second proposed converter provides
only 29.48% area reduction.

II.. Proposed Algorithm

Given the RNS number (x1, x2, x3) for the moduli set
{2n+1 − 1, 2n, 2n − 1}, the proposed algorithm computes
the decimal equivalent of this RNS number based on a
further simplification of the well-known traditional CRT.

Theorem 1. Given the moduli set {m1,m2,m3} with
m1 = 2n+1 − 1,m2 = 2n,m3 = 2n − 1, the following
hold true:

|(m1m2)
−1|m3

= 1, (1)
|(m1m3)

−1|m2
= 1, (2)

|(m2m3)
−1|m1

= −4. (3)

Proof: It can be demonstrated by value substitution for

m1,m2,m3 that |1× (m1m2)|m3
= 1, |1×(m1m3)|m2

=
1, and |−4× (m2m3)|m1

= 1.

Theorem 2. The decimal equivalent of the residues
(x1, x2, x3) for the moduli set {2n+1 − 1, 2n, 2n − 1},
assuming X ∈ [0,M − (m3)

2), can be computed as
follows:

X = m2

⌊
X

m2

⌋
+ x2, (4)⌊

X

m2

⌋
= x3 − x2 +m3 |−4x1 + 2x2 + 2x3|m1

. (5)

Proof: Since (4) follows the basic integer division
definition in RNS, which is always true, we only need
to show the correctness of (5). The traditional CRT [1] for
length 3 moduli set is given by:

X =

∣∣∣∣∣
3∑

i=1

Mi

∣∣M−1
i xi

∣∣
mi

∣∣∣∣∣
M

. (6)

By substituting (1), (2), and (3) and applying m1 = 2m2−
1 and m1 = 2m3 + 1 into (6) we obtain:

X = |−4m2m3x1 + 2m2m3x2 −m3x2

+2m2m3x3 +m2x3|M . (7)

Applying |am1|m1m2
= m1 |a|m2

[1] and m3 = m2 − 1,
(7) becomes:

X = |m2x3 −m2x2 + x2

+m2m3 |−4x1 + 2x2 + 2x3|m1

∣∣
M

. (8)

Dividing both sides of the above equation by m2 and
taking the floor, we shall have:⌊

X

m2

⌋
= |x3 − x2

+m3 |−4x1 + 2x2 + 2x3|m1

∣∣
m1m3

. (9)

Equation (9) is the general expression of (5) and it holds
true for the entire dynamic range. The next stage of the
proof is to demonstrate that the corrective addition required
for the calculation of the mod-m1m3 can be avoided in
most of the cases.

By definition of modulus we have:

0 ≤ |−4x1 + 2x2 + 2x3|m1
≤ m1 − 1

∣∣ ·m3

0 ≤ m3 |−4x1 + 2x2 + 2x3|m1
≤ m3m1 −m3. (10)

Using the following inequalities and Equation (10)

0 ≤ x3 < m3 and 0 ≤ x2 < m2 = m3 + 1,

we have

−m3 ≤ −x2 ≤ x3 − x2 +m3 |−4x1 + 2x2 + 2x3|m1
<

< m3m1 −m3 +m3 = m3m1.

Thus one corrective addition of m1m3 is required in
order to obtain the correct result when x3 − x2 +
m3 |−4x1 + 2x2 + 2x3|m1

< 0.
Further, we show that if we slightly restrict the RNS

dynamic range, no corrective addition is required. For the
numbers that require corrective addition the following hold
true:

−x2 +m1m3 ≤
⌊
X

m2

⌋
< m1m3 | ·m2

M −m2x2 ≤ m2

⌊
X

m2

⌋
< M |+ x2

M − (m2 − 1)x2 ≤ X < M

M −m3m3 ≤ X < M.

Therefore, the numbers within the interval [0,M− (m3)
2)

require no corrective addition and thus, (5) holds true.
The hardware required for the implementation of (5)

can be further reduced by using the following properties
from [4]:

Property 1: Modulo (2s−1) multiplication of a residue
number by 2t, where s and t are positive integers, is
equivalent to t-bit circular left shifting.

Property 2: Modulo (2s − 1) of a negative number is
equivalent to the one’s complement of the number, which
is obtained by subtracting the number from (2s − 1).

Equation (5) can be directly rewritten as:⌊
X

m2

⌋
= x3 − x2 + 2nA−A, (11)

A = |u1 + u2 + u3|2n+1−1 . (12)

For simplicity sake, let us represent (11) by the following:⌊
X

m2

⌋
= B1 +B2 +B3, (13)

B1 = −x2, B2 = 2nA+ x3, B3 = −A. (14)

Let the binary representations of the residues be the
following:

x1 = (x1,nx1,n−1 · · ·x1,0), x2 = (x2,n−1x2,n−2 · · ·x2,0),

x3 = (x3,n−1x3,n−2 · · ·x3,0).

In (12), u1, u2, and u3 are represented as follows:

u1 =
∣∣−22x1

∣∣
2n+1−1

= (x1,n−2 · · ·x1,0x1,nx1,n−1︸ ︷︷ ︸
n+1

),

u2 = |2x2|2n+1−1 = (x2,n−1x2,n−2 · · ·x2,00︸ ︷︷ ︸
n+1

),

u3 = |2x3|2n+1−1 = (x3,n−1x3,n−2 · · ·x3,00︸ ︷︷ ︸
n+1

).

Assuming that A has the following binary representation:

A = (anan−1 · · · a1a0︸ ︷︷ ︸
n+1

),

then B2 will be given by

B2 = (anan−1 · · · a0x3,n−1x3,n−2 · · ·x3,0︸ ︷︷ ︸
2n+1

). (15)

B1 and B3 must have the same number of bits, i.e., (2n+
1)-bits, as B2 and are represented as:

B1 = 111 · · · 11︸ ︷︷ ︸
n+1

x2,n−1x2,n−2 · · ·x2,0︸ ︷︷ ︸
n

, (16)

B3 = 111 · · · 11︸ ︷︷ ︸
n

anan−1 · · · a0︸ ︷︷ ︸
n+1

. (17)

III.. Handling The Dynamic Range Limitation
Problem

In this section, we resolve the dynamic range lim-
itation problem. If (5) produces a negative result,
then |−4x1 + 2x2 + 2x3|m1

= 0 since m3 ≥ x2.
Thus, (5) is negative if and only if x2 > x3 and
|−4x1 + 2x2 + 2x3|m1

= 0. For this case, since it has
been proved in Section II that only one corrective addition
of m1m3 is required, (9) can be written as:⌊

X

m2

⌋
= x3 − x2 +m1m3

= x3 − x2 + 22n+1 − 2n+2 + 2n + 1. (18)

By using the following notations:

B4 = −x2 = 111 · · · 11︸ ︷︷ ︸
n+2

x2,n−1x2,n−2 · · ·x2,0︸ ︷︷ ︸
n

,

B5 = x3 + 22n+1 − 2n+2 + 2n + 1

= (100 · · · 00︸ ︷︷ ︸
n−1

)(101x3,n−1x3,n−2 · · ·x3,0︸ ︷︷ ︸
n+3

), (19)

equation (18) may be simplified as follows:⌊
X

m2

⌋
= B4 +B5. (20)

IV.. Hardware Realization

The hardware implementations of the proposed reverse
converter, which does not cover the entire dynamic range,
namely CI is based on (12) and (13). In Figure 1, u1, u2,
and u3 are added by CSA1 with End Around Carry (EAC)
producing s1 and c1. Next these must be added modulo
2n+1 − 1 in order to obtain A. To speed up this addition,
we utilize anticipated computation. We compute s1 + c1

(n+1)-bit CSA1

u1 u2 u3

(n+1)-bit CPA1 (n+1)-bit CPA20 1

s1 c1

0 1

(2n+1)-bit CSA2

s2 s3

s5 c5

(2n+1)-bit CPA3 1

MSB of X LSB of X

x2

B1B2B3

cout

x3

Concatenation -x2

A

Figure 1. Proposed converter CI

for both cin = 0 and cin = 1 and we select the right result
with a MUX. B2 is easily obtained by concatenating the
operand x3 with the result of n-bit left shift of A. This
concatenation does not require any hardware resources.
The three operands B1, B2, and B3 are added using CSA2
with EAC. It should be noted that in order to make B1

and B3 (2n + 1)-bit numbers, 1’s are appended to the
result of complementations, as given in (16) and (17).
Thus, the most significant (n + 1)-bits from CSA2 are
reduced to half adders (HAs). Moreover, since these half
adders all have two inputs equal to 1, the final one’s
complement adder will always generate an EAC. Taking
this into consideration the one’s complement adder can be
reduced to a normal CPA3 with a constant carry-in equal
to 1. The final result, which is computed based on (4)
is obtained just by a shift and a concatenation operation
with no computational hardware. Given that in reality, the
numbers that fall outside the range [0,M − (m3)

2) may
be of interest, we resolve the dynamic range limitation
problem and propose a second converter namely CII based
on (12), (13), and (20). The hardware implementations of
CII, which is valid for the entire dynamic range [0,M−1],
is depicted in Figure 2.

V.. Performance Evaluation

In order to evaluate the performance of the proposed
converters, we compare them with the best state of the art
equivalent converters proposed in [4]. The result of this

(n+1)-bit CSA1

u1 u2 u3

(n+1)-bit CPA1 (n+1)-bit CPA20 1

s1 c1

0 1

(2n+1)-bit CSA2

s2 s3

s5 c5

(2n+1)-bit CPA3 1

MSB of X LSB of X

x2

B1B2B3

cout

x3

Concatenation -x2

A

(2n+2)-bit CSA3

(2n+2)-bit CPA4

B4

1

B5

s4 c4

> =0

x2 x3

01

Figure 2. Proposed converter CII

comparison is presented in Table I. In the table, we have
the converters CI and CII as the converters proposed in
this paper and CIII, the one in [4]. The theoretical results
indicate that proposed converter CI outperforms CIII in
all terms and Converter CII, which is valid for the entire
dynamic range, maintains almost the same lower delay as
CIII at an additional hardware cost.

Table I. Area-delay comparisons
Converters FA HA Delay

CIII 5n+ 3 2n+ 1 (4n+ 6)tFA + tMUX

CI 5n n+ 4 2ntFA + (n+ 2)tHA + tMUX

CII 6n− 1 n+ 5 2ntFA + (n+ 2)tHA + 2tMUX

We also carried out an experimental assessment by im-
plementing the proposed converters and CIII using Xilinx
ISE 10.1 software on a Xa3s200-4vqg100 FPGA. The
results obtained after design place and route are given in
terms of the number of FPGA slices and input-to-output
propagation delays (in nano seconds). Table II presents the
results for various dynamic range requirements (different
values of n). Contrary to the theoretical analysis, the
results indicate that, on average, the proposed converter
CI reduces the area by about 42% when compared with
the current most effective CIII converter, with a small
improvement in the speed of conversion. However, the
proposed full-range converter CII is about 29.48% smaller,
still with some speed improvement over CIII, but lower
than the one achieved by CI.

Table II. Implementation results: area-delay
comparison

n 3 4 5 8
CI Area 22 27 34 57
CII Area 30 35 44 74
CIII Area 44 43 55 94

CI Delay (ns) 18.401 21.276 25.621 33.604
CII Delay (ns) 19.482 21.429 25.273 34.111
CIII Delay (ns) 22.143 22.331 24.126 34.419
CI Area-Delay 404.822 574.452 871.114 1915.428
CII Area-Delay 584.46 750.015 1112.012 2524.214
CIII Area-Delay 974.292 960.233 1326.930 3235.386

VI.. Conclusions

In this paper, we proposed two new memory-
less residue to binary converters for the moduli set
{2n+1 − 1, 2n, 2n − 1}. First, we simplified the CRT to
obtain a reverse converter that requires mod-(2n+1−1) in-
stead of both of mod-(2n+1−1) and mod-(2n−1) required
by state of the art converter. Second, we further reduced
the resulting architecture in order to obtain a reverse con-
verter that utilizes only CSAs and CPAs. We resolved the
dynamic range restriction problem and proposed another
converter, which is valid for the entire dynamic range. The
two proposed converters have been demonstrated to have
lower area cost than the most effective equivalent state of
the art converter with no delay penalty.

References

[1] Y. Wang, “Residue-to-binary converters based on new chi-
nese remainder theorems,” IEEE Trans. Circuits and Syst. II,
Analog Digit. Signal Process., vol. 47, no. 3, pp. 197–205,
Mar. 2000.

[2] M. A. Y. Wang, X. Song and H. Shen, “Adder based residue
to binary number converters for {2n+1, 2n, 2n−1},” IEEE
Trans. on Signal Processing, Vol. 50, pp.1772-1779, July,
2002.

[3] P. Mohan, “Rns-to-binary converter for a new three-moduli
set {2n+1 − 1, 2n, 2n − 1},” IEEE Trans. on Circuits
and Systems-II: Express briefs, Vol. 54, No.9, pp. 775-779,
September, 2007.

[4] S. Lin, M. Sheu, and C. Wang, “Efficient vlsi design of
residue to binary converter for the moduli set {2n, 2n+1 −
1, 2n−1},” IEICE Trans. INF. and SYST., Vol. E91-D, No.7,
pp. 2058-2060, July, 2008.

[5] A. Vinod and A. Premkumar, “A memoryless residue to
binary converter for the 4-superset {2n−1, 2n, 2n+1, 2n+1−
1},” Journal of Circuits, Syst. and Computers, Vol. 10, pp.
85-99,, 2000.

