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This thesis describes the design and implementation of a VLIW processor
and associated caches based on the ρ-VEX concept. An ρ-VEX processor
must be dynamically (runtime) reconfigurable to behave as a single large
processor, two medium-sized processors, or four small processors. This
allows a scheduler to optimize for energy and/or performance based on
runtime information. The key challenge lies in translating this concept into
actual working hardware. Note that reconfiguration must happen quickly
for the increase in performance to outweigh the reconfiguration overhead.
To accomplish this goal, a new processor and corresponding cache organi-
zation had to be developed, verified, and debugged. The dynamic reconfig-
uration concept used in the ρ-VEX processor is unique and, therefore, the
following key components had to be designed: (1) a dynamic instruction
cache that can service a single processor or multiple processors depending
on the core configuration, (2) a dynamic data cache with coherency since we
are dealing with multiple cores, (3) a reconfiguration control unit that syn-
chronizes running threads before reallocating the computational and cache
resources, and (4) a mechanism that allows state restoration after handling

a trap. State restoration must be possible even if the configuration changed while the trap was being handled. This
is an issue, because it is possible for a trap to interrupt a thread in intermediate states that would not normally occur
in wider configurations. Reconfiguration takes only six clock cycles if there are no stalls from the memory subsystem,
so overhead should be negligible.
On top of the base design of the dynamic ρ-VEX processor, the following features were implemented: (1) variable-
length instruction support to decrease instruction cache pressure, (2) a debugging peripheral and accompanying
tools, and (3) a trace unit for offline debugging and cache performance logging. Furthermore, many parameters of
the processor can be selected at design-time using generics, such as the issue width, the degree of reconfigurability,
and the layout and availability of the computational resources. Additionally, the pipeline configuration, instruction
set encoding, and control register functionality can be configured using a VHDL code generator.
This work is intended to enable future research and development in dynamic processor design. It has already proven
its value, as three MSc projects used the current design as a starting point, and four conference papers were published
with results generated based on the current design. Finally, the processor will also serve as the basis for an ASIC
design that is intended to be used in robotics and space applications.
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Introduction 1
This thesis documents a complete redesign of the ρ-VEX (reconfigurable VEX) imple-
mentation created by [3] to support dynamic (runtime) reconfiguration, precise traps,
debugging, and variable-length bundles. In addition, a compatible reconfigurable cache
is designed and implemented. This thesis is intended for the scientific reader, who is
expected to be interested primarily in the new components introduced in this version of
the ρ-VEX processor, which design choices were made in their development, and how
they affect the performance and usability of the system.

If you came to this thesis to learn how to use the created ρ-VEX design, refer to the
ρ-VEX user manual instead. The manual is intended to be kept in sync with the ρ-VEX
as it is developed further, something that is impossible with a thesis. The appropriate
version of the ρ-VEX user manual should come with its source distribution. In addition,
the manual as it was at the time of writing this thesis is included as Appendix C.

The remainder of this chapter serves to further introduce the ρ-VEX project and
this thesis. The first section intends to give context to the ρ-VEX project as a whole.
The second section describes the current status of the ρ-VEX project itself, and the
shortcomings of the current processor implementation. The third section specifies the
problem statement and boundary conditions, as well as the approach taken to solve the
stated problem. Finally, the last section provides an overview of structure of this thesis.

1.1 Context

In this age of battery-powered devices and sustainability, the market demands ever
smarter and more energy-efficient systems. One way to achieve that is to use smaller
transistors, but as CMOS gates approach thicknesses of just one or two atoms, this
approach is becoming ever more difficult.

Parallelization is a different approach. Put simply, a processor capable of doing more
than one addition in one instruction can be more energy efficient than a processor that
can only do one addition at a time, simply because instruction decoding and other control
logic do not require duplication. Thus, per useful addition, the parallel processor uses
less energy.

Unfortunately, the previous example only holds if the application running on the
processor can make use of the multiple additions. If it cannot, the idle power consumption
of the additional, unused functional units is wasted, and detracts from the efficiency.
Therefore, these types of processors are typically engineered for a specific purpose, such
as signal processing. In that specific case, the processor is referred to as a digital signal
processor (DSP). They are usually part of a larger system, where a conventional processor
performs the tasks that do not map well to the otherwise faster and more energy efficient
DSP.
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2 CHAPTER 1. INTRODUCTION

The ρ-VEX reconfigurable very large instruction word (VLIW) architecture, devel-
oped by the Computer Engineering group of Delft University of Technology, aims to
perform well for both highly parallel algorithms and general purpose computing. This
is accomplished by its ability of functioning as a single, highly parallel processor, or
distributing its many functional units among several threads, similar to a multi-core con-
ventional processor. In other words, the ρ-VEX can adapt to instruction level parallelism
(ILP) or thread level parallelism (TLP).

Note that by ‘reconfiguration’ we do not mean loading a different bitstream into a
field-programmable gate array (FPGA). All reconfigurable features are described as such
in the hardware description. Plans exist to construct an application-specific integrated
circuit (ASIC) design as part of future work.

1.2 Current state of the ρ-VEX project

Two softcore processors that partially implement the ρ-VEX concept already exist. [4] is
only design-time configurable, whereas [3] only allows reconfiguration between programs,
as the processor state is corrupted by the reconfiguration process. A processor that fully
implements the ρ-VEX concept is desired.

Furthermore, in order to advance the research into the ρ-VEX architecture efficiently,
a flexible hardware design is needed to facilitate design space exploration for a specific
application. Simultaneously, ever more complex features are needed to provide a plat-
form capable of running industry-standard benchmark suites, in order to allow a fair
comparison to be made with current commercial processing solutions.

In particular, one of the long-term goals of the ρ-VEX project is to port a recent
version of the Linux kernel to the ρ-VEX architecture. An effort to this end has already
been made in 2014 [5]. However, as the processor lacked a memory management unit
(MMU), this Linux port also lacked many features. Furthermore, the trap controller
designed for the ρ-VEX in that work is not ‘precise’, meaning that a trap does not
necessarily interrupt the instruction stream exactly when the trap occurs. Specifically,
a trap does not cause a pipeline flush, causing instructions after the trapped instruction
that have already been issued to still complete. This makes an MMU an impossibility, as a
page fault trap has to be precise. Furthermore, the debug system (also implemented in [5])
can only interrupt the processor by merely disabling the clock signal, as opposed to doing
a pipeline flush first. This means that several subsequent instructions are interrupted at
various pipeline stages, making it difficult to determine the state of the program.

Another problem with the current ρ-VEX is the lack of a cache tailored specifically to
its reconfigurable nature. Before this work, the level one cache from the CARPE project
[6] had been ported to interface with the ρ-VEX processor. This cache has two major
limitations. First and most obviously, it is not designed for a runtime-reconfigurable
processor. This requires the data cache and parts of the instruction cache to be duplicated
for each thread that the ρ-VEX can run at once, with the duplicated resources going to
waste when fewer threads are running with more computational resources. There is also
no way to flush the cache, and the cache is not coherent. This makes it impossible to
have communicating threads.
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1.3. PROBLEM STATEMENT AND METHODOLOGY 3

Finally, there is the current instruction fetch unit, which only supports fixed-length in-
structions. ρ-VEX instructions can be up to 32 bytes in size, encoding up to eight parallel
operations (syllables), depending on the design-time configuration. However, programs
usually do not have enough parallelism to be able to use all these operations all the
time, resulting in no-operation (NOP) syllables having to be inserted to get this uniform
instruction width. This waste of cache, memory, and bus resources leads to significant
performance degradation, making it difficult to compare the ρ-VEX with commercial
processors.

1.3 Problem statement and methodology

In this work, we will address these shortcomings by doing a full redesign of the ρ-VEX
processor. This gives rise to the following research question.

How to design and implement a dynamically reconfigurable and parameteriz-
able VLIW processor?

In order to address the problems with the current ρ-VEX processor, the following re-
quirements were identified for the new implementation.

1. The design must be compatible with the current ρ-VEX compiler toolchain.

2. The design must be dynamically (runtime) reconfigurable.

3. The design must support precise traps.

4. The design must support debugging.

5. The design must support variable-length instructions.

6. The design must include a coherent, dynamically reconfigurable cache.

It should be noted that optimization for area, speed or energy are beyond the scope of
this project. Instead, the focus is on design flexibility, so the ρ-VEX can be efficiently
used in future research projects.

The following tasks will be performed to meet these requirements and answer the
research question.

1. Investigate the current ρ-VEX design to determine which parts can be reused for
the new design.

2. Identify which parts of the processor are affected by the identified requirements, in
particular dynamic reconfiguration, and design them accordingly.

3. Implement the processor on an FPGA, without using FPGA-specific reconfiguration
techniques, to maintain ASIC toolchain compatibility.

4. Verify the functionality of the processor using conformance tests in simulation and
benchmarks in hardware.
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4 CHAPTER 1. INTRODUCTION

1.4 How to read this thesis

Let us provide an overview of the contents of the remaining parts of this thesis and their
intended audiences.

Chapter 2 provides background information. Section 2.1 discusses FPGA theory and
the features of the ML605 and VC707 FPGA development boards. Section 2.2 details
architecture-agnostic processor design theory, with the exception of Section 2.2.6, which
describes the ρ-VEX architecture specifically, and lists the components of the current
design that will be reused in the processor described in this work. Finally, Section 2.3
describes memory hierarchy, focussing on caches in particular. If the reader is already
familiar with these generic topics, everything but Section 2.2.6 of Chapter 2 can be
skipped. Note that an extensive glossary is provided starting on page 121, which may
be referenced instead of Chapter 2 if a word is not clear. If you are reading this thesis
digitally, words used in the text that occur in the glossary are typically hyperlinked to
the glossary entry.

Chapter 3 lists and defends the major design choices made during the design of the
processor. It can be regarded as the core of this thesis.

Chapter 4 details the implementation of the various components of the implemented
processor (Section 4.2), cache (Section 4.3), and supporting components (Sections 4.4
through 4.6). While an effort was made to make it possible to read the chapter linearly, it
is intended more so as reference material for researchers who wish to understand or make
modifications to the source code, or reimplement parts of it. Of particular importance
in these cases are Figures 4.1 and Figure 4.4, which present overviews of the structure
and datapath of the processor respectively, as well as Figure 4.11, which presents the
structure of the cache.

Chapter 5 describes the method taken to verify the functionality and evaluate the
performance of the implemented system. The results of these experiments are also listed
and discussed.

Chapter 6 summarizes the work and lists recommendations for future work.
Appendices A and B contain copies of two papers that were co-authored by the author

of this thesis. The first paper, ‘Multiple Contexts in a Multi-ported VLIW Register File
Implementation’ [7], discusses the implementation of the general-purpose register file in
detail. The second paper, ‘A Sparse VLIW Instruction Encoding Scheme Compatible
with Generic Binaries’ [8], discusses the approach taken to implementing support for
variable-length instructions.

Appendix C contains a copy of the ρ-VEX user manual at the time of writing. It is
intended primarily for researchers who will be using the implemented processor for their
work. The manual is included as an appendix as it is referenced on various occasions,
primarily in Chapter 4, while being unpublished at the time of writing. In consideration
of the environment, it may not be included if you have received this thesis in print. Note
that the page numbers of the user manual are prefixed with the appendix letter to avoid
confusion. In particular, note that the bibliography at the end of this document belongs
to the user manual; the bibliography of this thesis starts on page 117.
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Background 2
In this chapter, we present the theory required to design and implement a processing
system. Examples of contemporary existing processor architectures are given to comple-
ment the theory. We start with background information about FPGAs, an essential tool
in the verification process of any hardware design. The second section discusses processor
design. The third section deals with the supporting components of a processing system,
in particular the memory subsystem and caches.

2.1 FPGAs

Field-programmable gate arrays (FPGAs) are integrated circuits (ICs) that allow their
functionality to be programmed into them after production, i.e., ‘in the field’. This is
similar to processors, but instead of loading software, a hardware specification of a digital
circuit is loaded. These hardware specifications are similar to those used to specify
application-specific integrated circuits (ASICs), allowing ASIC designers to test their
design before taking it into production.

However, field-programmable gate arrays (FPGAs) are more than just an ASIC design
tool. As FPGAs can be mass produced, they can be cheaper than ASICs for low volume
products. In addition, an FPGA can be updated after a problem is found with the
design, similar to a firmware update; something that is not possible with an ASIC.
This also makes FPGAs very suitable for hardware development and research in general,
regardless of whether an ASIC is the goal. The main drawback of an FPGA compared to
an ASIC is that they are relatively slow and power hungry; after all, they need to include
all the logic needed for any hardware design. However, as speed and power consumptions
are not relevant in a prototype design, an FPGA shall be used in this project to develop
the new components for the ρ-VEX processor.

2.1.1 Theory of operation

In order to understand how an IC can be designed such that it can support any digital
circuit, consider that any digital circuit can be constructed from just NAND or NOR
gates [9, pp. 47-49]. In other words, a sufficiently large array of either of these gates
with configurable connections between them can form any logic circuit. To visualize how
such a configurable interconnect is possible, consider the most extreme case, where any
gate input can be connected to any internal gate output and any external input pin.
Notice that this requirement simply specifies a multiplexer, of which the select input is
programmable. The same thing can be achieved for the outputs of the circuit.

While the preceding satisfies the requirements for an FPGA, it is not practical to
implement them in this way. In practice, the interconnect does not allow every input to

5



6 CHAPTER 2. BACKGROUND

be connected to any output directly, as this would require excessive routing resources.
Also, the basic logic gates are replaced with more complex configurable logic blocks
(CLBs).

A CLB typically contains a number of lookup tables (LUTs), registers and carry
logic. A LUT is simply a one-bit wide asynchronous memory that can be loaded when
the design is programmed into the FPGA, with its read address inputs exposed to the
programmable interconnect. This allows any n-input logic gate to be implemented using
an n-input LUT, i.e., a LUT with 2n bits of memory. The registers in a CLB allow
sequential logic to be implemented much more efficiently than if LUTs were to be used.
Similarly, the carry logic allows adders to be implemented more efficiently.

In addition to CLBs, FPGAs typically have blocks that are hardwired to fulfill specific
purposes as well, such as memories or multipliers. Using these blocks when possible is
significantly more efficient than using CLBs.

2.1.2 Softcore processors

Sometimes it makes sense to instantiate an entire processor on an FPGA. For example,
high level control functions that do not need hardware acceleration but still need to be
tightly coupled with the hardware may need to be performed. Two examples of softcore
processors are the LEON3 and the MicroBlaze.

The LEON3 is an open source softcore by Aeroflex Gaisler implementing the SPARC
V8 instruction set architecture. It is part of the GRLIB IP library [10], a collection
of hardware description language (HDL) components. This library is used within this
project to provide the ρ-VEX processor with a set of peripherals and a memory controller.
In contrast to the LEON3, the MicroBlaze is a closed source processor. It is available as
part of the synthesis toolchain for Xilinx FPGAs. Both processors have a 32-bit RISC
architecture.

2.1.3 Hardware description languages

A hardware design is normally specified using an HDL. Examples of HDLs are VHDL,
Verilog and SystemC. Each of these, in their own way, allow hardware to be described
using processes, signals, and entities1.

A process is a piece of sequential code that operates on a set of input signals in order
to drive a set of output signals. When the hardware is generated from a process, loops
are unrolled and conditional assignments are transformed into multiplexers, such that
the generated hardware generates the same values for a given set of input values as the
sequential code would.

A signal represents a physical wire. Unlike a variable, a signal cannot be assigned a
value to immediately, similar to how the voltage on a wire cannot change instantaneously.
Instead, when a value is assigned to a signal, it will only assume the new value some time
in the future.

1Wherever there are differences in terminology between these languages, the VHDL terms shall be
used.
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An entity fulfills a similar role in hardware as a class or function does in software,
in that it allows a system to be specified hierarchically. Each entity represents a block
of logic that consists of a number of processes and/or other entities. When an entity is
used, it is said to be instantiated. Entities have an interface consisting of zero or more
input, output or tri-state signals and zero or more generics. A generic is a constant value
specified when the entity is instantiated, serving as a configuration parameter.

In an HDL design, one entity must be specified to represent the system as a whole.
This is called the toplevel entity. The inputs and outputs of this entity represent the
physical inputs and outputs of the FPGA design.

The programming file for an FPGA that determines the functionality is called a
bitstream. The process of generating a bitstream from HDL code consists of several
steps. The first step is called static elaboration. During this step, constant propagation
is performed. The second step is synthesis. Here, each process is converted into a
logic block. These logic blocks are then interconnected using signals in order to form a
circuit description. The next step is mapping, during which the elements in the circuit
description are mapped to the resources available within the target FPGA. Finally, there
is placement and routing (PAR). During this step, the mapped components and signals
are laid out onto the FPGA fabric. Aside from the HDL code, this step also takes a
set of constraints as an input. Most important of these are timing constraints, which
specify, among other things, the maximum delay for combinatorial signals from register
to register, thereby specifying the minimum clock frequency at which the design must
operate. The synthesis tools will attempt to meet these requirements, and iteratively
change the placement and/or routing until the constraints are met or they are found to
be impossible.

Debugging a hardware description is done by means of simulation, as one cannot for
example simply pause execution of a piece of hardware to see what line of code is being
executed when something goes wrong. An HDL simulation consists of the design files
for the unit under test (UUT) and a testbench. The testbench generates the UUT input
signals that cause the UUT to perform some operation that is to be tested. ModelSim
by Mentor Graphics is an example of a software package that allows HDL designs to be
simulated.

There are different levels of simulation accuracy. Simply simulating the HDL code
directly is called behavioral simulation and is the least accurate, but simulates the fastest.
The other levels are post-synthesis and post-PAR simulation. For post-synthesis simu-
lation, the synthesized circuit is converted back to HDL and simulated. This allows the
designer to ensure that the synthesizer is synthesizing the sequential process descriptions
as expected, at the cost of some simulation performance. Post-PAR simulation is similar,
but here, an HDL model of the actual FPGA fabric is simulated, including its timing
behavior. This is the most accurate simulation model, but it is also the slowest. Further-
more, in post-synthesis as well as post-PAR simulation, it is often difficult to determine
what is actually going on, due to the hardware optimizations performed by the synthesis
tools.
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8 CHAPTER 2. BACKGROUND

2.1.4 ML605 and VC707 development boards

Two FPGA development boards are used in this project to verify the hardware. These
are the ML605 [11] and VC707 [12] development boards, produced by Xilinx, depicted
in Figure 2.1. These boards have a Virtex-6 XC6VLX240T-1FFG1156 and a Virtex-
7 XC7VX485T-2FFG1761C FPGA respectively. These boards have various peripherals
outside of the FPGA that may be used in the design. In this project, only the DDR3
memory (512 MiB on the ML605, 1 GiB on the VC707) and the USB to serial convertor
(available on both boards) are used.

(a) ML605 (b) VC707

Figure 2.1: The FPGA development boards that are used in this project.

Both FPGAs have similar CLBs [13] [14]. Each CLB contains two so-called slices,
each containing four 6-input LUTs, eight registers and a 4-bit long carry chain, that can
be cascaded with neighboring slices. Some of the slices also allow the LUT configuration
memory to be used as a variable depth shift register of up to 64 bits deep, or as a 64-bit
RAM with independent read and write ports. The latter is called distributed RAM.

In addition to CLBs, both FPGAs contain block rams (BRAMs). Each BRAM is 36
kib in size, and has two fully independent synchronous read/write ports. These blocks
are used for bulk on-chip memory storage. Furthermore, they contain DSP slices, which,
among other things, contain a 25x18 bit multiplier each.

The main difference between the Virtex-6 and Virtex-7 series is the speed and density.
More specifically, the Virtex-7 series is marketed to have a 2x improvement in system
performance compared to the the Virtex-6 series [2]. Table 2.1 summarizes the logic
resources of the FPGAs on the ML605 and VC707 boards.

Table 2.1: Comparison of the FPGA logic resources on the ML605 and VC707 FPGA
development boards. [1] [2]

Board Family Slices BRAMs DSP slices
ML605 Virtex-6 37,680 416 768
VC707 Virtex-7 75,900 1,030 2,800

Xilinx maintains its own synthesis toolchains for its products. The toolchain that will
be used in this project is Xilinx ISE 14.7. It has recently been superseded by Vivado,
but Vivado does not support sub-7-series FPGAs [15].
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2.2 Processor architecture

To review the processor architecture concepts needed to understand this thesis, let us
define a basic processor. A processor is a device that takes instructions from some instruc-
tion memory and executes them one by one. The address that the current instruction
is loaded from is called the program counter (PC). The PC is stored in a register that
is automatically incremented after the current instruction is completed, in order to load
the subsequent instruction.

Most instructions perform operations on data. The ways in which data can be stored
vary from processor to processor, but typically, it is stored in the data memory or in a
register file. The data memory is large and slow, while the register file can always be
accessed directly but is small. The register file is used for values that are currently being
operated on, while the data memory stores all other data.

In a reduced instruction set computer (RISC), instructions that perform some kind
of operation on data, such as arithmetic instructions, can usually only operate on the
register file. In order to access the data memory, load and store instructions need to be
used, which can only copy data from the data memory to the register file or vice versa.
This is called a load-store architecture.

Most processors also include an instruction that does nothing, called a no-operation
(NOP) instruction. NOP instructions can be used for padding or delaying execution for
a short amount of time.

Another type of instruction is a branch instruction. A branch instruction does not
modify any data, but instead modifies the next PC. This allows constructs such as loops,
conditional statements and function calls to be encoded in the program.

Branch instructions can be conditional or unconditional. A conditional branch only
affects the next PC if some data-dependent condition is true, whereas an unconditional
branch, also called a jump instruction, always sets the next PC. If the condition of a
branch instruction is true, the branch is said to be taken. If the condition is false, the
branch is not taken. The instruction that is to be executed after a conditional branch is
taken, or after an unconditional branch is executed, is called the branch target.

A special kind of jump instruction called a call instruction also stores what the next
PC would have been in what is known as the link register. This is used for function calls;
the link register contains the return address of the function call. A return instruction is
placed at the end of every function, which is a jump instruction that sets the next PC to
the contents of the link register.

So far, we have referred to the data and instruction memories as being separate.
While this is possible and may be preferable depending on the application, there is no
fundamental requirement for this distinction. In particular, when a large amount of
memory is needed, it makes sense to use a single large external memory for instructions
as well as data.

2.2.1 The stack

If a function needs to call another function, the contents of the link register must first
be saved somewhere. Otherwise, the return address is lost, as any call will modify the
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contents of the link register. Subsequently, before the return instruction, the saved value
must be restored. In fact, any data local to a function may need to be saved and restored,
in particular if a function can call itself. The data structure used to accomplish this is
called the stack [16, pp. 114-116].

A stack is a last-in first-out buffer. That is, when the values A and B are saved to
(‘pushed onto’) the stack, the first value that is read (‘popped’) from the stack is B, and
the next value is A. This is exactly what we want: it does not matter how many values
the called functions push and pop to and from the stack, as long as the functions push
and pop an equal amount of values. If a function pushes a different number of values as
it pops, or otherwise affects the stack space of other functions, stack corruption occurs.

A special register called the stack pointer points to the top of the stack. Typically,
the stack pointer is initialized to the end of the data memory allocated for an application
and is decremented as the stack grows in size. That is, the stack pointer is decremented
before a value is pushed to allocate space, and incremented after a value is popped to
free space [16, pp. 116].

In addition to the stack pointer register, a frame pointer register is sometimes also
needed. The frame pointer is set to the stack pointer at the start of a function, and
when the function returns, the stack pointer is set to the frame pointer. This allows the
function to allocate an arbitrary amount of data for local variables without needing to
remember how much it actually allocated for when the stack pointer needs to be restored.

2.2.2 Timing and pipelining

So far, the timing of how instructions are processed has not been discussed. Starting at
the basics again, the naive solution is to specify that each instruction executes completely
in exactly one clock cycle. The next PC can then be fed directly to the input of the PC
register.

While this solution is valid, it is not very efficient, as the clock period has to be long
enough to allow the most complex instruction to execute. This problem can be solved
by making the number of clock cycles per instruction dependent on the instruction.
That way, the clock period is no longer bound by the slowest instruction, but can be
chosen based on the delay of the most common instructions only, while the more complex
instructions are given multiple cycles to complete.

There is more performance to be gained. Let us divide the processing of an instruc-
tion into three stages, instruction fetch (IF), execute (EX) and writeback (WB). In IF,
the instruction memory at the current PC is read, in EX, the actual processing of the
instruction is performed, and in WB, the results of the instruction are written back to
the register file. Let us now specify that the IF and WB stages are executed in their
own cycle, and that EX may take one or two cycles, depending on the complexity of the
instruction. Figure 2.2 depicts what the timing will look like for three instructions, of
which the second instruction spends two cycles in the EX stage.

Let us now adjust the timing such that a new instruction is started (‘issued’) every
cycle, instead of waiting for the previous instruction to complete. In addition, let instruc-
tions that only need one EX cycle use the worst case amount of cycles. The processor is
now considered to be pipelined. The new timing is depicted in Figure 2.3.
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Cycle 1 2 3 4 5 6 7 8 9 10

Insn. 1 IF EX0 WB
Insn. 2 IF EX0 EX1 WB
Insn. 3 IF EX0 WB

Figure 2.2: Example timing diagram for a processor without a pipeline.

Cycle 1 2 3 4 5 6

Insn. 1 IF EX0 EX1 WB
Insn. 2 IF EX0 EX1 WB
Insn. 3 IF EX0 EX1 WB

Figure 2.3: Timing diagram for the same situation as depicted in Figure 2.2, but executed
with pipelining.

A different way to obtain this result is to start with a processor that executes every
instruction in exactly one cycle, and then simply place registers between every execution
stage. This method illustrates that pipelining a processor does not in principle require
additional datapath hardware aside from registers. There are, however, problems that
come with pipelining that need to be dealt with in some way. This may require additional
control logic.

Computing the next PC One of these problems is determining the next PC. So far,
we have only considered normal instruction flow without branches. That means that the
computation of the next PC simply consists of adding the size of the current instruction
to the current PC. We will refer to this value as PC+1. Notice that if the length of
instructions is not fixed and depends on the instruction itself, this seemingly simple
computation already depends on the fetched and decoded instruction. It gets even worse
for conditional branch instructions and jump instructions with a non-constant branch
target, as the computation now also depends on data and possibly the execution result
of an instruction.

For the remainder of this thesis, the assumption shall be made that fetching an
instruction and determining its length can be done in a single cycle. If this assumption
is violated, the instruction fetch logic and instruction encoding becomes vastly more
complicated, as the next PC must then be predicted somehow, and mispredictions need
to be handled in some way. Without such logic, the processor would only be able to fetch
and issue a new instruction every nth cycle, in which case simply decreasing the clock
frequency is a more energy efficient solution.

Thus, only the problem of dealing with branches remains. For our example processor,
consider the case where the branch target and condition are determined at the end of
the EX0 stage. Now, let the next PC be the branch target from EX0 if the branch
instruction in EX0 is taken, and the PC+1 value computed in the IF stage otherwise.
Figure 2.4 shows the timing of an example program with a branch instruction that follows
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these rules. In the example, the desired program execution is instruction 1, followed by
instruction 2, which then branches to instruction 8. Observe that instruction 3 is issued
regardless of the branch, as the branch target and condition are not yet known when it is
issued. In order to still execute the code in the intended order, instruction 3 needs to be
disabled. The additional logic required is called pipeline flushing logic. In this particular
example, the pipeline is said to be flushed until EX0 in stage three, meaning that the
instructions in stages before EX0 are disabled.

Cycle 1 2 3 4 5 6 7

Insn. 1 IF EX0 EX1 WB
Insn. 2: branch to 8 IF EX0 EX1 WB
Insn. 3 IF ��EX0 ��EX1 ��WB
Insn. 8 IF EX0 EX1 WB

Figure 2.4: Example pipeline diagram for a branch instruction in a pipelined processor.
The branch target and condition for instruction 2 become known at the end of cycle 3.

Alternatively, the instruction after a branch instruction can be defined to always be
processed, regardless of whether or not the branch is taken. Such an instruction is called
a branch delay slot. MIPS [17] is an example of an architecture that does this. Doing
this saves some logic and ensures that the energy spent on fetching the instruction after
the branch does not necessarily go to waste. However, the success of implementing a
branch delay slot depends on whether the compiler is able to find a useful instruction to
place in the branch delay slot. If it cannot and needs to place a NOP instruction in the
majority of the cases, the increase in program size may not be worth it.

It should be noted that there are also architectures in which the branch target is known
in an earlier pipeline stage than the branch condition. In this case, branch prediction may
be employed [16, pp. 341]. With branch prediction, the processor jumps to the branch
target or continues issuing instructions normally based on some prediction algorithm that
can be computed faster than the actual branch condition. It is also possible to construct
such prediction logic for the branch target if this requires significant computation. Such
prediction schemes are beyond the scope of this work.

Data dependencies Another difficulty with pipelining is handling data dependencies
accordingly. Going back to our example instruction sequence and timing in Figure 2.3, let
us assume that instruction two needs the result that instruction one writes to the register
file for its computation. Instruction two attempts to read this value from the register file
in stage EX0. Unfortunately this leads to an incorrect value being read, as instruction
one has not yet written its result in cycle 3, even though it has already finished executing.
This is called a hazard.

One way to solve this problem is to stall the pipeline until the data is available. This
is called interlocking. The updated timing is shown in Figure 2.5.

A different way of accomplishing the same result as interlocking is to ‘expose’ the
pipeline to the compiler. The compiler can then insert independent instructions between
two dependent instructions in order to prevent hazards from ever occurring. If useful
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Cycle 1 2 3 4 5 6 7 8

Insn. 1 IF EX0 EX1 WB
Insn. 2 IF → → EX0 EX1 WB
Insn. 3 IF EX0 EX1 WB

Figure 2.5: Example pipeline diagram for a processor with pipelining and interlocking.
The EX0 stage of instruction 2 depends on the result of instruction 1.

instructions are not available, the compiler must insert NOP instructions instead. The
updated timing is shown in Figure 2.6.

Cycle 1 2 3 4 5 6 7

Insn. 1 IF EX0 EX1 WB
Insn. 3 IF EX0 EX1 WB
NOP IF EX0 EX1 WB
Insn. 2 IF EX0 EX1 WB

Figure 2.6: Example pipeline diagram for a processor with an exposed pipeline. The
depicted program is the same as in Figure 2.5. Instruction 3 is independent of instructions
1 and 2, allowing the compiler to insert it between these two instructions.

This technique has the advantage of not requiring any interlocking hardware to solve
the problem. It also potentially increases performance, as the compiler may be able to
move instructions in order to optimize the schedule, as can be seen in the example. On
the other hand, the NOP instructions that may be added will incur a penalty in code
size and instruction cache performance. Additionally, as it requires the compiler to know
what the exact latencies are, programs cannot be compiled generically for processors with
different latencies that are otherwise identical, without knowing the exact latencies for
each processor and assuming the worst case scenario for the latencies.

Consider again the timing depicted in Figure 2.5. Here, the EX0 stage of instruction
2 is dependent on the value computed in EX0 of instruction 1. Notice that this means
that the data is actually already available in cycle 3; the only reason instruction 2 must
wait until cycle 5 is because the only way it can access the value is through the register
file.

This delay can be avoided by making a direct path from the result of EX0 to the
input of EX0 in the next cycle. Such a path is called a forwarding path. A similar path
is necessary from the end of the EX1 stage to the start of EX0 in the next cycle. It is no
longer needed from WB to EX0 however, as from that point onwards, the value can be
read from the register file.

Now, when EX0 reads its operands, it must not only read from the register file, but
also check whether the instructions that were in EX0 or EX1 in the previous cycle intend
to write to the to-be-read register. If this is the case, the value from the register file is
outdated, and the forwarded value is to be used instead. If both the instructions previ-
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ously in EX0 and EX1 write to the same register, the value from EX0 takes precedence
over the value from EX1, as the instruction in EX0 is executed after the instruction in
EX1.

Note that forwarding alone is not a replacement for interlocking or having an exposed
pipeline if there are multiple execution stages. To understand this, consider the same case
as we have used so far, but instead of instruction 2 EX0 being dependent on instruction
1 EX0, it is dependent on instruction 1 EX1. The timing for this case is presented with
forwarding and interlocking in Figure 2.7.

Cycle 1 2 3 4 5 6 7

Insn. 1 IF EX0 EX1 WB
Insn. 2 IF → EX0 EX1 WB
Insn. 3 IF EX0 EX1 WB

Figure 2.7: Example pipeline diagram for a processor with interlocking and forwarding.
The EX0 stage of instruction 2 depends on the result of instruction 1 EX1.

2.2.3 Traps

While executing a program, unexpected situations can arise when it is either not possible
or not desirable to proceed with normal execution. Such a situation can for example
be a read from a memory address that does not exist, attempted execution of an unde-
fined instruction, division by zero, or a peripheral requiring immediate attention. Such
situations are called traps2.

A distinction is made between traps that are caused by the processor itself and traps
that are caused by external sources, such as peripherals. The former is referred to as
a fault, whereas the latter is referred to as an interrupt. Interrupts can usually be
ignored for a certain amount of time, depending on the interrupt and the application,
and processors may allow the program to temporarily disable interrupts. In contrast,
faults can usually not be ignored.

Traps are handled by ignoring the trapped instruction and instead branching to a trap
handler. The PC of the interrupted instruction is known as the trap point. In what way
the address of the trap handler is determined varies from processor to processor. In some
processors the address of the trap handler depends on the kind of trap that occurred, in
others the address is always the same and the trap is identified in some other way. In
some processors the trap handler addresses are fixed, and in some they are configurable.

For instance, in Atmel AVR microcontrollers the interrupt handler address is the
index of the interrupt multiplied by the size of an instruction (ATmega8 as an example:
[18, pp. 46]). A jump instruction is expected at each of these addresses that branches to
the appropriate handler. The ARM Cortex-M0 series uses a more sophisticated approach

2There does not appear to be an agreement in literature to the exact definitions of traps, interrupts,
exceptions and faults. In this thesis, the word ‘trap’ shall be used to refer to any unexpected condition
that results in a branch to a service routine. An ‘interrupt’ is a trap caused by a source external to the
processor, whereas a ‘fault’ is caused inside the processor. The word ‘exception’ shall not be used.
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[19, page 2-23]. It uses a data structure in memory called a vector table to store pointers
for each trap (exception) handler. This table can itself be moved using an offset register.
In contrast, in the STMicroelectronics ST200 series processors, there are only two trap
handlers, one for normal traps and one for debug traps [20, pp. 21-27]. The address of
these handlers is configurable using control registers. Furthermore, traps are identified
by means of status registers.

If it is to be possible to resume execution of a program interrupted by a trap, the
trap needs to be precise. According to [21], a trap is considered to be precise if and only
if the following requirements are satisfied.

1. All instructions prior to the trap point must have executed and written their results
correctly.

2. The instruction at the trap point must either have fully executed and written its
results, or it must not have affected the state of the program at all, depending on
the architecture and the cause of the trap.

3. All instructions after the trap point must not have affected the state of the program.

4. If the trap is caused by an instruction, the trap point must point to exactly that
instruction.

Satisfying the trap preciseness requirements in a pipelined processor requires all instruc-
tions following the trap point in the pipeline to be disabled, to prevent them from affecting
the state. This process will be referred to as invalidation in this work. At the same time,
the next PC is forced to the address of the appropriate trap handler, and the trap point
register is set to the current PC. A timing example of this is shown in Figure 2.8.

Cycle 1 2 3 4 5 6 7

Insn. 1 IF EX0 EX1 WB
Insn. 2 IF EX0! ��EX1 ��WB
Insn. 3 IF ��EX0 ��EX1 ��WB
Insn. T1 IF EX0 EX1 WB

Figure 2.8: Example pipeline diagram for a processor pipelined processor with a trap
occurring in the EX0 stage of instruction 2. Instruction T1 represents the first instruction
of the trap handler.

2.2.4 Debugging

Debugging is the process of finding the cause of a problem with a piece of software
by inspecting the program while running it on the target processor. In order to give the
programmer time to interpret the state of the program, the program is paused. Debuggers
allow the program to be paused when some condition is met. Such conditions include the
PC matching a certain value (called a breakpoint) or the processor accessing a piece of
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memory (called a watchpoint). While the program is paused, the debugger allows access
to the register file and memories of the program that is being debugged. Finally, when
the programmer is done, he or she can instruct the debugger to resume execution.

Debug software is normally aware of the architecture and program that is being
debugged. Along with debug information generated by the compiler, the debug software
allows the programmer to set breakpoints on lines of high-level code instead of on an
instruction address, set watchpoints on variables instead of data addresses, etc. Finally,
they can display exactly what the program was doing and why by interpreting the stack
to display which functions called which in order to arrive at the current instruction.

When debugging desktop computer applications, the debug software usually runs on
the same machine as the program that is being debugged (the ‘target’). The debug
software then connects with the target through the operating system (OS). This is called
self-hosted debugging. With embedded processors, this is typically not feasible. Instead,
external debugging is used [22]. In this setup, a desktop computer (the ‘host’) runs the
debugging software, and connects to the target processor with some kind of debug link,
such as JTAG or a serial port.

Some hardware support is needed for debugging. [22] specifies the basic commands
that need to be supported as reading and writing the register file, reading and writing
memory, returning why the program was paused, and continuing execution. In addition,
in order to support stepping and breakpoints, an instruction must be available that
pauses the program and gives control to the debugger. The debugger can then place
breakpoints by replacing the instruction at the breakpoint with the pause instruction,
and then restoring the original instruction before continuing execution. Such breakpoints
are called a soft breakpoint. Stepping can be accomplished by placing a breakpoint at
all possible next instructions or lines of code.

In a self-hosted debugging environment, such a pause instruction is the only hardware
support that is needed. Furthermore, all this instruction needs to do is cause a trap,
because in an OS environment, all traps are serviced by the OS.

Things become more complicated when external debug support is needed or if there is
no OS. In the simplest case, the debug connection is still controlled by software running on
the processor. This software resides in the debug trap handler and the startup code. The
latter is necessary in order to set breakpoints before the program starts. The debug trap
handler is then written such that it does not return control to the interrupted program
until the debug software gives the continue command, and until that time, it services
memory and register access commands.

A complication arises when the trap handler code is also to be debugged. This is
because a trap cannot normally be interrupted immediately by another trap without
losing at least the original contents of the trap point register. One way to solve this is to
have a second set of trap identification registers used solely for debug traps. The ST200
processor series is an example of an architecture that uses this approach [20].

The link between the host and the target can also be managed by hardware. In
that case, the pause instruction does not cause a trap, but instead physically pauses the
processor until the debug hardware restarts it. This approach is found often in simple
microcontrollers, which often do not support traps. The Atmel AVR BREAK instruction is
an example of this [23, pp. 27].
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Furthermore, microcontrollers can often execute code directly from non-volatile mem-
ories such as flash. In this case, it may be undesirable or even impossible to set break-
points by temporarily replacing instructions. Instead of this, processors may also have
breakpoints implemented in hardware by comparing the PC against a number of break-
point registers, and halting the processor or causing a trap if there is a match. This
is called a hardware breakpoint. As there may be many possible next instructions in
a program and the number of breakpoint registers is limited, a special step breakpoint
may also be implemented. Instead of matching the PC against a value, a step breakpoint
always matches when it is enabled, except for the first instruction executed after the
continue command. An example of a processor that uses this approach to debugging is
the ARM Cortex-M0 [24].

Thus far we have not discussed watchpoints. In complex processors such as those
used in a computer, this may be done using the memory management unit (MMU) by
temporarily revoking read and/or write permissions to a page of memory. When the
program then attempts to access a memory location within that page, a page fault trap
occurs, allowing the operating system to respond accordingly. If no MMU is available,
watchpoint registers can be used. These are implemented similar to breakpoint registers.

Some processors also support what is known as tracing. Unlike debugging, tracing
does not require a program to be stopped in order to get information about it. Instead,
a hardware component monitors the state while the program is running and streams
information to memory or to an external debug interface at some level of detail. As
an example, the ARM CoreSight MTB-M0+ block allows all branches of a Cortex-M0+
processor to be traced to a memory [25]. More sophisticated implementations may also
trace data. However, as more information is traced, bandwidth of the trace data stream
increasingly becomes a problem, and the processor may be slowed down.

2.2.5 Exploiting parallelism

Exploiting parallelism in programs is key to improving performance. [26] distinguishes
four forms of parallelism, namely instruction level parallelism (ILP), data level parallelism
(DLP), thread level parallelism (TLP) and request level parallelism (RLP).

• ILP deals with shuffling instructions and their execution stages around to allow
them to be executed in parallel.

• DLP deals with algorithms that perform exactly the same operation on multiple
datasets at a time. A graphics processing unit (GPU) is a prime example of a
processor that exploits DLP.

• TLP deals with algorithms that can be separated into multiple tasks called threads.
Threads can run simultaneously. They can communicate with and wait for each
other, but otherwise they operate independently. This allows them to be spread
over multiple processors in a multiprocessing system.

• RLP handles applications wherein many completely independent algorithms need to
be run, such that they can be distributed over a large number of servers dynamically.
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Examples of such applications are found throughout the Internet, where many users
make requests to webservers simultaneously.

This thesis focuses on ILP and TLP exclusively.

TLP Let us discuss TLP first, as it is simple from a hardware and compiler point of
view compared to ILP. As already implied above, TLP allows programs to make use
of multiple processors within the same system. It is sufficient and common for such
processors to only be connected to each other through a memory and perhaps interrupts.
It is up to the programmer to extract TLP and design the program such that it uses
multiple threads when it can.

Thus, to a hardware designer, exploiting TLP can be as simple as duplicating a
processor a number of times. The only problem that arises, is efficiently handling the
multiple accesses to the shared memory. This is an issue in particular when each processor
has its own data cache, and may thus have a local copy of the shared data. This local
copy needs to either be updated or invalidated in some way after another processor writes
to the shared data. This problem is called cache coherence and will be discussed further
in Section 2.3.1.

ILP To exploit ILP, instructions need to be executed in parallel in some way. We
have already discussed pipelining in Section 2.2.2, which accomplishes this by splitting
instruction execution up into stages, each stage processed by a separate functional unit.
This allows a stage to start working on the next instruction as soon as the stage finishes
instead of needing to wait for the entire instruction to be completed, thereby executing
instructions in parallel.

This can be taken a step further by instantiating multiple compute units per stage.
For instance, if two compute units are instantiated for each stage, the pipeline diagram
for four independent instructions would look as shown in Figure 2.9. Such processors are
called multiple-issue processors, as they issue multiple instructions per cycle.

Cycle 1 2 3 4 5

Insn. 1 IF EX0 EX1 WB
Insn. 2 IF EX0 EX1 WB
Insn. 3 IF EX0 EX1 WB
Insn. 4 IF EX0 EX1 WB

Figure 2.9: Pipeline diagram for a two-issue processor executing fully independent in-
structions.

The proposed ways for handling dependencies in single-issue pipelined processors can
be extended for multiple-issue processors. Let us focus specifically on handling the data
dependence problem, as next PC computation and forwarding extend naturally.

Recall that two solutions were proposed: one where the data dependencies are de-
tected by hardware through interlocking, and one where the compiler does this by taking
the exact architecture and pipeline of the processor into account. The situation is similar
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for multiple-issue processors. Processors that take the dynamic, hardware based approach
are called superscalar processors, the alternative is called a very large instruction word
(VLIW) processor.

The hardware that superscalar processors need to effectively extract ILP dynamically
(dynamic dispatch) is very complex compared to the techniques discussed so far, and
is beyond the scope of this thesis. Regardless of this complexity, superscalar processors
dominate the general-purpose computing scene, because a program compiled for a certain
sequential instruction set architecture (ISA) can run on any processor with any degree
of parallelism out of the box [27, pp. 62].

In contrast, VLIW processors require no extra hardware compared to a single-issue
processor at all, aside from obviously requiring the instruction execution units to be du-
plicated. This makes VLIW processors potentially smaller and more energy efficient than
superscalar processors. The major downside aside from processor-specific compilation is
that superscalar processors are able to take some things into consideration that the com-
piler typically does not or cannot know about, such as the chance that a branch is taken
or not taken based on branch prediction logic.

The high instruction throughput and energy efficiency make VLIW attractive for
embedded digital signal processing applications. Two examples of such processor series
are the TriMedia by Philips/NXP [28] and the ST200 by STMicroelectronics [20].

Before we continue, let us define some VLIW vernacular, as it will be used extensively
throughout this thesis. A bundle is a set of instructions that are to be executed in
parallel. It can be referred to as a ‘very large instruction word’, hence the name VLIW.
The individual instructions in a bundle are called syllables. The part of a VLIW that
executes a syllable is called a lane. The number of lanes is referred to as the issue width
of the processor.

A problem specific to VLIW processors is how to encode the boundaries of a bundle
in the instructions. The trivial way to do this is to specify a fixed bundle size, equating
bundle boundaries to alignment boundaries. However, it is unavoidable in that case that
the compiler will need to insert NOP syllables just to encode the bundle boundaries, as
the compiler cannot be reasonably expected to find enough parallelism to fill a bundle
all the time, even for a two-issue VLIW. Increased code size brings with it a higher
instruction cache miss rate, and thus decreased performance and energy efficiency.

A more intelligent way to encode the boundaries is a stop bit. A stop bit is a bit
reserved in every syllable that indicates whether it is the last syllable in the bundle. The
hardware cost of stop bits is the need for the instruction fetch unit and next PC logic to
handle what is essentially a variable length instruction encoding.

Going back to ILP in general, there is a limit to the amount of ILP that can be
extracted from a program. This depends greatly on the compiler and the processor
architecture. The causes for this are beyond the scope of this thesis, but the implications
are relevant. Specifically, the implication that there is an asymptotic limit to the speedup
that can be achieved in a program by adding more functional units to a superscalar or
VLIW processor. Thus, as more and more functional units are added, the increase in
performance will no longer outweigh the increased hardware and power consumption of
the processor. The tricky thing here, is that because the ILP depends on the program
and even the part of the program that is being executed, hardware designers can only
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estimate how many functional units would lead to good average-case performance.
Idle functional units are an obvious waste of resources. One way in which superscalar

processors can mitigate the problem is hyper-threading. A hyper-threaded processor
actually runs two or more programs at the same time, sharing the functional units between
them, based on which has the highest ILP at a certain instant. This is much harder to
do in a VLIW processor however, as VLIW processors are statically scheduled. This is
where the ρ-VEX architecture comes into play.

2.2.6 ρ-VEX architecture

The ρ-VEX is a VLIW processor architecture based upon the HP VEX (VLIW-example,
[27]), which in turn is based upon the STMicroelectronics ST200 processor family [20]. It
is a 32-bit big endian architecture. What sets it apart is that the architecture is designed
such that its key metrics are configurable, such as the issue width and the number of
available multiplication units. This allows the processor parameters to be tailored to
suit the ILP and arithmetic instruction mix of a certain application once the software is
available.

As the processor designed in this work is based on the current version of the ρ-VEX,
we summarize the architecture in the following paragraphs. A more detailed description
is available in Chapter 3 of the ρ-VEX user manual (Appendix C).

The register file of the ρ-VEX is subdivided into three parts:

• The general-purpose registers. These 32-bit general-purpose integer registers are
referenced as $r0.n. The first of these registers, $r0.0, is defined to always read as
zero, regardless of what is written to it. The current ρ-VEX implementation has
64 of these.

• The branch registers. These single-bit registers can be used as branch conditions
or as carry registers. They are referenced as $b0.n. The current ρ-VEX implemen-
tation has 8 of these.

• The link register. This register is a single 32-bit register used by hardware to store
the return address for a call instruction. In addition, it can be used as a target
address for jump instructions.

Notice that the first zero in the register names is constant. This value is used for cluster
selection. Clusters are not supported by the ρ-VEX implemented in this work and are
therefore beyond the scope of this thesis.

ρ-VEX syllables are encoded as 32-bit words. The operand and destination registers
supported differ per syllable, but in general, syllables operate on either two general-
purpose source registers or one register and an immediate, and output to an independently
selectable general-purpose or branch destination register.

Immediates between -256 and 255 inclusive can be encoded within a single syllable.
This is called a short immediate. In order to allow the full 32-bit range to be used, a
second syllable is needed. Such a syllable is known as a long immediate syllable. There
may be hardware constraints on the relative locations of long immediates and their target
syllable. It is the job of the assembler to infer long immediates where necessary.
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ρ-VEX syllables can be divided into the following five classes:

• ALU syllables. Syllables in this class can be executed by all lanes, as all lane have
an arithmetic logic unit (ALU).

• MUL syllables. Syllables in this class can only be executed on lanes that include a
16x32-bit multiplication unit.

• MEM syllables. Syllables in this class can only be executed on lanes that support
memory operations. In addition, the number of MEM syllables that can be executed
in a single bundle is currently limited to one by the memory system.

• BR syllables. This class contains all branch instructions. Syllables in this class can
only be executed by the lane designated to compute the next PC. Which lane this
is depends on the implementation.

• LIMM syllables. This class only contains the long immediate instruction discussed
before.

The ρ-VEX does not currently have a hardware division unit, though there are syllables
that accelerate software division. There is no hardware floating point support.

Implementations The first softcore implementation of the ρ-VEX architecture was
developed in [4]. This implementation is very basic. Firstly, while there is a basic four-
stage pipeline, instructions spend multiple cycles in the same stage, so the processor
cannot issue a new bundle every cycle. Secondly, changing the configuration of the
processor requires manually editing the VHDL sources and resynthesizing. Finally, more
complex features such as forwarding, traps and debug support do not exist.

The processor is redesigned in [3]. In particular, the pipeline is completely reworked
such that the processor can issue a new instruction every cycle. The pipeline was im-
plemented as five stages: instruction fetch (IF), instruction decode (DE), two execute
(EX) stages labeled EX0 and EX1, and writeback (WB). The branch target and con-
dition is computed in DE, the general-purpose register file is read in EX0 and written
in WB, and memory operations are performed in EX1. Forwarding logic was also added
to further improve performance. Additionally, basic support for interrupts was added by
simply forcing a branch. An interrupt controller that makes use of this is designed in
[29].

In the following years, among other things, an effort was made to make the processor
reconfigurable without reloading the FPGA bitstream. An eight-way ρ-VEX processor
was used as the base design. By means of ‘reconfiguration’, it could be configured to work
as a single eight-way (1x8), two four-way (2x4), two two-way and a four-way (2x2+1x4)
and four two-way processors (4x2). These configurations are shown in Figure 2.10. This
reconfigurability allows the processor to dynamically adjust to the available ILP and
TLP of the programs to be run. However, the implementation was never refined to allow
reconfiguration to be performed while a program is running. In particular, if this would
be done, the contents of the register file would become undefined.
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1x8
2x4

2x2+1x4
1x4+2x2

4x2

Figure 2.10: Configurable modes of an eight-way reconfigurable ρ-VEX processor. Each
cell represents a lane. A broken line separating two lanes implies that the lanes combine
together to form a single core, whereas a solid line separates the cores. There are no
modes in which a core only uses a single lane because long immediates require at least
two lanes to be present.

In order to not have to maintain separate binaries for eight, four and two-way operat-
ing modes, generic binaries were developed [30]. An ρ-VEX generic binary is essentially
a normal eight-way binary, with the exception that it is permissible for bundles to be
executed in two or four cycles as well, corresponding to four-way and two-way mode
respectively. In theory, generic binaries also allow the configuration to be changed while
the program is running.

The final modifications made to the ρ-VEX prior to this work are the addition of a trap
controller, a rework of the external interrupt controller, and the addition of rudimentary
hardware-based external debugging support [5]. These modifications were made to make
the ρ-VEX suitable to run a port of ucLinux, a Linux kernel port for the ST200 series
[31], the processor family that the ρ-VEX is ultimately based upon.

A significant problem with this trap controller is that it is not completely precise.
Recall the definition of preciseness in Section 2.2.3. The trap controller complies with
rules 1, 2 and 3, but fails rule 4. The reason for this is that a trap is implemented by simply
overriding the next PC, without invalidating subsequent instructions that have already
been issued. This makes the controller precise enough to handle interrupts accurately, as
for interrupts, it does not matter exactly where they interrupt the program. However, it
is not good enough for instructions causing a trap, such as a syscall or a page fault.

Another issue is that the debug controller is incomplete. The problems with it are
listed in detail in [5, pp. 46-47]. The most important hardware issues listed are that
it is not possible for the debugger to write to the register file or the PC and software
breakpoints are not supported due to the lack of instruction cache coherence. An addi-
tional problem is that the core is halted by simply disabling the clock. As the processor
is pipelined, this means that multiple bundles are interrupted in different stages of exe-
cution. In particular, as memory operations and register write-back are done in different
stages, the state of the program as seen by the debugger is not consistent. Also, the
program counter appears as though it is several instructions ahead of the program state.

Regardless of the current issues, let us look at which parts of the current ρ-VEX design
can be reused in this work, to fulfill step one of the method specified in Section 1.3.

• There is no need to change the way in which instructions are encoded, as a stop
bit is already incorporated into it, it was just unused thus far. This means that no
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significant changes will need to be made to the assembler.

• Generic binaries are fully compatible with both runtime reconfiguration and stop
bits.

• The functional units (ALU and multiplier) do not necessarily need to be changed,
nor does the pipeline.

• The list of configurations supported by the current processor (Figure 2.10) can
be used as a reference design, even though the way in which reconfiguration is
performed needs to be fully redesigned to support reconfiguration during execution.

2.3 Memory architecture

A processor can only execute at its intended speed if the memory system can keep up with
it. After all, regardless of how much parallelism is available in a processor, a program
cannot continue if the next instruction has not been received from the memory yet. Thus,
the efficiency of the memory of a processing system is a very determining factor of the
overall system performance.

As memories get larger, access times get longer, and the energy needed to do a memory
access increases. This is because the request and data need to travel a greater distance.
A common method for hiding this latency is to simply request more data at a time. If
more data is requested than what can be transferred in a single cycle due to the physical
limitations of the memory interface, such a request is called a burst access. The requested
data is then transferred spread out over multiple cycles, but as there is no need to go
back and forth between the memory and the processor, there does not need to be any
time between the cycles.

Unfortunately, programs do not always need to access consecutive memory locations.
In particular, when dereferencing a pointer residing in memory, the value read from the
pointer directly determines the address of the next memory access, preventing paral-
lelization. Thus, a more general solution that does not depend on parallelizable memory
accesses is desired.

One solution is to have multiple memories of multiple sizes in the system, and have
the programmer specify which pieces of code and data are likely to be used often, so they
can be placed in the smaller memories. However, this may be difficult to determine at
software design time. A more common solution is to use a cache.

2.3.1 Caches

A cache is a small memory local to a processor that keeps a record of recent memory
accesses and their results. That is, whenever a piece of data or an instruction is read
from the main memory, a copy of the read data is stored in the cache. As the cache fills
up, older records are replaced.

Now, whenever the processor needs a piece of data or an instruction, the cache is first
checked to see if it contains a copy. If it does, the long access to main memory is not
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needed. This is called a cache hit. If the cache is found to not contain the the requested
data, the main memory needs to be accessed. This is called a cache miss.

This algorithm works because of a phenomenon exhibited by programs called temporal
locality. That is, if a program recently accessed a piece of data or executed an instruction,
it is likely to access that data or execute that instruction again in the near future. In
fact, it is observed that an average program spends 90% of its execution time in only
10% of its code [26, pp. 45].

In addition to temporal locality, programs also exhibit spatial locality. This states
that not only the same piece of data that has been accessed is likely to be accessed again,
but data at nearby addresses are as well. Therefore, it may make sense to do a burst
access when data not in the cache is requested, even if the processor does not request all
of it at first. It is particularly easy to see why this makes sense for instructions, as most
of the time, instructions are executed sequentially.

Some systems implement multiple levels of caches. The cache closest to the processor
is the smallest and fastest. It is referred to as the level-one cache. Every subsequent
level cache is larger and slower, but still faster than the main memory. Such systems
are prevalent in high performance general purpose computers. One example is the Intel
Nehalem microarchitecture, which has three levels [32].

A cache that services both instruction and data accesses is called a unified cache.
Using Nehalem as an example again, its level two and level three caches are unified.
However, it has separate instruction and data caches at the first level. Regardless of the
processor3, this usually makes sense for at least the first level, as the instruction path and
datapath have different requirements. Most obviously, the instruction path is read-only.
A less obvious reason is that spatial locality is more prevalent for instructions than for
data. Furthermore, many processors can do an instruction access and a data access in
parallel, so the two should be parallelized in some way anyway. In addition, in VLIW
processors specifically, instructions are much wider than single data words.

Data organization The memory of a cache is organized in cache lines. A cache line
contains one or more words of memory and a tag specifying validity information and the
main memory address that the line data is a copy of. The simplest type of cache to
conceptualize is one where the full memory address is encoded in the tag, allowing any
memory address to be saved in any cache line. Such a cache is called a fully associative
cache. In practice, such caches are only feasible for a small amount of lines, because every
time an access is made, the address of the access must be compared against the tag of
every valid cache line.

On the other end of the spectrum, we can define that every main memory address
maps to a single cache line. That way, only a single tag needs to be compared when
an access is made. Such a cache is called non-associative or direct mapped. Midway
solutions are also possible. For instance, a cache where a main memory address can be
placed in one of two lines is called two-way set associative. Such a cache can be considered
to actually be two parallel caches with shared control logic, each having one line mapping
for each address. These ‘sub-caches’ are called sets.

3Except for processors based on the von Neumann architecture, which only have a single interface
used for both data and instruction accesses.
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In order to find a piece of data in a cache, the request address is split up into three
parts: the tag, the index and the offset. The offset selects the word from a given line, the
index selects the line within each set, and the tag is compared with the cache tag of the
indexed lines of each set. This is illustrated for a non-associative cache in Figure 2.11.
For a set associative cache the illustration would need to be duplicated for each set, with
some additional logic at the bottom to select the data based on which set hit.

Incoming address

=

Hit Data if hit

DataTags

Cache memory

Tag Index Offs.

Figure 2.11: Diagram illustrating the read data path of a non-associative cache.

When there is a miss in a set associative cache, it needs to be decided somehow which
set will be used to save the data. This is called the replacement policy. There are three
ways in which this can be done: randomly, by replacing the least recently used (LRU)
line or by replacing the oldest line [26, pp. B-9]. LRU is the best option, but it is also
the most complicated to keep track of, as it requires every access to be recorded in some
way, independently for each line.

Write accesses Thus far, we have only considered read accesses. There are two main
strategies to deal with writes: write-through and write-back [26, pp. B-11]. In a write-
through cache, data is written to both the cache and the memory or next level cache at
the same time. In contrast, in a write-back cache, writes are written only to the cache.
The data will only be written back to the memory or next level cache when the line needs
to be removed, usually to make way for another piece of data. This requires the cache tag
to include what is known as a ‘dirty bit’ to keep track of whether the line was modified
and needs to be written back or not.

The latency of the memory access can be hidden by buffering the write using a write
buffer. This allows the processor to continue executing before the write to memory
completes, as long as no read miss occurs.

Furthermore, there are two ways to deal with a write to memory that is not already
stored in the cache, i.e., a write miss. In a write allocate cache, the written data is stored
in the cache so it can be read later without penalty. In contrast, a no-write allocate cache
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only forwards the write to the memory or next level cache. Usually, write-back caches
use write allocate and write-through caches use no-write allocate [26, pp. B-12].

Consistency and coherence Regardless of how a cache handles write accesses, cached
memory accesses made by the processor must appear to be handled in sequential order.
This is called cache consistency. An example of a cache that may violate cache consistency
without logic to deal with it appropriately is a write-through no-write allocate cache with
a write buffer. In such a cache, if the processor writes to an address and misses, then
subsequently reads from that address again and thus misses again, the read miss may
theoretically be serviced before the write buffer is drained, causing the read to return the
previous value.

A similar problem occurs in multiprocessor systems where each processor has its own
cache. Because data shared between two processors may end up in the caches of both
processors, one of the processors performing a write to shared data does not cause the
cache of the other one to be updated automatically.If the caches are write-back, the
situation is even worse, as the main memory may not even be updated.

This issue is solved by implementing what is known as cache coherence. There are
several ways to do this. In the case of write-through caches, the problem can be solved
relatively simply by letting each cache monitor the memory transactions for writes. This
is called snooping. When a write transaction of a cached memory location is detected,
the local copy of that memory location is either invalidated or updated, depending on the
implementation. Dealing with cache coherence is more sophisticated when using write-
back caches, as this requires all processor writes to be monitored, which may happen in
parallel.

An alternative to snooping is to use a directory based coherence protocol. In such a
system, caches keep track of whether their local copies of data exist in other caches as
well. Implementations of this approach are beyond the scope of this thesis.

In addition to memory changing because another processor writes to it, some memory
locations may also change on their own. This is because not all used addresses actually
map to memories in a computing system. For instance, a certain address may be mapped
to a counter register that increments every cycle, allowing a program to measure its own
performance. Such addresses should never be stored in the cache. An access to such a
memory location is called a bypass access, as it bypasses the cache. Whether an access
should bypass the cache or not may be determined by one or more bits in the address,
or by a non-cacheable flag that is part of the request. In the latter case, the processor
may have separate instructions for cached and bypassed accesses.

2.3.2 Memory management units

In an operating system environment, memory needs to be divided among the running
processes. In addition, it is desired that processes cannot access the private data of other
processes even if they try, in order to prevent bugs in software to be able to affect the
entire system. These ‘bugs’ may even be intentionally constructed in order to bypass
security features. As it is infeasible for an operating system to check every memory
access in software, hardware support is required.
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The system that allows this is called a memory management unit (MMU). MMUs
translate what are known as virtual addresses coming from an application to physical
memory addresses, by looking up the mappings in an operating system memory structure
called a page table [26, pp. B-40 - B-41]. Each process has its own page table, to allow
different processes to access different pieces of memory, even using the same virtual
addresses. In addition to storing the mappings, page tables entries also include flags that
independently specify whether the mapped memory may be read, written or executed.
Page table entries are cached by a special kind of cache known as a translation lookaside
buffer (TLB).

Whenever an application tries to access virtual memory that has not been mapped
to physical memory, or it tries to use a virtual memory address in a way it is not allowed
to, the MMU causes a page fault trap, allowing the operating system to handle the
situation accordingly. Note that a page fault does not imply that the process should
be terminated. For example, a page fault may simply mean that a process needs more
memory. Therefore, an MMU requires a precise trap controller.

2.3.3 Busses

A bus is a data channel connecting two or more devices together. The interconnect
between the largest cache and the memory is an example. Devices can be a master, a
slave, or sometimes both. Masters initiate the data transfers, while slaves respond to
them. A processor is a master, requesting a data transfer whenever it needs to fetch an
instruction or a memory instruction is executed. An example of a slave device is the
memory, or memory controller if off-chip memory is used.

In a memory bus, which slave is communicated with is based upon the address that
the master wants to access. For instance, a 512 MiB memory may be mapped to address
0x20000000 through 0x3FFFFFFF. Such mappings should be aligned to their size, such that,
in this case, the memory can determine whether it is being selected using only the upper
3 address bits. In order to decrease the amount of bits relevant to the selection further,
the memory could also be mapped to a larger area, for instance 0x00000000 through
0x7FFFFFFF. That does not mean that the memory needs to be bigger: the memory may
just ignore the upper 3 bits of the address. That means that 0x01234567 will actually map
to the same bit of memory as 0x21234567, 0x41234567 and 0x61234567. Such duplicates
are called mirrors.

A bus may also have multiple masters. Assuming that the bus can only handle one
access at a time, there must be a mechanism to handle the case where two or more
masters make a request at the same time. Such a mechanism is called arbitration.

The amount of physical wires dedicated to data bits in a bus is called the bus width.
A word is defined to be a value that has the same size as the bus width. Thus, at most,
a bus can transfer one word per clock cycle. This is not always possible however, as it
takes time to relay the request from the master to the slave, and the reply back from
the slave to the master. This delay is called the bus latency. It depends mostly on the
physical distance between the master and the slave.

Like memories, a bus may allow multiple words to be accessed in a single transfer.
Such an access is called a burst access. Normally, the requested words need to be at
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consecutive addresses.
There are many implementations of busses available of varying complexity. Examples

of busses are Wishbone [33] and ARM’s AHB/APB [34].

2.3.4 Peripherals

There would not be much point to having a processing system with just memories and
processors: there needs to be a way to interact with the outside world. This is handled
by devices known as input/output peripherals. Examples of such peripherals are general-
purpose input/output (GPIO) and universal asynchronous receiver/transmitter (UART)
controllers. The latter is the low voltage name for an RS232 serial port.

Not all peripherals interact with the outside world. An example of an important
peripheral that does not do this is a timer. Timers are peripherals that generate an
interrupt a certain amount of time after they are triggered, or periodically at a config-
urable rate. Timers are essential for preemptive operating systems. Another example
is the interrupt controller, which allows the processor to select which interrupt sources
should actually cause an interrupt and which events should be masked out.

Most peripherals are slaves, but there are exceptions. Most notably, a hardware
debugging interface peripheral needs access to the same memory that the processor has
access to, and as such, it is implemented as a master.

2.4 Conclusion

In this chapter, we presented the theory needed to design an implement a processing
system. In Section 2.1, we have seen how FPGAs work and how they may be used
to test hardware designs. In addition, we have discussed how hardware designs may
be specified. In Section 2.2 a detailed description of processor architecture was given,
including a summary of the ρ-VEX architecture in Section 2.2.6. Finally, in Section 2.3,
we have reviewed theory about caches and memory subsystems in general.
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In the previous chapter, we discussed processor design theory in general, and briefly
looked at the current ρ-VEX design to see which elements can be reused. In this chapter
we put the theory into practice and design the major components of the new ρ-VEX
processor and cache. The implementation of these components is left to the next chapter.

We will begin by designing the structure of the control registers of the new ρ-VEX in
the first section, as they will be needed for all of the new components. In the following
four sections, the reconfiguration system, precise traps, debug support and variable-
length instruction support are designed, thereby fully specifying the ρ-VEX processor
core. In the subsequent section, the reconfigurable cache is designed. Finally, in the last
section, we consider which components can be made design-time configurable, to make
the processing system as flexible as possible.

3.1 Control registers

In the old ρ-VEX processing system, all processor control registers except for the program
counter (PC) were implemented outside the actual core as a bus peripheral. This allows
the processor and the debug interface to access the registers naturally through memory
accesses. However, it also requires them to be reimplemented for every processing system.
As more and more features were added to the ρ-VEX over time, this became increasingly
infeasible. Therefore, the new processor has the control registers built in.

There are two ways to allow a program running on the ρ-VEX access to the control
registers. The first is to reserve a part of the address space for the registers. Any
access to such an address is then routed to the registers instead of the memory system.
The alternative is to implement special instructions that can access the control registers
directly.

There are advantages and disadvantages for both methods. A major argument in
favor of memory mapping the registers, is that no special toolchain support is needed.
Software can just dereference pointers that are hard-coded to the register address in
order to use them. An argument against memory mapping is that a portion of the
address space will be inaccessible. In addition, writing a constant value to a constant
memory location requires two instructions in the ρ-VEX instruction set. However, as
the project requirements state that the ρ-VEX should be compatible with the current
toolchain, the memory mapped control register approach has to be taken.

A distinction is made between control registers that are local to a thread and control
registers that are relevant to the ρ-VEX as a whole. These are called context control
registers and global control registers respectively. Examples of context control registers
are the PC and trap point registers. Examples of global control registers are the current
configuration word and reconfiguration status registers.
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When the ρ-VEX processor is runtime configured to run multiple threads in parallel,
multiple memory accesses can be done at once. That means that there can also be
multiple control register accesses at the same time. In fact, the debug port may be doing
an access simultaneously as well. Therefore, the control register file either needs multiple
access ports or arbitration logic that can stall part of the processor.

In order to avoid simultaneous accesses as much as possible, ρ-VEX threads are
specified to only be able to access their own context control registers. Furthermore, they
are mapped to the same addresses for each, preventing the need for storing a control
register base pointer for each thread. This also allows a read-only thread identification
register to be made. Finally, it reduces the size of the address space reserved for accessing
control registers.

Furthermore, while all threads and the debug port can access the global control
registers simultaneously, only the debug port is specified to be able to write to it. As
we will see in Section 4.2.10, most global control registers are read only and have fixed
values, for instance to identify the design-time configuration and core version. Since such
registers can be implemented as distributed RAM at little hardware cost, having multiple
access ports is expected to not be a significant hardware cost.

Finally, when the debug port accesses context control registers, the entire processor
is simply stalled for one cycle. This allows the register access to be performed using
the same datapath that a memory instruction would use. Debug port accesses are not
expected to be common enough for the delay cycle to be significant.

It should be noted that systems with a central memory/peripheral bus are likely to
connect the ρ-VEX debug port as a memory-mapped peripheral, as this is required to
allow an external debug interface access to the debug port if it is simply implemented as
a bus master. This means that, in such a system, the ρ-VEX would also be able to access
its own debug port through the bus and cache, thus allowing full access to any control
register. The cost of this is, of course, the delay and energy incurred by needing to do a
system-wide bus access.

3.2 Reconfiguration

In this section, we will design the runtime reconfiguration system. We will begin by
setting up requirements, and then design the way in which reconfigurations are requested,
decoded and committed.

3.2.1 Lane configurations

Recall Figure 2.10, showing the configurations that are supported by the old processor.
Observe that the structure of the possible configurations is that of a binary tree. Thus,
the available modes can be generalized to any number of lanes, allowing the issue width
of the processor to be any power of two in theory. Furthermore, the size of a group of
lanes that can not be split further can be set to any size. Such an atomic group of lanes
will be referred to as a lane group. Notice that if the size of a lane group is set to the issue
width of the processor, only one configuration is left, thus nullifying the reconfiguration
system.
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In order to make the new processor as flexible as possible, let us define both of these
parameters to be configurable to powers of two at design time. This allows the size of
the processor and level of reconfigurability to be tailored to the application at hand. In
further discussions, we will imply an eight-way ρ-VEX with a lane group size of two
unless otherwise specified.

3.2.2 Context switching

When the ρ-VEX runs in 4x2 mode, four threads are run in parallel. Each thread has its
own state, called a context, consisting of the register files, PC and other control registers.
This implies that the registers that store this context need to be instantiated four times.
With this in mind, we can think of reconfiguring as changing the interconnect between
the contexts and the lane groups. The degree in which this interconnect can be changed
determines the available configurations.

It is sufficient to specify that each context is always connected to the same lane group,
and that if lane groups are configured to work together, the context of the lowest indexed
lane group was chosen. This connectivity is depicted in Figure 3.1.

Ctxt. 0

Ctxt. 1

Ctxt. 2

Ctxt. 3

Ctxt. 0

Ctxt. 1

Ctxt. 2

Ctxt. 3

L.G. 0

L.G. 1

L.G. 2

L.G. 3

Figure 3.1: Minimal connectivity needed between contexts and lane groups to make all
the configurations depicted in Figure 2.10 possible. The connections on the left show the
multiplexing between context registers to the lane groups. The connections on the right
show the number of lane groups that a context can be connected to.

The advantage of this interconnect configuration is that it is optimal in terms of
area. However, there is also a significant disadvantage. With this interconnect, only the
program using context zero can be reconfigured to run in two-way, four-way and eight-
way mode. Context two can only run in two-way and four-way mode, and contexts one
and three can only run in two-way mode.

To illustrate why this is undesirable, consider the following use case. An application
has four threads that do independent computations. The computational complexity is
dependent on the input, and cannot be easily determined in advance. This program is
ported to the ρ-VEX by mapping each thread to its own context, and the ρ-VEX is
initially run in 4x2 mode. When a thread completes, it is desirable to make the lane
groups that were used for that thread available to the other threads — after all, this is
the ideology behind the ρ-VEX architecture. However, if context zero or two are the first
to complete, there is no way to remap lane group zero or two to one of the other contexts.
At least, not without swapping the contexts through memory in software.
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The only way to completely solve this issue is to allow every context to be connected
to any lane group. This is depicted in Figure 3.2. As flexibility is considered to be more
important than area or cycle time in this work, this is the option that is used. It is left
as future work to determine if this full interconnect is worth its additional complexity.
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L.G. 3

Ctxt. 0

Ctxt. 1

Ctxt. 2
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Figure 3.2: Full connectivity between contexts and lane groups, in contrast to the minimal
connectivity shown in Figure 3.1. This is the connectivity implemented in this work.

For further flexibility, let us define that the number of contexts implemented should be
independently configurable at design time from the number of lane groups. This should
be trivial to implement in the hardware design using the full connectivity method. The
reasoning for this is, that even in an ρ-VEX processor without multiple lane groups,
multiple contexts can be used to accelerate task switching in a multitasking operating
system. That is, it allows task switching to be done in hardware through reconfiguration
as long as enough ρ-VEX contexts are available.

3.2.3 Disabled lane groups

It is also desirable to be able to not assign a lane group to a context at all, effectively
turning it off. This is not that important on a field-programmable gate array (FPGA)
development platform where static power consumption dominates, but when implemented
on an application-specific integrated circuit (ASIC) combined with clock gating and/or
power domains, it could be used to significantly reduce power consumption.

In fact, with this feature in mind, a design-time configuration with less contexts than
lane groups can also make sense, as it would allow part of the processor to be powered
down while continuing to run the application at decreased speed. This makes sense
especially when the application does not always have enough instruction level parallelism
(ILP) to use all lanes efficiently.

3.2.4 Requesting a reconfiguration

In the old ρ-VEX processor, reconfiguration could only be done using the debug interface.
However, it is desired that the ρ-VEX can do this autonomously as well. The simplest
way to allow this is to make a control register that issues a reconfiguration request when
written, based on the value written to it.

As there are multiple sources which could theoretically request a new configuration
simultaneously, some kind of arbitration needs to be done. What scheme is used to
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determine which source wins arbitration is not important as simultaneous accesses are
unlikely. However, it is important for a program to be able to detect if it lost arbitration,
so some kind of status register is also needed.

To illustrate this, consider the following example. Two threads are performing com-
putation jobs in parallel from a shared queue of pending jobs. When they need to enter
a critical section to claim the next job from the queue, reconfiguration may be used, by
simply claiming all the resources of the processor. This effectively halts the other thread,
ensuring private access to the shared resource. At the same time, the critical section will
execute as fast as possible, as the thread now has all computational resources available
to it. Now consider the scenario where both threads want to enter a critical section at
the same time. They both request a reconfiguration, but one thread inevitably loses
arbitration and is stopped by the other. When the winning thread leaves the critical
section, it allows the losing thread to run again. Now, if there is no way for the losing
thread to determine that it has lost, it must assume incorrectly that it has successfully
entered the critical section when it really has not.

Another special situation that should be handled in some way is an erroneous recon-
figuration request due to a software bug. It is desirable to detect such errors, as they
would lead to completely undefined behavior, possibly also compromising the debugging
system, especially in self-hosted debug mode. One way to deal with an invalid reconfig-
uration request is to trap the requesting thread, but this would require the request to be
validated in a single cycle. Another way is to simply ignore invalid requests while setting
an error flag in a status register. Since a status register is already needed for determining
the source that won arbitration, it makes sense to just add the flag to that register.

It is desirable to allow an interrupt to trigger a reconfiguration automatically as well.
The only hardware requirement for this is an additional control register and an additional
input to the arbitration logic. Two use cases for such a system are presented to illustrate
why this is desirable.

The first use case is power saving. With the system as described thus far, it is already
possible to essentially power down the processor by simply disconnecting all lane groups
through reconfiguration. However, without this system, there would be no way to recover
from that state. With it, a timer peripheral could for instance be set to ‘wake up’ the
processor with an interrupt after a set amount of time passes.

The second use case has to do with interrupt latency. Consider a single threaded
program that normally runs in context one. Such an automatic reconfiguration system
could then be set up to reconfigure the processor to context zero when an interrupt
occurs. Context zero is then immediately trapped due to the pending interrupt. It can
then handle the trap without needing to first save the state of the interrupted program or
needing to restore it later, as no program was running on context zero in the first place.
Considering that the ρ-VEX has a large amount of registers, the time and energy saved
because of this can be significant if interrupts are common. When the interrupt has been
handled, it manually re-enables interrupts, requests a reconfiguration back to context
zero and runs a while(1) loop, until another interrupt restarts the whole sequence.
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3.2.5 Configuration word encoding

The encoding for the value that is written to the reconfiguration register, called the
configuration word, is to be specified. The ρ-VEX is a 32-bit architecture, so it is desirable
to limit the size of the configuration word to 32 bits. It is also desirable to make the
encoding ‘human readable’ in hexadecimal form to ease manual debugging.

To accomplish this, let us map each lane group to a nibble. The three least significant
bits of each nibble specify the context it should be connected to if the most significant
bit is zero, or a special mode if it is one. The only special mode defined corresponds
to the nibble 8, which disconnects the lane group. Values 9 through F are reserved for
future expansion and are considered erroneous by the decoder. If for instance only four
contexts are implemented, values 4 through 7 are also considered erroneous. The nibbles
for unimplemented lane groups must be set to zero so they do not need to be specified in
the hexadecimal value. Finally, any lane group to context mapping that does not satisfy
the binary tree structure discussed in Section 3.2.1 and exemplified by Figure 2.10 is also
rejected by the decoder.

To give some examples, consider an eight-way ρ-VEX with four lane groups and four
contexts. 0x0012 then specifies a 1x4+2x2 lane configuration, with four lanes working on
context zero, two lanes working on context one and the remaining two lanes working on
context two. 0x8833 would map to 1x4 mode for context three, with the remaining four
lanes in power-down mode. 0x0112 is erroneous, because it does not satisfy the binary
tree requirement.

The 32-bit size of the register limits the maximum number of lane groups to eight.
That would take at least a 16-way ρ-VEX, twice as large as what is currently considered
practical, thus still allowing room for expansion. The three bits per lane group used
to encode the context limits the maximum number of contexts to eight; again, twice as
much as the nominal value.

3.2.6 Decoding and committing configurations

When a reconfiguration is requested, the configuration word must be error-checked, de-
coded into various signal formats and finally be committed. One of the things that the
ρ-VEX project attempts to prove, is that the area overhead incurred by reconfiguration
support is worth the cost. It is thus desirable to make the hardware that fulfills these
tasks as small as possible. Furthermore, it is not expected that a practical application
will ever need to reconfigure often enough that a delay in the order of ten clock cycles will
be significant. Therefore, a multi-cycle decoder is preferred over a single-cycle decoder
which uses more area.

As reconfiguration requests are thus not instantaneous, the way in which a thread
advances after requesting a reconfiguration is to be determined. Perhaps the most obvious
way to deal with this would be to halt its execution immediately after it makes the request.
However, this would require instructions that have already been fetched to be invalidated,
only for them to be fetched again when the context resumes. In contrast, if it is not
required that the instructions immediately following a reconfiguration request execute
in the new configuration, decoding the new configuration can be done in parallel to
further program execution. A blocking reconfiguration request can then still be emulated
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in software if necessary with the addition of a ‘busy’ flag in the reconfiguration status
register.

A second design choice concerns how a new configuration is committed. In particular,
the decoded configuration signals can be made part of the pipeline. Alternatively, the
reconfiguration controller could request the affected contexts to stop fetching instructions
and then wait for all affected lane groups to drain their pipelines before committing
the configuration. While the former is faster, the latter has several advantages and is
therefore used. First of all, it requires less area, as the logic needed to correctly halt
and resume execution will already be necessary for the debug system. Secondly, this
implementation allows external sources to delay the reconfiguration as well: as we shall
see in Section 3.6.3, the write buffer in the cache needs to be empty before reconfiguration
to guarantee consistency. Thirdly, it ensures that all the register files of the ρ-VEX
relating to the reconfigured contexts are in a consistent state.

3.3 Trap control logic

In this section, the major design choices for the precise trap control logic are listed. We
will first specify the trap system in general, and then determine how traps are affected
by runtime reconfiguration.

3.3.1 Trap identification

We have seen in Section 2.2.3 that there are many ways in which a processor can convey
information about a trap to the application. Thus, before anything else, let us decide on
the approach that will be taken in the new ρ-VEX processor.

The first choice is whether to make the trap handler address dependent on the trap.
The obvious advantage of having a separate trap handler for each trap is that there
does not need to be any logic in the handler to determine what the cause of the trap
is. However, a disadvantage is code size, as saving the state of the interrupted program
requires in the order of a kilobyte worth of instructions in the ρ-VEX due to the large
number of registers. This also affects instruction cache performance. Thus, it makes sense
for the ρ-VEX to have only a single trap handler for as far as the hardware is concerned,
and let the software branch to the appropriate handler after the state is saved.

The address of the trap handler is specified to be configurable using a context control
register. This allows each thread to specify its own trap handler, if necessary.

Having a single trap handler for all traps requires that the cause of the trap must be
explicitly identifiable in some way. In the ST200, this is done using two control registers:
EXCAUSE and EXADDR [20, pp. 22, 78-79]. EXCAUSE is one-hot encoded, allowing up to 32
different traps. EXADDR is a 32-bit value that holds additional information for some of the
traps. A similar approach will be used in the ρ-VEX, although the trap cause register
is 8-bit and is encoded as an integer. EXADDR is called the trap argument in the ρ-VEX,
because it will be used for holding information other than addresses as well, such as an
external interrupt index, or the index of the lane that caused the trap.
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3.3.2 Returning from a trap handler

In the ρ-VEX architecture, the regular indirect jump instruction (IGOTO) can not be used
to return from a trap. This is because it would require the link register to be set to the
trap return address, whereas the link register needs to be restored to the value it held at
the time of the trap, just like every other register. For this purpose, the VEX architecture
has a special instruction, RFI, that branches to the interrupt return register instead [27,
fig. 9.1]). This instruction is used in the new ρ-VEX processor for returning from a trap,
replacing the VEX interrupt return register with the trap point context control register.

A preempting operating system kernel must be able to set the trap return address in
order to switch to a different thread. Thus, it is required that the trap point register is
writable.

3.3.3 Nested traps

One thing we have not paid attention to thus far is the possibility of a nested trap. Nested
traps are unavoidable if a fault occurs within the trap handler. If, at that point, the trap
handler has already saved the state of the interrupted program to the stack, nested traps
are not a problem unless the stack overflows. However, if a trap occurs while the state
is being saved, it may not be possible to restore the state of the originally interrupted
program. The same is true near the end of the handler, as the trap point register is used
as the trap return address, and thus needs to be restored at some point.

This problem is solved as follows. A context control register flag called ready for
trap (RFT) is specified. The value of this flag selects between two separate trap handler
address registers. The first of these, simply called the (normal) trap handler, is selected
when RFT is set. The alternative handler, called the panic handler, is selected when RFT

is cleared. RFT is automatically cleared after the processor jumps to the trap handler
or panic handler. Its previous state is copied to a different register. When the handler
executes the RFI instruction to return to the interrupted program, the value of RFT is
restored from the copy.

As the name suggests, the flag specifies whether the program is ready to receive a
trap, or if it is currently saving or restoring registers within the trap handler. It is the
responsibility of the software to set the RFT flag as soon as possible after saving the state
of the interrupted program, and to clear it again as late as possible before restoring the
trap point register.

With this mechanism in place, the normal trap handler is only used when the program
is in a state that can be restored, while the panic handler is used in cases when this is
not possible. The difference is thus that the trap handler can return to the application,
while the panic handler cannot. The panic handler can thus only be used to report a
serious problem with the program before stopping execution entirely or resetting.

3.3.4 Interrupts

Unlike faults, interrupts can be postponed. The act of disabling interrupts is called
interrupt masking. It is important for a processor to be able to mask all interrupts. To
understand this, consider the case where two interrupts occur almost at the same time.
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It may then happen that the second interrupt occurs while the trap handler is still saving
the state of the interrupted program, causing the panic handler to be run if this interrupt
cannot be masked.

To accomplish this, we specify a flag very similar to RFT: interrupt enable (IEN). When
this flag is cleared, interrupts are masked, causing only fault traps to be handled. Like
RFT, IEN is automatically saved and cleared when the trap handler is entered, and restored
when RFI is executed.

The software may wish to mask interrupts temporarily for many reasons, for example
when entering a critical section in a sequential program. Obviously, it may do this by
writing to IEN. However, the ρ-VEX is a pipelined processor. That means that the
instructions following the instruction that clears the IEN flag have already been fetched
by the time that IEN is actually modified. If interrupts are handled like they are in the
old ρ-VEX processor, i.e., by simply forcing the next PC to the handler, an interrupt
could thus appear to occur after an instruction that clears IEN. This is illustrated in
Figure 3.3. With the old processor, this was handled by inserting a sufficient amount of
no-operations (NOPs) after IEN is cleared, before actually entering the critical section.
Note that a similar situation occurs when re-enabling interrupts, causing the interrupt
to be delayed unnecessarily, as shown in Figure 3.4.

Interrupts disabled
Cycle 1 2 3 4 5 6

Insn. 1: disable int. IF EX0 EX1 WB
Insn. 2 IF EX0 EX1 WB
Trap handler IF EX0 EX1 WB

Figure 3.3: Pipeline diagram of an interrupt that is handled by simply setting the PC,
as is done in the old processor, seemingly occurring after interrupts are disabled. The
control register that disables the interrupts is updated between EX1 and WB.

Interrupts enabled
Cycle 1 2 3 4 5 6 7

Insn. 1: enable int. IF EX0 EX1 WB
Insn. 2 IF EX0 EX1 WB
Insn. 3 IF EX0 EX1 WB
Trap handler IF EX0 EX1 WB

Figure 3.4: Pipeline diagram illustrating unnecessary interrupt delay after re-enabling
interrupts when an interrupt is handled by simply setting the PC, as is done in the old
processor. The interrupt enable control register is updated between EX1 and WB.

Instead, the new processor handles interrupts as if they are traps occurring in the stage
immediately before the clock edge that updates IEN. This is illustrated for re-enabling
interrupts in Figure 3.5. By mentally replacing instruction 2 with one that disables
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interrupts instead, it can be seen that the last instruction that can then be interrupted
is instruction 2.

Interrupts enabled
Cycle 1 2 3 4 5 6 7 8 9

Insn. 1 IF EX0 EX1 WB
Insn. 2: enable int. IF EX0 EX1 WB
Insn. 3 IF EX0 EX1! ��WB
Insn. 4 IF EX0 ��EX1 ��WB
Insn. 5 IF ��EX0 ��EX1 ��WB
Trap handler IF EX0 EX1 WB

Figure 3.5: Pipeline diagram illustrating approximately how the new processor handles an
interrupt that was pending while interrupts were disabled. The interrupt enable control
register is updated between EX1 and WB. In reality, the latency is slightly longer, as we
will see in the implementation.

While this may be somewhat less performant than the old processor in some cases,
no NOPs are required. This allows the control register to be written directly from C
without needing to somehow force the compiler to insert NOPs after the write. It is also
easier to work with in assembly, as one does not have to mentally visualize the pipeline
to use IEN correctly.

Interrupts need to be identified in some way, just like any other trap. We have
already specified that traps in general are identified by an 8-bit trap cause and a 32-
bit trap argument. In order to not make the trap cause definitions dependent on the
processing system, a single trap cause value is defined for all interrupts, and the trap
argument is used to identify the interrupt.

3.3.5 Dealing with runtime reconfiguration

For the most part, runtime reconfigurability does not significantly affect the design of
the trap control logic. However, there is one notable exception. Consider the case where
the ρ-VEX is running a generic binary thread in two-way mode and a trap occurs. While
the trap handler is being executed, the ρ-VEX reconfigures that thread to four-way or
eight-way mode. It is then possible that the trap handler needs to return to an address
that is not actually the start of a four-way or eight-way bundle.

If variable-length bundles are supported (one of the goals of this project), this is not
necessarily a problem. The processor would then simply execute the remaining syllables
in the bundle until it encounters a stop bit. However, variable-length instruction support
is rather expensive in terms of area and cycle time, and it is thus desirable to make it an
optional feature, selected at design-time.

Without variable-length bundles, it is a requirement that the fetched bundle is always
aligned to the current bundle size. That is, if the ρ-VEX is running in eight-way mode, the
fetched address must be 32-byte aligned. As we have illustrated, the PC may not actually
meet this requirement after returning from a trap. The way in which this will be handled
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is by rounding the PC downward to the previous alignment point before forwarding it to
the instruction fetch logic, and disabling syllables that reside at addresses before the real
PC.

There is a second problem with returning from a trap that has to do with long
immediate syllables. As we will see in Section 3.7.2, long immediate syllables can reside
in the other syllable within an aligned syllable pair, or within the preceding syllable
pair within a bundle, shown in Figure 3.12. The latter case is handled in two- and
four-way mode by checking the subsequent pipeline stage (corresponding to the previous
instruction fetch) for long immediates. Without additional logic, these long immediate
syllables would be lost when the trap handler returns to a mid-bundle address, as the
state of the pipeline stage registers is not restored.

The approach used to solve this problem is to check whether the trap point is aligned
to a generic binary bundle when returning from a trap. If it is not, the processor jumps to
the trap point minus the current instruction fetch size, and immediately invalidates the
syllables fetched in that instruction to prevent them from executing again. This ensures
that the long immediates are in the pipeline as they should be, if any exist. This process
is called long immediate prefetching, and is illustrated in Figure 3.6.

Cycle 1 2 3 4 5 6 7

Pair 1 IF EX0 EX1 WB
Pair 2 IF EX0! ��EX1 ��WB
Pair 3 IF ��EX0 ��EX1 ��WB
Trap handler IF EX0 EX1 WB

(a) Trap entry.

Cycle 1 2 3 4 5 6 7

RFI IF EX0 EX1 WB
Pair 1 IF EX0 EX1 WB
Pair 2 IF EX0 EX1 WB
Pair 3 IF EX0 EX1 WB

(b) Trap return.

Figure 3.6: Pipeline diagram illustrating long immediate prefetch in two-way mode after
returning from a trap to a mid-generic-bundle address. Note that the trap point points to
pair 2. The prefetch of pair 1 is needed because pair 1 may contain a long immediate for
pair 2, and must therefore be in the pipeline, even though it must not be executed. Note
that the depicted latency from trap to handler is shorter than it is in the implementation.

3.4 Debug interface

In this section, the debugging interface is designed. We first select the overall approach
to use, and then define define the which features are to be implemented.
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3.4.1 Self-hosted vs. external debugging

In Section 2.2.4 we have seen two distinguishing approaches to debugging: self-hosted
and external debugging. We have also seen that, in the latter case, the link between
target and host can be managed in software or in hardware.

As the ρ-VEX is closely related to the ST200 series, it is tempting to copy its design to
the ρ-VEX. That is, in order to give control over the debugged process to the debugger,
a debug trap is generated, handled by an alternate trap handler with alternate state
saving registers [20, pp. 106-107]. This method supports self-hosted as well as external
debugging, as the debug trap handler may either be handled by the operating system
(OS) if there is one or by a piece of code that communicates with an external debugger.

A major disadvantage of this method, however, has to do with the fact that the ρ-VEX
is still actively being developed. Therefore, the hardware that the debugging software
runs on may contain bugs as well, possibly compromising the debug link. Obviously, in
a hardware-based debugging solution, the hardware could also be compromised, but this
is expected to be less likely, as it is unlikely to be modified as much as the rest of the
processor. It is thus more desirable to use a hardware-based solution. However, keeping
self-hosted debug support is also desirable, in order to support OS-based debugging in
the future.

In order to satisfy both requirements, we specify that conditions encountered during
program execution that require control to be handed to the debugger are handled as a
special kind of trap. How these special traps are handled depends on whether an external
debugger is connected.

The ρ-VEX boots up in self-hosted debug mode. In this mode, debug traps are
handled just like normal traps, going either to the trap handler or panic handler. This is
sufficient as long as the trap handler itself never needs to be debugged in this way, which
is not necessary when debugging an application running in an OS environment. In order
to prevent accidentally setting off a breakpoint while inside the trap handler, debug traps
can be masked using a breakpoint enable flag that works in the same way as the RFT and
IEN flags (Sections 3.3.3 and 3.3.4). To make this flag work intuitively, debug traps must
be generated in the memory request stage, like interrupts.

When an external debugger connects to the ρ-VEX, it may set a context control
register flag to switch to external debug mode. In this mode, all writes to debug-related
control registers by the software running on the ρ-VEX are ignored, and debug traps are
handled by halting the processor instead of jumping to the trap handler. The trap cause
is recorded in a special register as the reason for halting.

3.4.2 Breakpoints and watchpoints

In order to support all the basic features mentioned in Section 2.2.4, we define three kinds
of debug traps that can halt program execution.

• The single step trap. When activated by setting a single step mode flag in the
control registers, this trap is always generated for the second bundle fetched after
resuming execution. Because ρ-VEX traps always invalidate the trapped bundle,
only a single bundle is committed.
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• The hard breakpoint/watchpoint traps. These are generated by hardware when the
PC or the address of a memory operation matches the respective breakpoint/watch-
point address context control registers. These traps can be configured individually
to be a breakpoint, a write watchpoint or an access watchpoint, and they can of
course be disabled.

• The soft breakpoint trap. These are never generated by hardware, but may be
generated from code using the TRAP syllable. This allows a debugger to set an
unlimited amount of breakpoints by replacing existing syllables.

In addition to these traps, an external debugger can also halt the program manually by
setting the ‘break’ context control register flag. This is not possible in self-hosted debug
mode.

3.4.3 Reconfiguration and parallel programs

Reconfiguration, and thus parallel execution, is handled by giving each ρ-VEX context
its own debug interface. This is easily done by making all debug-related control registers
context-specific. This essentially makes each ρ-VEX context behave like an independent
single-core processor. This does mean that there is no way to automatically halt execu-
tion of a parallel program for all contexts simultaneously by means of a breakpoint or
watchpoint, so it may be difficult to debug, for instance, mutual exclusion algorithms.
Developing logic for such things is left as future work for the sake of not overcomplicating
the first implementation.

3.4.4 External debug link and software

In the old processor, the JTAG debugging interface supplied by GRLIB (ahbjtag, [35,
pp. 50-55]) was used for communication between the ρ-VEX and the host. This interface
simply allows access to the memory bus, thus also to the ρ-VEX control registers. In
addition to the JTAG connection, a universal asynchronous receiver/transmitter (UART)
serial port peripheral is used to allow the application running on the ρ-VEX to output
debug information or interact with the user. The ML605 and VC707 have onboard
converters for JTAG and UART to USB, allowing the FPGA to connect to the host
computer using two USB cables.

As mentioned in [5, pp. 45] however, interfacing with the USB-JTAG converter
efficiently on the host side is difficult. For this reason, a new peripheral is designed,
based completely on the UART. Because there is only one USB-UART interface avail-
able on the development boards, both the bus transaction commands and the arbitrary
user-application data have to be encoded in a single hardware-managed protocol. Error
detection and retransmission is incorporated into the protocol in order to protect bulk
memory transfers.

While interfacing with a UART serial port on a computer is simpler, the theoretical
bandwidth limit is much lower. Specifically, the onboard USB-UART converter only
supports bitrates of up to 115200 bits/second. This limits the transfer speed to 11520
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bytes/second1. In comparison, the JTAG interface reaches about one MiB per second in
practice. However, the UART-based interface is not mutually exclusive with the GRLIB
ahbjtag component. Thus, the latter may be used for faster bulk transfers if needed, for
example to load the approximately 4 MiB ρ-VEX Linux kernel port.

Even if using a serial port is simpler, interfacing software still needs to be written.
In particular, it is desired to allow the existing ρ-VEX gdb port to connect to the new
debug system. The software written to accomplish this will be presented in Section 4.6.

3.4.5 Trace unit

One of the key novel features of the ρ-VEX processing system presented in this work is
the reconfigurable cache. In order to evaluate its performance, a simulation system would
need to be written, or alternatively, the hardware could be used, if a way is provided to
record (trace) the accesses to the cache. As creating a simulator for the ρ-VEX and this
cache would cost considerable effort, it is desirable to use the hardware. Thus, a trace
unit is specified as part of the debug system.

In order to be usable for evaluating cache performance, the trace unit must at least
be capable of tracing program flow (i.e., branches) and the addresses for all memory
instructions. In order to make it more interesting for debugging in general, data written
to registers and the written or read data for memory instructions can also be traced.
Finally, to be able to debug the instruction cache, the fetched instructions can be traced
as well, to allow them to be compared against the program binary.

The output of the trace unit is specified to be a stream of bytes, outputted at a
maximum rate of one byte per cycle. This means that the processor will run significantly
slower when tracing is enabled, as a single byte is nowhere near enough to encode all
information for an instruction. However, the debug link is unlikely to achieve even this
bandwidth; recall that the UART based debug interface designed in this work can achieve
little more than 10 kiB per second, and even the JTAG interface would not be able to keep
up. Therefore, it is more important to have a slow interface that attempts to compress
the trace data packets as much as possible than to have a fast interface. The details of
this are left to Section 4.2.13.

3.5 Variable-length bundles

In this section, the design for the variable-length bundle support logic is presented. The
design can be divided into three parts: the way in which the length of a bundle is
encoded, the way in which bundles are fetched, and the way in which the syllables in the
bundles are distributed over the lanes. These three parts are handled in the following
sections. The variable-length bundle support logic is also presented in the paper attached
in Appendix B.

1Neglecting byte-level protocol overhead and assuming 8n1 transmission, i.e., one start bit, eight data
bits, no parity bit and one stop bit for each transmitted byte.
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3.5.1 Bundle encoding

There are many different approaches to encoding the length of a bundle. Without going
into detail though, the binaries for the old processor already take this into consideration:
each syllable has a bit dedicated to specifying whether it is the last in the bundle. This
bit is called the stop bit. In order to retain as much toolchain compatibility as possible,
this method is used in the new processor as well.

3.5.2 Fetching bundles

A defining characteristic of any variable-length instruction fetch unit is that it must in
some way provide some amount of instruction memory to the processor that is in the
worst case aligned to some smaller size than the size of the block being fetched. This is
problematic, as a normal memory cannot service such a request in a single cycle. Two
possible design approaches are considered: one where the memory and cache are designed
to handle misaligned accesses, and one where the ρ-VEX hides the complexity from the
memory system. These designs are depicted in Figure 3.7.

Program counter

Even

Memory banks

Odd

«

Instruction

(PC+4)»3 PC»3 PC&7

(a) Handled in memory.

Program counter

Memory

«

Instruction

(PC+3)»2 (PC-1)&3

Reg.

(b) Handled by the ρ-VEX.

Figure 3.7: Two approaches to modifying the instruction fetch system to handle mis-
aligned bundles for a four-way ρ-VEX, or an eight-way ρ-VEX where a bundle must be
aligned by syllable pairs. The unit for the program counter is a syllable or a syllable pair
respectively. The datapath is highlighted for PC = 0x15. The area within the dashed
rectangle is implemented in the memory or cache; the area outside of it is implemented
within the processor.

In the memory-based approach (Figure 3.7a), the memory is divided up into two
banks. The access port for each bank is as wide as a maximum size bundle. The left
bank contains all even memory locations, whereas the right one contains the odd ones.
Both are addressed at the same time with different addresses, decoded from the incoming
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address in the units at the top. Note that one of these requires a full adder almost the
entire width of the memory address. A bitshift is used at the end to select the requested
memory region from the fetched data.

In the ρ-VEX-based approach (Figure 3.7b) we essentially need to query the memory
twice for a misaligned access, requiring two cycles. A register stores the result of the first
fetch. Notice, however, that as long there are no branches, the previously performed fetch
will always be one of the required fetches. Thus, we only need a two-cycle fetch when
the program branches, and only if it branches to a misaligned PC. Notice that the width
of the subtract-one operation is only two bits in this case, allowing it to easily fit within
a single level of FPGA logic, but that the adder needs to be almost full width, similar
to the adder needed in the memory-based approach. As we will see in Section 4.2.6,
however, the adder in the ρ-VEX based solution can be implemented in parallel to the
PC+1 adder, and thus does not affect the critical path.

While the ρ-VEX-based approach is slightly less performant when branching, it is
chosen instead of the memory-based solution to keep the requirements on the memory
system as simple as possible. This should make it easier to design alternative memory
solutions for the ρ-VEX in the future.

3.5.3 Syllable distribution

In the old processor (and the new processor if variable-length bundle support is disabled
at design time), syllables are mapped to the execution lanes one-to-one based on their
location within the bundle. When variable-length bundles are enabled, this is not desir-
able. The main reason for this is as follows. In generic binaries, any branch syllable must
be the part of the last syllable pair. As it is desirable to only support branch syllables
in one lane for logic and routing resource reasons, only the last or second to last lane
supports them. That means that, if the trivial syllable mapping is used, any bundle that
includes a branch must be seven or eight syllables long.

In order to prevent this, we specify that branch syllables must always be the last
syllable in a bundle, regardless of the size of the bundle. Initially, the trivial mapping
is used. In some pipeline stage before the syllables are executed however, logic will be
instantiated to reroute the last syllable within the bundle to the lane that contains the
branch unit. Note that, without additional logic, this is only possible for branch syllables,
because these are never complemented by a long immediate. The rerouting logic is
accompanied by logic that invalidates lanes that are mapped to syllables belonging to the
next bundles, i.e., after the syllable with the stop bit set. An example of the instruction
routing is shown in Figure 3.8.

It should be noted that it is possible to distribute syllables in such a way that the
multiplexers that form the shifter in Figure 3.7b can be simplified. The ST200 uses such
an approach, as shown in the paper presented in Appendix B. Such a distribution is more
sophisticated to implement in the assembler, however. Such improvements are left for
future work.
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Instruction
fetch result

0: add
1: sub
2: brf + stop
3: and
4: or
5: limmh to next

7: cmpeq
6: add + stop

Stop bit
logic

Execution
lanes

0: add
1: sub
2: nop
3: nop
4: nop
5: nop
6: nop
7: brf

0: and
1: or
2: limmh to next

4: cmpeq
3: add + stop

5: sbit
6: ldw
7: br + stop

0: and
1: or
2: limmh to next

4: nop
3: add

5: nop
6: nop
7: nop

Figure 3.8: Syllable distribution in the new ρ-VEX processor with variable-length bundle
support, shown for two example bundles.

3.6 Cache

In order to allow the ρ-VEX to use large off-chip memories efficiently, a suitable cache is
needed. As the ρ-VEX does instruction and data accesses in parallel, it needs a separate
instruction and data cache. The instruction cache will be treated in the first section, the
data cache in the second. The specific project requirement that the cache needs to be
coherent and some cache consistency issues relating to reconfiguration are discussed in
the third section.

3.6.1 Instruction cache

The ρ-VEX fetches one 32-bit instruction for each of its lanes per cycle. When the recon-
figuration features are not present or all lane groups are working together, its instruction
fetch ports work together to fetch a single, aligned block of memory. However, when
the ρ-VEX is reconfigured to run multiple threads simultaneously, the ports are said to
be decoupled, and each can fetch a different block of memory. These blocks are still
guaranteed to be aligned on their own, but the size of the block is smaller and thus the
alignment constraint is relaxed.

In the most trivial design, the instruction fetch ports of each lane group are simply
given their own independent caches. However, such a design suffers from significant
inefficiencies when multiple lane groups are coupled. Consider the case where the usual
eight-way reconfigurable ρ-VEX is running in 1x8 mode. Also assume, without loss of
generality, that we are using caches with a line size of 64 bits, i.e., the size of the access
port. Now, lane group zero will now only fetch instructions at line addresses 4i for i ∈ N,
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lane group one only accesses 4i + 1, and so on. This implies that only a quarter of the
available cache is actually used. This is illustrated in Figure 3.9.

8-way reconfigurable r-VEX: 1x8
L1 L2L0 L3 L5 L6L4 L7

Cache 0 Cache 1 Cache 2 Cache 3

Figure 3.9: Diagram illustrating the inefficiency of using independent conventional in-
struction caches for each lane group of the ρ-VEX. The cache lines that are used in 1x8
configuration are highlighted.

Note that we cannot simply remove the unused locations, as they are used in 4x2
mode. One solution could be to ignore two of the least significant bits of the address in
eight-way mode, and ignore one in four-way mode. This would however require a cache
flush for every reconfiguration, as the cached addresses would not be compatible. Ideally
though, the instructions should be stored in the cache in such a way that reconfiguring
incurs little to no cache-related performance penalty.

In order to accomplish this, let us start from a four-way set associative cache (or
as many sets as the target ρ-VEX has lane groups). Also, let us define the cache lines
to be as wide as a full bundle, so 256-bit for an eight-way ρ-VEX. Now, when the ρ-
VEX reorganizes its lane groups, we let the cache reorganize its sets along with it. For
example, when reconfiguring from 1x8 to 2x4, the four sets are redistributed to form
two independent two-way set associative caches. This organization is shown for two
configurations in Figure 3.10.

With this cache organization, there is no cache penalty when reconfiguring a thread
from a smaller to a wider issue width, as the cache block(s) that it was using in the
smaller configuration are still available as sets in the wider configuration. Going in the
other direction, half of the cache will no longer be accessible, so there will be some penalty.
However, this penalty can be minimized by using an appropriate replacement policy in
the set associativity logic.

In the instruction cache implemented in this work, a very simple replacement policy
is used: the bits immediately following the cache tag select the set to use. This makes
the cache behave like a direct-mapped cache, thereby losing all advantages of a normal
set associative cache, but at the same time improving locality within a single set. A
status register will be made available to the ρ-VEX indicating which set serviced the
most recent instruction fetch, allowing it to shrink a context in such a way that that set
is still included in the new configuration.

One way to have both the benefits of a normal set associative cache and the recon-
figuration benefits is to use a better replacement policy normally, such as least recently
used (LRU), while allowing the ρ-VEX to restrict replacement to a certain subset of
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8-way reconfigurable r-VEX: 1x8
L1 L2L0 L3 L5 L6L4 L7

Set associativity routing

Block 0 Block 1 Block 2 Block 3

(a) 1x8 mode.

8-way reconfigurable r-VEX: 1x4+2x2
L1 L2L0 L3 L5 L6L4 L7

Set assoc. routing

Block 0 Block 1 Block 2 Block 3

- -

(b) 1x4 + 2x2 mode.

Figure 3.10: Diagram illustrating the organization of the reconfigurable instruction cache.
Instead of showing the generalized reconfigurable logic, the effective organization for two
example configurations is shown.

the available sets using a control register some time before it reconfigures. Such more
complex replacement policies are left as future work.

3.6.2 Data cache

The ρ-VEX can access one memory location per cycle for each lane group. It can read
32-bit values, or write 8-bit, 16-bit or full 32-bit values. All accesses are aligned. When
lane groups are tied together, the lane group used to access the memory depends on
the location of the memory syllable within the bundle, while allowing multiple memory
operations to be executed simultaneously.

As we did with the instruction cache, we will start with the trivial design, where
each lane group is simply connected to its own data cache. This does not pose the
same problem as what we have seen with the instruction cache, as the alignment of
the accessed addresses is not a function of the configuration. Still, both widening and
shrinking a context through reconfiguration is likely to incur a cache penalty, similar
to the trivial instruction cache solution. When a context is widened, the chance that
a memory location that was in the cache can still be accessed is one half, depending
on what the index of the memory syllable within the bundle is, and what the previous
configuration was. Similarly, when a context is shrunk, half of the cache will be lost.

More importantly though, when a context runs on two or more lane groups and the
cache uses a write buffer, cache consistency problems arise. Consider the scenario where
a value is written to some address using cache block zero, and subsequently read using
cache block one, because the store and load syllables were put in different places within
the bundles. If block one has a copy of this address, the read will not go to to memory.
Meanwhile, block zero may still have the write request waiting in the buffer. Even if
cache coherence is implemented, the data in block one may not have been invalidated
yet, as the write has not actually gone to memory yet.
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Using a similar organization as what was used in the instruction cache solves these
problems. However, if this is done, multiple writes per cycle per context cannot be
supported. Recall that we did not have this problem with the instruction cache because
each context always fetches a single aligned block of instructions. That is, even though
the block gets larger as lane groups are combined, it still remains an access to a single
cache line.

The problem could be solved by adding access ports to each data cache block. How-
ever, memories with more than two ports are expensive on the FPGAs that will be used,
and as we will see in the next section, the tag memory already needs a secondary port in
order to support cache coherence.

In the end, the choice was made to limit the number of accesses per context to one,
resulting in the organization shown in Figure 3.11. The signal shown as a red dotted
arrow from the arbitration logic back to the ρ-VEX is a fault signal, activated when
simultaneous accesses are attempted.

8-way reconfigurable r-VEX: 1x8

DataCtrl

Set associativity routing

Block 0 Block 1 Block 2 Block 3

L.G. 0
DataCtrl

L.G. 1
DataCtrl

L.G. 2
DataCtrl

L.G. 3

Arbitration logic

(a) 1x8 mode.

8-way reconfigurable r-VEX: 1x4+2x2

DataCtrl

Set assoc. routing

Block 0 Block 1 Block 2 Block 3

L.G. 0
DataCtrl

L.G. 1
DataCtrl

L.G. 2
DataCtrl

L.G. 3

Arbitration logic

(b) 1x4 + 2x2 mode.

Figure 3.11: Diagram illustrating the organization of the reconfigurable data cache. In-
stead of showing the generalized reconfigurable logic, the effective organization for two
example configurations is shown.

The same simple replacement policy that was used for the instruction cache is also
used for the data cache. This is nowhere near optimal. As with the instruction cache,
implementing a more efficient replacement policy is left to future work.

3.6.3 Coherence and consistency

As per the project requirements, the cache must be coherent. This is achieved by means
of bus snooping. Whenever a write access is requested on the bus by another master
than the snooping cache block, a tag lookup is performed to see if a local copy of the
written memory is stored in the block. If it is, that cache line is invalidated. In order to
not unnecessarily stall read hits, these snooping tag lookups can be done in parallel to
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normal tag lookups. Both the instruction and data caches have a bus snooping interface,
the former theoretically allowing self-modifying code without needing a full cache flush.

As bus snooping is used, every write must go to the bus. Thus, the cache must be
write-through. In order to not incur the full memory access latency for each and every
write, a write buffer is used. To keep the control logic simple, only a single write can
be buffered at a time in each cache block, and only read hits can be serviced while a
write is in progress. That is, a read miss does not attempt to preempt a buffered write
to potentially improve performance, but has to wait for the write to be completed first.

Write misses are handled using the write allocate approach. This prevents the need to
instantiate logic to check for buffered writes when doing a read, which would otherwise be
necessary to guarantee cache consistency. This does pose a problem however. Consider
the case where the ρ-VEX writes an 8-bit value to an address that is not currently cached.
We need to store this value in the cache somehow, before the processor can be allowed
to move on to the next instruction. This either requires a separate validity bit for each
byte in the cache, or that the cache line must be fetched from memory before the write
is committed to the cache line. The latter option is chosen for this design, because as we
will see in Section 4.3.2, the validity bits are relatively expensive in terms of area.

If one of the blocks available to a context hits during a write, that block must be used
to service the write. Otherwise, the block that hit would not be updated or invalidated
by the write until it goes to memory and the bus snooping system invalidates it. During
that time, it is undefined whether a subsequent read would return the old or the newly
written value, violating cache consistency.

It is, however, possible for multiple blocks servicing a single context to have copies of
a single piece of data. This situation can occur naturally after reconfiguring for instance
from 2x2 to 1x4, as both contexts in the 2x2 mode may have been using the same memory
location. This poses two potential problems.

The first potential problem is due to the write buffer again. If one of the original
two contexts recently wrote to the address in question, its cache block will be updated
accordingly immediately, but the other cache block is not invalidated until the buffered
write goes to memory. If reconfiguration occurs and the new context reads from the
address within this time, we end up with an undefined value as before. This problem is
solved by delaying a reconfiguration until the write buffers of all affected lane groups are
emptied.

The second potential problem occurs when the new context writes to the address.
A write is normally only serviced by one block, thus the other block will, again, not
be updated or invalidated until the write goes to memory. This problem is solved by
defining that, if multiple blocks hit, the highest indexed block will always be used for
both writes and reads. This ensures that, even while conflicting copies are stored in the
cache, the correct copy is always used. Note that the actual rule used to select the block
is arbitrary, it just needs to be consistent.

To improve the efficiency of the write buffers somewhat when multiple blocks are
coupled together, a priority encoder is used to select which block is used to service and
thus buffer the write. As we have seen, if one or more blocks hit during a write, the
highest indexed block that hit must be used, thus the highest priority is awarded to
those blocks. If all blocks missed, then priority is given to blocks that have an empty
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write buffer. If no block has an empty buffer at the time of the request, the first block to
finish its write operation will be used. Due to these last two rules, the system behaves as
if a single, deeper write buffer is implemented, as long as all the writes in question miss.

Peripheral access is supported by means of bypass accesses for the data cache only.
In addition to bypass accesses not affecting the contents of the cache, the write buffer is
bypassed. Thus, even for write operations, the processor is stalled until the bus operation
is complete. This ensures that peripheral register accesses are executed in-order. In
addition, it allows bus fault conditions to be forwarded to the processor. Bus faults are
ignored otherwise.

3.6.4 Performance measurement features

As we have already illustrated in Section 3.4.5, it is desirable to be able to measure
the performance of the cache in-system. For this reason, a number of status signals are
returned to the processor along with the read data, to be used for tracing and/or to be
wired to performance counter registers. These signals provide the following information
per cache block/lane group.

• Whether or not an instruction fetch was serviced by this block, and if it hit or
missed.

• Whether or not a data access was serviced by this block, and if it hit or missed.

• Whether the serviced data access (if any) was a read, a full line write or a partial
line write.

• Whether the serviced data access (if any) bypassed the cache.

• Whether or not a write was buffered in this block at the time of the request.

In addition, each instruction and data block can be independently flushed using a control
register. This allows programs to be restarted with an empty cache without needing to
reprogram the FPGA bitstream.

3.7 Design-time configurability

In Section 3.2 we have already mentioned some design-time configuration options to make
the system as flexible as possible, namely the number of implemented lanes, lane groups
and contexts. In this section, we consider other useful configuration options.

3.7.1 Bundle organization

Let us start with the way in which the ρ-VEX expects bundles to be organized in memory.
We define a configuration key that specifies the minimum alignment that the ρ-VEX may
expect from a bundle. This indirectly specifies two things.

Firstly, if it is less than the issue width of the processor, variable-length instruction
support logic must be instantiated to account for the relaxed alignment. If the specified
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alignment is greater than or equal to the issue width, such logic is not needed. Thus,
this key allows the existence and complexity of the variable-length instruction logic to be
specified.

Secondly, we have seen in Section 3.3.5 that long immediate prefetching does not need
to be done if the return address is known to be the start of a bundle. When variable-
length instructions are not supported, this can be determined based on the alignment of
the return address and this configuration parameter.

3.7.2 Functional unit resources

The old ρ-VEX processor allowed the hardware designer to specify which lanes should
include a multiplication unit and which should not. We can do the same thing in this
design.

Furthermore, the the lanes in which memory and branch operations differ among the
various old ρ-VEX versions. To maintain as much compatibility as possible, we can allow
the indexes of these lanes within lane groups to be specified.

Finally, we need to specify which lane allow long immediates, and to which lane they
can be forwarded. We define that long immediate syllables can reside in the other syllable
within an aligned syllable pair, or within the preceding syllable pair within a bundle, as
shown in Figure 3.12. The logic for each of these options can be enabled or disabled
as part of the configuration. To save branch unit complexity, the latter option is not
supported in combination with variable-length instruction support.

0 1 2 3 4 5 6 7

(a) From neighbor within an aligned syllable pair.

0 1 2 3 4 5 6 7

(b) From previous pair.

Figure 3.12: Diagram illustrating which lanes can forward long immediates to which lanes
in the two supported modes. Both modes can be supported simultaneously.

3.7.3 Pipeline and forwarding

A subject that we have avoided thus far is what the pipeline of the new processor looks
like, and to what degree forwarding is implemented. This is because there is no single
pipeline design. Instead of fixing the pipeline stages in which the various computational
blocks perform their computations, we will keep these blocks as small as possible and
allow the stages to be specified as configuration parameters (under certain conditions, of
course). The way in which this is done is left entirely to Chapter 4.

3.7.4 Debug resources

There may be situations in which a minimal ρ-VEX implementation is desired. Perhaps
the least important feature in such a minimal implementation is debug support. In
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particular, the trace unit requires a lot of routing resources for gathering all the traceable
information. Thus, instantiation of the trace unit is controllable using a configuration
parameter. To further save hardware, the number of hardware breakpoints is made
configurable up to a maximum of four.

3.7.5 Opcode decoding

A key feature of the original VEX instruction set architecture (ISA) and toolchain is that
it supports custom instructions. Although it is difficult to specify additional functional
unit implementations as part of the configuration, making the opcode decoding config-
urable is relatively easy. This makes the opcodes for existing instructions configurable,
and also allows support for any set of instructions to be disabled. In the latter case, the
synthesis tools may then prune unused logic that only deals with the disabled instruc-
tions. In addition, new instructions may be specified merely through configuration, as
long as these instructions can be handled by the existing datapath.

Opcodes are specified using a configuration file that is used to generate both the
processor hardware description and the user manual. Thus, if the instruction set is
modified, the documentation will automatically update. It is also used by the simulation
model to output which instruction is being executed in human-readable form, and by the
conformance test suite to assemble the test cases. It may also be used to generate the
instruction set definition for the GNU binutils port, but such a generator is left as future
work.

3.7.6 Traps

Similar to the opcode decoding, the trap cause identifiers of existing traps may be
changed. It is also possible to select which of the undefined trap causes, which may
be generated using the TRAP instruction, are handled as debug traps versus normal traps.

As was the case for the opcode decoding configuration, the trap cause configuration
is specified with a configuration file that can generate a multitude of output files. Specif-
ically, these are the hardware description files, the user manual, and C/assembly header
files to facilitate software trap decoding, and human-readable trap descriptions in the
simulation model.

The precise trap logic cannot currently be disabled or made imprecise to save logic
resources in systems that do not need this feature. This would take considerable effort,
as the trap logic is tightly woven into the pipeline and branch logic.

3.7.7 Control registers

Finally, the control register logic may also be generated from a configuration file. This
is useful as control registers are frequently added and removed to test features inside or
outside of the processor. Aside from just specifying the control register offsets, the logic
of each control register is also specified, using a custom C-like programming language that
can generate both VHDL and C code. The C code output is intended for a simulator,
although this has not yet been developed.
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The control register configuration file can be used to generate the hardware descrip-
tion, the user manual, C/assembly header files, and the aforementioned simulator sources.

3.8 Conclusion

In this chapter, we have discussed the design of the new ρ-VEX processor.
We first looked at how the control registers for the various features of the ρ-VEX

could best be implemented in Section 3.1. A distinction was made between context
control registers and global control registers, the former being local to a thread and the
latter being shared between all threads. We also discussed how the registers can be
accessed by means of the debug port.

Next, in Section 3.2, we designed the runtime reconfiguration system. The descrip-
tion of a configuration was abstracted to a mapping from lane groups (the computational
resources) to contexts (the register files and control logic), encoded in a configuration
word. We discussed in what ways a reconfiguration can be requested, how the configura-
tion word is subsequently decoded in hardware, and how the hardware synchronizes the
hardware resources before committing the new configuration.

The precise trap system is designed in Section 3.3. Here, we decided that all traps
are handled by the same set of trap handlers regardless of the cause of the trap, and that
traps would instead be identified by means of a trap cause and a trap argument context
control register. We distinguished between the regular trap handler and the panic handler
to deal with non-maskable nested traps. We specified an interrupt enable flag to prevent
interrupts from unnecessarily being handled by the panic handler. Finally, we illustrate
potential problems with returning from a trap handler after reconfiguration, and how
these problems are solved.

In Section 3.4, the debug system is designed. Here, we decided that both self-hosted
and external debugging are to be supported, and determined how this can be imple-
mented. We specified that a UART-based debug interface peripheral is needed, and that
software needs to be written to interface with this. Finally, we illustrated the need for a
trace unit and specified the required features.

Subsequently, in Section 3.5, we determined how variable-length instruction support
is to be implemented. We specified that stop bits can be best used to encode the bundle
boundaries, as the toolchain already supports this method. We then argued that it is
preferable to hide the complexity of fetching misaligned bundle from the memory system
by implementing an instruction buffer in the processor.

We then determined how the reconfigurable cache for the processor is best imple-
mented in Section 3.6. We set the requirement that a thread can only perform one
memory operation per cycle in order to be able to merge the caches belonging to sepa-
rate lane groups, improving performance in configurations where multiple lane groups are
coupled. We then discussed how transient cache performance after a reconfiguration can
be optimized, although many optimizations are left to future work. Finally, we discussed
cache coherence and consistency problems caused by runtime reconfigurations, and how
these are be solved.

The above fulfills the project requirements set in Section 1.3. To accelerate future re-
search, we specified additional requirements for design-time configurability in Section 3.7
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that are relatively simple to implement during the initial implementation compared to
adding them later.
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Implementation 4
In the previous chapter, the ρ-VEX processor and cache were designed. In this chapter,
we implement these designs.

We begin by selecting a hardware description language (HDL) to use for the imple-
mentation in the first section. In the second and third section respectively, the imple-
mentations of the processor and cache are discussed. In the fourth section, we discuss the
implementation of two processing systems that can be used to connect the processor and
cache to various on-chip memories and peripherals using the custom ρ-VEX bus archi-
tecture. In the fifth section we implement the debug UART peripheral, that allows these
systems to be connected to a computer for debugging and experimentation. Finally, in
the last section, we discuss the software that was written to interface with the debug
UART.

4.1 Language choice and code style

A major decision to be made in any hardware implementation project is the HDL to
use. In Section 2.1.3 we have discussed VHDL, Verilog and SystemC. VHDL and Verilog
are very similar languages in nature, so the choice between them is mostly a matter of
preference. Since Delft University of Technology teaches VHDL, it is the obvious choice.

SystemC, however, is very different. It is based on high-level synthesis (HLS) technol-
ogy, intending to shift more of the work from the programmer to the systhesis toolchain.
While this may be beneficial, HLS is still relatively new, with limited synthesis toolchain
support. In particular, the now legacy Xilinx ISE design suite only supports VHDL
and Verilog; support is only added in the new Xilinx Vivado design suite. At the same
time, Vivado does not support 6-series field-programmable gate arrays (FPGAs) or older
[15]. As the Computer Engineering lab currently only owns one 7-series based develop-
ment board large enough to fit the full ρ-VEX processor (the VC707) that has to be
shared between research projects, using SystemC would significantly hamper develop-
ment. Therefore, VHDL will be used as the implementation language.

In VHDL, generics may be used to configure entities. Where generics are inadequate
due to language constraints, scripts are created to generate the VHDL files. The latter
should be avoided where possible, as it precludes the possibility of having differently
configured ρ-VEX processors in a single FPGA design.

VHDL entity descriptions can become very large, because traditionally every interface
signal is specified individually. One way to solve this is to define record types that contain
all the signals that need to go from one entity to another, such that a single signal of that
record type is sufficient. Unfortunately, this does not work very well with generics, as the
contents of a record are not parameterizable. Consider, for instance, the decoded runtime
configuration signals: the size of virtually all these signals depends on the design-time
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configuration. Thus, this usual approach is not applicable.
In an attempt to nevertheless organize the interface signals, we define a signal naming

convention. Each major entity in the design is assigned an abbreviation consisting of
lowercase letters. The name of any interface signal is prefixed with the abbreviation of
the source entity, followed by a 2 (‘to’), followed by the destination entity. The separator
between the prefix and the signal name is an underscore to make it easily visible. An
example is pl2br_opcode, the branch unit opcode supplied by the lane. This allows a
programmer to very quickly identify a signal. Furthermore, interface signals are to be
grouped by function where possible.

4.2 ρ-VEX processor

In this section, we will discuss the implementation of the processor. Its structure is shown
in Figure 4.1. The abbreviations used for each entity are listed alphabetically below.

br alu mulu brku memu

pl (pipelane)

pls (pipelanes)

cxplif

fwd

dmswsbit trap

cxreg creg gbreg

gpreg

fwd

cfg

rv (rvex processor)

Data
memory

Cache
config.

Simulation
info

Cache block
affinity

Debug
access port

Instruction
memory

Run
control ...

trace

Trace data
sink

limmibuf

Delay
reconfig.

Figure 4.1: Structural overview of the ρ-VEX implemented processor. Each block repre-
sents a VHDL entity. Blocks with thick borders are instantiated multiple times, blocks
with dotted borders may or may not be instantiated based on the configuration of the
parent block.

alu Arithmetic logic unit. Handles ALU syllables.
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br Branch unit. Handles branch syllables, selects the next program counter (PC), and
controls instruction fetching.

brku Breakpoint unit. Generates a trap if a breakpoint or watchpoint is hit.

cfg Reconfiguration controller.

creg Control register bus routing logic.

cxplif Context-pipelane interface. Connects the lane-based resources with the context-
based resources depending on the current configuration.

cxreg Context control register file.

dmsw Data memory switch. Multiplexes between memory and control register accesses,
and optionally lengthens the latency of the control register access to match up with
the configured memory latency.

fwd Forwarding logic.

gbreg Global control register file.

gpreg General-purpose register file.

ibuf Instruction buffer. Hides misaligned instruction fetches due to variable-length in-
structions from the instruction memory.

limm Long immediate routing logic.

memu Memory unit. Handles memory syllables.

mulu Multiplication unit. Handles multiply syllables.

pl Pipelane. Contains the datapath and pipeline logic for a single lane.

pls Pipelanes. Contains all the lanes.

rv ρ-VEX toplevel entity.

sbit Stop bit routing. Performs PC+1 selection, reroutes branch syllables to the highest
indexed coupled lane, and invalidates lanes that have received syllables beyond the
stop bit of the current bundle.

trace Trace unit. Gathers execution information and compresses it into trace packets.

trap Trap routing. Handles lane/pipeline stage invalidation if a trap occurs and ensures
that the right trap information is forwarded to the branch unit and control registers
in case multiple traps occur at the same time.
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The following sections describe the processor in more detail. For the sake of coherence,
the sections break down the processor in a functional rather than a structural way. We
start with describing the reconfiguration-related logic in the first section. The second
section describes the datapath and the way in which the configurable pipeline is realized.
The remainder of the sections describe the remaining components of the processor in a
roughly chronological order from an instruction execution point of view.

In all the following sections, there are many references to control registers. Fefer to
Chapter 4 of the ρ-VEX user manual (Appendix C) for their specifications.

4.2.1 Reconfiguration

The reconfiguration system consists of two major parts: the controller (cfg) and the
context-lane interface (cxplif). The task of the controller is to arbitrate between and
decode incoming requests, and synchronize the running contexts that are affected by the
reconfiguration before reconfiguring. The context-lane interface connects the lane and
context resources together based on the current decoded configuration.

After a hard reset of the processor, the configuration is reset to 0. That is, the ρ-VEX
behaves like a single-core processor until a reconfiguration is requested. This configuration
does not need to be decoded at runtime; the decoded configuration registers are loaded
with precomputed values during reset.

There are several sources that can request a reconfiguration:

• The CRR context control register to allow the threads running on the processor to
request a reconfiguration.

• The BCRR global control register to allow the debug bus to request a reconfiguration.

• The wake-up system.

The wake-up system is part of the reconfiguration controller itself. It automatically
requests a reconfiguration to the configuration word in the WCFG register if all of the
following conditions are true:

• The S (sleep) flag in the SAWC register is set. This flag enables or disables the system.

• An interrupt is pending on context zero.

• Context zero is not already part of the current configuration.

• There is no reconfiguration in progress.

These conditions ensure that a wake-up is only requested once, and only after the thread
that configured the wake-up system has successfully disabled.

In addition to the reconfiguration request, WCFG is set to the current configuration
and the S flag in SAWC is cleared. WCFG (wake-up configuration) and SAWC (sleep-and-wake
control) are context control registers that only exist for context zero. Refer to Section 6.3
of the ρ-VEX user manual (Appendix C) for more information.
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Arbitration among the requests is performed using a priority encoder. The wake-up
request has the highest priority, followed by the CRR requests by ascending context index,
followed by the BCRR debug bus request. The index of the source that wins arbitration is
stored in the RID (requester ID) field of the GSR global control register.

Configuration decoding When a reconfiguration is requested, the new configuration
word must be checked for validity and decoded. Before anything else, a simple OR gate
is used to check if any reserved bits are set. If so, reconfiguration is canceled and the
error flag (E in GSR) is set until the next request clears it.

Decoding and further validation is done using a finite-state machine (FSM). This state
machine must check whether the lane group mappings for each context are contiguous
and aligned, as well as decode the following configuration signals:

• For each context, whether the context is connected to any lane group and, if so,
what the highest index of the connected groups is. The highest index is used
because this is the lane group that contains the active branch unit for the context.

• For each context, the logarithm of the number of lane groups connected to it. This
is used for generating PC+1 when variable-length instruction support is disabled
at design time.

• A signal for each pair of lane groups specifying whether they share the same context
or not. This is represented as a diagonal block matrix of size nxn, where n is the
number of lane groups in the processor. It is called the couple matrix.

These signals are constructed while iterating over the lane groups in the configuration
word in descending order. To that end, the FSM state consists of the index of the lane
group that is currently being decoded, in addition to a ‘busy’ bit. The ‘busy’ bit is set
when a new request is received, and cleared when decoding is complete or the requested
configuration is found to be erroneous.

While the ‘busy’ bit is set, three other things happen. Firstly, the lane group index
state is set to the number of lane groups in the system minus one. Secondly, the registers
for the decoded configuration are reset to the state where all lane groups and contexts
are disabled and decoupled. Thirdly, the configuration word is converted as shown in
Figure 4.2a. This logic assigns a number to each lane group that we will refer to as a
group identifier (ID). For enabled lane groups the group ID just maps to the context they
should be connected to, while disabled lane groups each get a unique ID. This allows all
lane groups sharing the same group ID to be coupled together. Observe that we cannot
just use the configuration word nibbles for this directly, as configurations like 0x8880 or
0x8128 would then violate the alignment and contiguity requirements.

In the ‘busy’ state, the logic shown in Figure 4.2c is active. The first part of it
determines the group ID of the current lane group. If it represents a context, the ‘enable’
configuration register for that context is set, and its ‘highest indexed connected lane
group’ configuration register is set to the current lane group.

Next, the current group ID is compared against all the other group IDs. The resulting
vector represents all the lane groups that need to be coupled together. Thus, this vector
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Figure 4.2: Configuration word decoding logic for four lane groups.

can be fed to the couple matrix configuration registers, such that every matrix index
(i, j) is set if i and j are both set in the vector.

The comparison outputs are also fed to a binary tree network. This network checks
whether the current set of coupled lane groups is aligned and contiguous. The logic
contained within each tree node is shown in Figure 4.2b. Each node outputs whether all
of the child nodes are coupled with the current lane group, whether any of them are, and
whether an error has been found yet. The error output is enabled when both immediate
child nodes have some nodes that are coupled, but not all of the child nodes are coupled.

The final output we need is the logarithm of the number of coupled lane groups, as
decoded configuration output and for determining by how many lane groups to advance.
This is done by means of a priority encoder connected to the ‘all’ signals within the
binary tree: the last level of the tree where one of the ‘all’ signals is on determines the
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number of coupled lane groups.
Decoding terminates with an error as soon as the ‘configuration error’ signal activates.

If it does not activate, decoding terminates successfully when the current lane group
counter is back at its initial value. In either case, the ‘busy’ state is cleared.

Synchronization When the decoder successfully finishes processing the requested con-
figuration, the decoded configuration for each context (enabled or not, number of lane
groups connected, index of the last lane group) is compared with the current configura-
tion. Any context for which the configurations differ is affected by the reconfiguration,
and must be halted before the new configuration can be committed. To do so, the ‘run’
signal to the branch units of those contexts is forced low, causing the branch units to
stop fetching new instructions.

The reconfiguration controller then waits until all the affected pipelines are idle, and
until the affected cache blocks report that their write buffers are empty. Only then,
finally, is the new configuration committed.

Performance It is difficult to determine the performance of the reconfiguration system
exactly, because it depends on stalls from the memory subsystem, the state of the cache
write buffers, the requested configuration, its difference between the requested and current
configuration, and the pipeline configuration. As an indication though, let us evaluate
the timing of reconfiguring from 0x0123 to 0x3210 in the absence of any memory or

Couple
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L0 out
L1 out

L2 out
L3 out

L4 out
L5 out

L6 out
L7 out

L0 in
L1 in

L2 in
L3 in

L4 in
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Lane group
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Cx1 out
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Figure 4.3: Context-lane interface structure for an eight-way, four-context, four lane-
group ρ-VEX. The lanes are represented on the left, the contexts on the right.
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cache stalls. This is the worst case performance in terms of decoding delay and affected
contexts.

Let us define the issue of the instruction that requests the reconfiguration to be t = 0,
and let t be measured in clock periods. The write to the control register is then made
in t = 2 due to the pipeline delay from IF to EX1. There is an additional cycle latency
in the control register logic, which means that the reconfiguration controller receives the
request at t = 3. Thus, the first decoding cycle starts at t = 4. 0x3210 contains four
group IDs, so decoding is complete at t = 8. At this point, the ‘run’ signal to the contexts
is released, causing them to flush their pipelines. This completes at t = 12, as the ρ-VEX
has four pipeline stages. Thus, the new configuration is activated at t = 13, and the first
instruction in this configuration is issued at t = 14.

This means that the latency from the issue of the instruction that requests a recon-
figuration to the issue of the first instruction in the new configuration is 14 clock cycles
in this scenario. However, this value is only relevant for the context that requests the re-
configuration. The other contexts only experience a 6-cycle latency from t = 8 to t = 14,
primarily due to the required pipeline flush.

The performance is tested in practice in Section 5.5.

Context-lane interface The context-lane interface handles the vast majority of the
reconfigurable interconnect between the lanes and the contexts. Its structure is shown in
Figure 4.3. The couple matrix first controls a network that merges the data from coupled
lane groups together. Parts of this data, such as the PC, are broadcast back to the lane
groups. The data is also forwarded to the context logic, through a set of multiplexers
controlled by the last coupled lane group for each context. Finally, data from the contexts
can also be forwarded to the lane groups, through a set of multiplexers controlled by the
lane group to context mapping.

4.2.2 Datapath and pipeline

As specified in Section 3.7.3, the ρ-VEX has a configurable pipeline. This is accomplished
by dividing the datapath up into several blocks, and specifying the pipeline stage in which
each of those blocks is placed using constants. These blocks and the default pipeline
configuration is shown in Figure 4.4. The pipeline can be regarded as having four or five
stages, depending on whether the general-purpose register write delay is considered to
be part of it. The cause of this delay is explained in Section 4.2.10.

The configurable pipeline is implemented using two-process methodology; that is, one
process describes just the inter-stage registers, and the other describes all the elements
of the datapath as shown in the figure. To understand how it is made configurable,
first consider a simplified datapath with three combinatorial computational blocks and a
(stage) register before the input of the first block and after the output of the last block.
This can be written as follows:
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Figure 4.4: Overview of the ρ-VEX datapath and default pipeline configuration.

comb: process(r1) is

variable s: state_type;

begin

s := r;

s := block_a(s);

s := block_b(s);

s := block_c(s);

d <= s;

end process;

reg: process(clk) is

begin

if rising_edge(clk) then

r <= input;

output <= d;

end if;

end process;

Now, to insert an additional pipeline stage between block A and block B, we could
rewrite the code as follows:
comb: process(r1) is

variable s1, s2: state_type;

begin

s1 := r1;

s1 := block_a(s1);

d1 <= s1;

s2 := r2;

s2 := block_b(s2);

s2 := block_c(s2);

d2 <= s2;

end process;

reg: process(clk) is

begin

if rising_edge(clk) then

r1 <= input;

r2 <= d1;

output <= d2;

end if;

end process;

Notice that the numbers that we have appended to the variable names can also be
array indices. Also notice that, since s1 and s2 are independent, the variable initialization
can be moved to the start of the process, and the signal assignment to the end. This
leads to the following code:
comb: process(r) is

variable s: state_array(1 to NUM_STAGES);

begin

s := r;

s(1) := block_a(s(1));

s(2) := block_b(s(2));

s(2) := block_c(s(2));

d <= s;

end process;

reg: process(clk) is

begin

if rising_edge(clk) then

r(1) <= input;

r(2 to NUM_STAGES) <= d(1 to NUM_STAGES-1);

output <= d(NUM_STAGES);

end if;

end process;

In this code, the pipeline configuration is fully specified by the array indices used and
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the constant NUM_STAGES. For instance, to go back to the original situation, we simply
replace all indices with 1 and set NUM_STAGES to 1, or to also insert a stage between block
B and C, we set NUM_STAGES to 3 and replace the index for block C to 3. Thus, we can
replace these numbers with configuration parameters. This is exactly what is done in the
ρ-VEX pipeline, though on a larger scale.

Of course, it is possible to misconfigure this pipeline description by for example assign-
ing block A to stage 2 and block B to stage 1. In order to detect such misconfigurations
at synthesis, assertion statements are used.

Some of the ρ-VEX blocks also have a configurable latency. The memory block is an
example. To support this, the latency of the block is simply added to the index for all
writes to s.

4.2.3 Instruction fetch

The instruction fetch system is in charge of requesting instructions from the instruction
memory or cache, and routing the fetched syllables to the appropriate lanes.

This is relatively trivial when variable-length instruction support is disabled. In this
case, exactly one instruction fetch is needed per cycle, the fetched data makes up exactly
one bundle, and the syllables can be routed to the lanes one on one. This is, in fact, not
even dependent on the runtime configuration. The only complication is generating the
fetch address for each lane group from the PCs when multiple multiple lane groups are
coupled.

First of all, the PCs must then be appropriately aligned to handle the cases listed in
Section 3.3.5. Secondly, lane groups that take syllables that come before the misaligned
PC must be disabled. Finally, lane group must give the appropriate address. To illustrate
the latter, consider two coupled lane groups in an ρ-VEX with two lanes per group,
fetching the bundle at 0x00. The first lane group must then indeed request address 0x00,
but the second lane group needs to request 0x08, as 0x00..0x0F needs to be fetched.

All these things can, fortunately, be handled trivially in the context-lane interface.
The operations that need to be performed on the PC all come down to overriding some
bits in the PC. Lane invalidation is done simply by comparing the actual PC with the
fetch addresses. This requires only two-bit comparators when there are four lane groups,
as only the bits that are actually modified need to be compared.

Things get significantly more complicated when variable-length instruction support
is required. As described in Section 3.5.2, a register and shifter is needed to store the
previous instruction fetch result, and as described in Section 3.5.3, syllable distribution
is no longer trivial.

Instruction buffer Figure 3.7b in the design chapter shows an overview of the logic
needed to handle misaligned instruction fetches. This piece of logic is called the instruc-
tion buffer1. Figure 4.5 shows how this logic is implemented for an ρ-VEX with four
lanes, two lane groups and no bundle alignment requirements.

1Not to be confused with the instruction buffer of a superscalar processor. The name is simply chosen
because it buffers an instruction fetch.

Rev. 0bd41fb



4.2. ρ-VEX PROCESSOR 65

Instr. mem
block 0

Enable

Instr. mem
block 1

Enable

LUT

LUT

Lane 0

Lane 1

Lane 2

Lane 3

Num. coupled groups

Program counter

Fetch address

Num. coupled groups

Program counter

Fetch address

Figure 4.5: Instruction buffer logic for a four-way ρ-VEX with two lane groups and no
bundle alignment requirements.

Let us start at the left of the diagram and work our way right. First, notice that we
are still using the fetch address aligned by the context-lane interface to handle misaligned
PCs after returning from a trap in the fixed-length instruction case. After all, the memory
interface still has to comply with those alignment rules, as we have decided in the design
that the ρ-VEX should hide all variable-length instruction complexity from the memory
system.

However, instead of this address always needing to be aligned downwards, it needs to
be aligned upward after the first fetch after a branch, as we normally have to fetch the
second part of a misaligned bundle. This upward-aligning requires a full-width adder, as
shown in the top-left corner of Figure 3.7b. This addition is done in parallel to the PC+1
computation, as discussed in Section 4.2.6.

To handle the special case where we do need to align downwards, i.e., when branching
to a misaligned address, the branch unit will feed the normal PC+1 signal as fetch address
to the context-lane interface when such a branch occurs, in addition to doing a double
fetch. Refer to Section 4.2.6 for more information about this.

In addition to routing the fetch address to the instruction memory system, we also
monitor when it changes, because we only want to save the most recently fetched line
in the buffer register when a new line is being requested. Otherwise, we would end up
overwriting the previous fetch with the result of the same fetch that we are currently
doing2.

Note that the not-equal comparator and register that checks for changes in the fetch

2Note that this implies that we could also be using this as a read enable signal for the instruction
memory. This is not currently implemented as neither the cache or the on-chip memory system incur
a penalty for requesting the same address in subsequent cycles, and it makes the one-bit optimization
more complex.
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address do not actually need to be and are not the full width of the address. It is in fact
sufficient to only check the bit that immediately follows the least significant bits that are
constant due to the alignment requirements, as proven below.

• When not branching: regardless of the length of the previous bundle, we will never
move forward by more than one line at a time, as bundles can never be larger than
a line.

• When branching to an aligned address: the buffer has a fifty percent chance of
being loaded, but the loaded value is never used, as the address was aligned and
the fetch result can immediately be forwarded to the lanes. The checked bit of the
fetch address will necessarily change in the cycle immediately following the branch,
overriding the undefined value.

• When branching to a misaligned address: the buffer has a fifty percent chance of
being loaded during the first cycle of the double fetch. However, the fetch address is
necessarily different in the second cycle, thus overriding the undefined value before
it is used.

This leaves only the lookup table (LUT) block and the multiplexers. The thick syllable
paths represent those that are needed for 2x2 modes, the rest of the solid paths are
needed in addition to those in 1x4 mode. The dotted paths are never used, and are
only shown to make the recurring structure more clearly visible. Which paths are chosen
depends on the least significant bits of the PC (up to the alignment boundary) and on
the runtime configuration, which is uniquely specified for any lane group by the number
of lane groups connected to it. As this is only five bits for the standard reconfigurable ρ-
VEX configuration, the decoder is simply implemented as an FPGA lookup table (LUT).

Syllable routing By default, syllables are routed to the lanes one to one. With
variable-length instruction support enabled, additional logic is instantiated to route the
last syllable in the bundle to the last physical lanes and to disable lanes that did not re-
ceive a syllable from the current bundle. This logic is marked as ‘stop bit’ in the datapath
(Figure 4.4). The routing logic is shown for a single two-lane lane group in Figure 4.6.
It is simply repeated for each lane group.

4.2.4 Instruction decode

The decode block is responsible for decoding syllables into control signals for the func-
tional units and datapath. It also routes long immediate information to the appropriate
syllables. If illegal or unknown syllables are encountered, traps are generated.

Syllable format All control signals of an ρ-VEX syllable can be derived from the
most significant byte, bit 23 and bit 1. The most significant byte is the opcode field,
bit 23 directly switches between an immediate or general-purpose register for the second
operand, and bit 1 is the stop bit. Bit 0 is intended to be used to mark cluster boundaries,
which are not supported by the current ρ-VEX implementation, thus bit 0 is completely
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Figure 4.6: Variable-length instruction syllable rerouting logic for a single lane group
that has two lanes.

unused. The remainder of the bits is used to encode immediates and register indices
in a way that depends on the 8-bit opcode and bit 23. For more information, refer to
Section 3.7 of the ρ-VEX user manual (Appendix C).

All control signals are decoded from the opcode by means of a table lookup. This
table is generated by the opcode configuration scripts, thereby making the instruction
set configurable as specified in Section 3.7.5.

Long immediates Any non-branch ρ-VEX syllable that needs an immediate operand
less than -256 or greater than 255 requires a long immediate syllable (limmh). A limmh

syllable consists of an abbreviated opcode, three bits that designate the target syllable
index within an eight-way bundle, and 23 immediate bits to extend the 9 bits that are
already available in the target syllable to get a full 32-bit word.

As all non-branch syllables are mapped to lanes directly, the target syllable index
can also be regarded as a lane index within a set of coupled lane groups. This only
holds, however, when a complete bundle is executed at a time, which is not the case
when running an eight-way generic binary in two-way or four-way mode. Thus, a naive
implementation supporting this would need to keep track of when the previous bundle
ended.

The implemented hardware avoids this by only implementing two routes through
which a long immediate syllable can forward its immediate extension to another syllable.
These routes are shown in Figure 3.12. Observe that the intended route can be determined
by only comparing the least significant bit (LSB) of the limmh lane index with the LSB
of the target syllable index. Because the number of syllables already executed since the
end of the previous bundle is always a factor of two, the LSB of a syllable index always
equals that of the lane index. Thus, we can just ignore the remaining index bits entirely.

As an ρ-VEX lane group always consists of an even number of lanes, the ‘limmh-from-
neighbor’ route can be trivially implemented. The ‘limmh-from-previous’ is however more
complicated. Depending on the runtime configuration, the previous syllable pair may be
executed in parallel in the previous lane pair, or it may have been issued in the last lane
pair of a set of coupled lane groups in the previous cycle. This requires logic as shown in
Figure 4.7. It also requires that the syllable pair immediately before the trap point be
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fetched before returning from a trap, as explained in Section 3.3.5.

Pair 0 Pair 0

Pair 1 Pair 1

Pair 2 Pair 2

Pair 3 Pair 3

Figure 4.7: Routing logic needed to support ‘limmh-from-previous’ forwarding for an
eight-way ρ-VEX with four lane groups. The dashed path is only needed for generic
bundles larger than eight syllables.

Each of the two forwarding methods can be enabled or disabled at design time to
save logic. Note that if both are enabled at the same time, it is possible for a syllable to
receive two long immediates. This is an illegal condition that results in a trap. A trap is
also generated if a limmh syllable attempts to forward to a syllable that does not use an
immediate.

4.2.5 Operand read

The ρ-VEX allows two general-purpose registers, the link register and all branch registers
to be read per lane per cycle. This data, along with the normal or long immediate, is
the multiplexed into three integer operands and a branch operand. Three operands are
needed in particular for memory store operations, which use two integer operands for
determining the address and one for the data.

Forwarding can be enabled or disabled at design time. In the default pipeline configu-
ration, data can be forwarded to the register read stage (EX0) from all subsequent stages.
It is also possible to enable forwarding to multiple stages. For example, if forwarding to
EX1 is also enabled, the memory write data can be forwarded directly from a preceding
multiply or memory load instruction. If this would be done, the operand multiplexing
logic would be instantiated in both EX0 and EX1. The EX1 multiplexers would then
override the operands determined in EX0, to allow any functional unit that starts in EX1
to use the more recent forwarding data.

4.2.6 PC+1 computation

When variable-length instruction support is disabled, the PC+1 block consists of a single
adder for each lane group, that adds the number of coupled lanes to the current PC.
Approximately the same thing could be done with variable-length instructions as well,
but as the value added to the PC then depends on the result of the instruction fetch,
we would have to fit the entire instruction fetch datapath plus a 30-bit adder in a single
cycle.
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The adder can be taken out of the path by precomputing PC+1 for all possible bundle
lengths, and then multiplexing between the results when the bundle length is known, as
shown in Figure 4.8a. However, this many parallel adders is quite area intensive. We can
optimize this further by using the fact that the number that we add is only a few bits
wide. This allows us to modify the circuit to what is shown in Figure 4.8b.
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(a) Precomputing the entire addition.
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(b) Precomputing only what is needed.

Figure 4.8: Adder structures for computing PC+1 with variable-length instructions that
allow the addition to be done before the bundle length is known. The shaded areas are
instantiated for all possible bundle lengths.

Recall from Section 4.2.3 that the fetch address differs from the actual PC with
variable-length instructions. Specifically, the fetch address is the actual PC either
rounded down or rounded up to the next alignment point. Rounding down is handled in
the context-lane interface by replacing bits. To round up, we need to add the number
of coupled lanes minus one to the PC before replacing the bits. This extra addition can
be done in parallel to the PC+1 computation. In fact, the wide adder at the top left of
Figure 4.8b can be shared between the normal and fetch PC computation.

A special case arises during the second half of a double fetch. During this cycle, the
syllables coming from the instruction buffer are undefined, thus the bundle length is also
undefined. To still allow the branch unit to use the computed fetch address during this
cycle, the bundle length is forced to zero whenever no valid syllables have been fetched.

4.2.7 PC-relative branch target

All conditional branch instructions use a 19-bit immediate to specify the branch target.
This immediate is interpreted as a signed integer and added to the PC+1 value to get
the actual target. This adder is marked as ‘br. tgt.’ in the datapath (Figure 4.4).

It is worth noting that it is no accident that PC+1 is used as the base address instead
of PC. This has to do with generic binaries. In a generic binary, branch syllables must
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always be the last in the bundle. Thus, PC+1 necessarily always points to the next bundle
when the branch syllable is executed. The current PC, on the other hand, depends on
whether the generic binary is executed using two, four or eight lanes.

The weight of the LSB of the immediate is design-time configurable to either a syllable
or a syllable pair. The latter is the default, as this is what the toolchain assumes. In
order to support variable-length instructions down to the syllable level though, either
the immediate must be syllable-based, or all bundles that are to be branched to must be
artificially aligned by appending a no-operation (NOP) syllable to the previous instruction
if necessary.

4.2.8 Branch unit

The branch unit is responsible for determining what operation is performed next. To
accomplish this, it outputs the next PC, next fetch address (which may differ from the
PC, as we have seen in Section 4.2.3), the read enable signal for the instruction memory,
and various invalidation signals for the next instruction.

The branch unit determines the next operation by checking for the following condi-
tions. The first one that is true determines the performed operation.

1. The ‘jump’ flag in the debug control register is set

While a program is running, the current PC is taken from the pipeline stage reg-
isters, not from the control register. Thus, if the PC control register is written by
the debugger, the written value would be ignored and overwritten in the next cycle.
To solve this, the ‘jump’ flag in the debug control register is set when the debugger
writes to the PC, activating this case, wherein the next PC is forced to the newly
written PC. The ‘jump’ flag is automatically cleared whenever an instruction is
fetched.

2. A trap other than STOP is to be handled, but condition 8a, 8b or 8c is also true, so
the context should halt

In this case, the trap is deferred to when the context is restarted by setting the next
PC to the instruction that caused and/or was interrupted by the trap. Thus, when
the processor is restarted, the trap would most likely be generated again, unless
the condition that caused the trap was solved while the context was halted.

3a. The STOP trap is to be handled

3b. A debug trap is to be handled, and the context is in external debug mode

In this case, the ‘break’ flag in the debug control register is set, and the next PC
is set to the instruction that caused and/or was interrupted by the trap. If the
to-be-handled trap is a STOP trap, the ‘done’ flag is also set, and the PC is actually
set to the bundle immediately following the bundle with the STOP syllable (see also
condition 6).

4a. A debug trap is to be handled, and the context in self-hosted debug mode
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4b. A fault trap is to be handled

4c. An interrupt trap is to be handled

In this case, the next PC is set to the trap handler or panic handler address, depend-
ing on the state of the ready-for-trap flag (Section 3.3.3). The trap information is
forwarded to the appropriate context control registers, and the states of the ready-
for-trap, interrupt enable and breakpoint enable flags are backed up and cleared. In
case 4c only, the trap argument is overridden by the interrupt identification signal
from the interrupt controller, and the interrupt is acknowledged.

5. The RFI (return from trap) branch syllable is to be handled

In this case, the next PC is set to the value in the trap point register. In addition,
the pipeline is set up such that the ready-for-trap, interrupt enable and breakpoint
enable flags are restored in the stage in which the memory is accessed (EX1 in the
default pipeline configuration).

If the ρ-VEX is configured to allow long immediate syllables to forward to the next
syllable pair, and the trap point is not aligned to a generic binary bundle boundary,
a long immediate prefetch (Section 3.3.5) is performed. That is, the next PC is
set to the trap point minus the current instruction fetch size. Notice that the
subtractor that does this does not need to be the full width of the PC because it
will never cross a bundle alignment boundary.

Notice that the above only makes sense if variable-length instruction support is
disabled. Otherwise, it is not clear from just the address if a long immediate
prefetch is needed, because any address could be mid-bundle. Thus, a prefetch
would always need to be performed, which also means that the subtractor would
need to be full-width. Because of this, long immediates that forward to the next
syllable pair are not supported when variable-length instruction support is enabled.

If the trap that is being returned from was a debug trap, debug traps are masked
for the following bundle. This allows the self-hosted debugger to resume execution
after the breakpoint or watchpoint that caused the trap without having to remove
it, and also allows single-stepping to be performed.

6. The STOP syllable is to be handled

In this case, the branch unit will generate a STOP trap in the next cycle. Thus, the
program is interrupted between the bundle that contains the STOP syllable and the
next.

7a. An unconditional branch syllable is to be handled

7b. A conditional branch syllable is to be handled, and the branch condition is true

In this case, the next PC is set to the branch target.

8a. The ‘break’ flag in the debug control register is set
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8b. The ‘run’ input signal for this context is low

8c. The reconfiguration controller is requesting that the context is paused to synchronize
for reconfiguration

8d. A trap has occurred, but has not yet been forwarded to be handled, because earlier
instructions may still cause traps

In this case, the next PC is forced to the current PC to halt execution. The read
enable signal to the instruction memory is turned off, and the next instruction is
invalidated.

9a. Condition 8a, 8b or 8c were true in the previous cycle

9b. The processor was reset in the previous cycle

This means that the program is (re)starting execution. The next PC is set to the
value stored in the PC control register.

10. None of the above

The next PC is set to PC+1 for normal program flow.

Whenever a value other than PC+1 is selected for the next PC, all pipeline stages before
the branch stage are invalidated.

As we have seen in Section 4.2.3, the next PC differs from the next instruction fetch
address if variable-length instruction support is enabled. In addition, when branching to
a misaligned address, two instruction fetches must be performed to fetch the first bundle.
Most of the logic needed for this has already been specified in Section 4.2.3 and 4.2.6.
The branch unit ties everything together using logic that follows the following rules:

• If the next PC is set to PC+1 for normal program flow, the fetch address sent to
the context-lane interface is taken from the special fetch address adder specified in
Section 4.2.6.

• If the next PC is taken from a different source and it is aligned, the fetch address
is set to the next PC.

• If it is not aligned, two instruction fetches are needed to fetch the bundle at the
branch target. The fetch address is still set to the next PC; the context-lane
interface will round it down to align it. In order to prevent the partially fetched
bundle from being executed, the branch unit invalidates it. This in turn causes
the PC+1 logic to treat it as a zero-length bundle. The second part of the double
instruction fetch can therefore be handled in the same way in which normal program
flow is handled.

4.2.9 Execute

The ρ-VEX has three kinds of functional units: ALUs, memory units and multipliers.
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ALUs are instantiated for every lane. An ρ-VEX ALU can perform roughly the fol-
lowing functions: additions, subtractions, bitshifts, bitwise logic, single-bit logic, C-style
boolean logic, comparisons, sign/zero extension, count-leading-zeros and some miscella-
neous operations. It has two integer operands (op1 and op2) and the branch operand at
its disposal, and computes one integer result and/or one branch result, depending on the
instruction.

The ALU is divided into three blocks. Stage boundaries may be enabled or disabled
between each of these. The first block contains operand preprocessing logic, such as
one’s complement and preshifts. The second block contains an adder, a bitwise logic
unit, a barrel shifter, a count-leading-zeros unit, and two equality checkers, all operating
in parallel. The third block contains the output multiplexers.

The memory unit allows read and write operations to be performed on memory and
control registers. One memory unit is available for each lane group; the exact lane it is
instantiated in is configurable. All ρ-VEX memory operations first compute their address
by adding one of the general-purpose register operands with the immediate. The ALU
adder is used for this. To decrease latency somewhat, the address is connected directly
to the ALU adder instead of also going through the output multiplexers, thereby also
bypassing the third ALU block entirely. The latency of the memory unit is configurable
to one or more cycles.

Memory instructions exist to load or store general-purpose registers as aligned 32-bit,
16-bit or 8-bit values. When loading 16-bit or 8-bit values, sign or zero extension may be
used. In addition, the link register can be loaded or stored directly as an aligned 32-bit
value, and the entire branch register file can be loaded or stored as an 8-bit value. All
accesses are big endian.

Finally, the multiplier can execute various 16x16 and 16x32 bit multiplication instruc-
tions. The latency is fully configurable. The availability of a multiplier is design-time
configurable for each lane individually.

As soon as a functional unit completes, its result is made available to the forwarding
network. The result is committed to the register files in the write-back stage, if the
bundle has not been invalidated by a branch or trap.

4.2.10 Register files

There are three physical register files in the ρ-VEX, namely the general-purpose register
file, the context control register file, and the global control register file. The logical branch
and link register files are implemented as special context control registers.

The general-purpose register files is the most complex, as it needs two read ports and
one write port for each lane. For the full ρ-VEX this means that 16 read ports and 8
write ports are needed. This memory is constructed from two-port block ram (BRAM)
primitives by duplicating the memory for each read port/write port pair. Each BRAM
contains a copy of the complete memory. However, when the memory is written, only
the BRAMs corresponding to that write port will have their contents updated. Thus,
logic is needed to keep track of which write port wrote to a register last. Such logic is
called a live value table (LVT). This is essentially yet again a memory with the same
amount of ports as the complete memory; however, it is only as wide as the logarithm of
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the number of write ports. Thus, while it has to be implemented in LUTs, it still uses
much less resources than implementing the whole memory in LUTs. A diagram of this is
shown for two read ports and two write ports in Figure 4.9.

BRAM

BRAM

BRAM

BRAM

LVT

Write A

Write B

Read A

Read B

Figure 4.9: Diagram illustrating a memory with two read ports and two write ports
constructed from dual port block RAM (BRAM) memories and a live value table (LVT).

A single BRAM is large enough to contain eight ρ-VEX register files. Thus, up to
eight contexts can be supported by only increasing the size of the LVT. This is described
in more detail in Appendix A.

The timing of the BRAMs is such that, if port A writes a value, the read result of
port B for that value is undefined in the next cycle; its value is only guaranteed to be
updated the cycle after. Because we always use one port for writing and one for reading,
an additional forwarding stage is needed to override the undefined read. This leads to
the WB+1 pipeline stage depicted in Figure 4.4.

The context control registers contains all control registers that need to be instantiated
for each context. They are implemented in the general-purpose FPGA fabric. Examples
are the PC, the trap status and control registers, the debug control registers, the recon-
figuration request register, and performance counters. The global control registers are
implemented similarly, although they are only instantiated once for the whole proces-
sor. These registers include the reconfiguration request register for the debug port, the
reconfiguration status register, the cache block affinity status register, a cycle counter
for timing, and a large set of hardware version and design-time configuration read-only
registers. For details, refer to Chapter 4 of the ρ-VEX user manual (Appendix C).

4.2.11 Trap handling

When any kind of trap occurs, all syllables in all pipeline stages up to and including the
one in which the trap occurred are invalidated. That is, they will not commit to the
register files or memory. This is done for all coupled lanes.

ρ-VEX instructions start to commit in the stage in which the data memory request
is given. In the default pipeline, this is EX1. This means that traps occurring after
EX1 cannot be precise, as the instruction has already partially committed its results.
An exception is made for memory fault traps, which imply that the memory request has
failed and thus did not affect the program state. If the data memory latency is configured
to be more than one cycle, or if multiple data memory accesses can be handled by the
memory system in parallel, it is up to the memory system to ensure that any parallel
requests made by the same context are also canceled.
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As traps can occur in many pipeline stages, traps may not be generated in program
order. To handle this situation appropriately, trap handling is delayed until after the
last pipeline stage that may cause a trap (EX1 by default). An additional delay cycle is
implemented to break the path from the logic that generates the trap to the instruction
fetch command.

Figure 4.10a depicts a pipeline diagram of how a single trap is handled. The trap
occurs in cycle 2. From cycle 3 onwards, the branch unit receives a status signal indicating
that a trap occurred, but the trap information has not yet been forwarded. This makes
condition 8d in the branch priority encoder valid, preventing further instructions from
being fetched until trap handler entry. The trap information is forwarded from EX1 in
cycle 4. With the aforementioned delay cycle included, this causes the branch unit to
respond to the trap with condition 4 in cycle 5.

Figure 4.10b illustrates why trap handling should be delayed. If the delay would
not exist, the trap caused by instruction 2 would incorrectly take precedence over the
additional trap caused by instruction 1.

Cycle 1 2 3 4 5 6 7 8 9

Insn. 1 IF EX0 EX1 WB
Insn. 2 10 IF! ��EX0 ��EX1 ��WB
Insn. 3 10 ��IF ��EX0 ��EX1 ��WB
Insn. 3 8d ��IF ��EX0 ��EX1 ��WB
Insn. 3 8d ��IF ��EX0 ��EX1 ��WB
Insn. T1 4 IF EX0 EX1 WB

(a) Pipeline diagram of a single trap.

Cycle 1 2 3 4 5 6 7 8

Insn. 1 IF EX0 EX1! ��WB
Insn. 2 10 IF! ��EX0 ��EX1 ��WB
Insn. 3 10 ��IF ��EX0 ��EX1 ��WB
Insn. 3 8d ��IF ��EX0 ��EX1 ��WB
Insn. T1 4 IF EX0 EX1 WB

(b) Pipeline diagram of two out-of-order traps.

Figure 4.10: Pipeline diagrams showing how traps are handled. The number in italics
before the IF stage corresponds to the branch unit condition that selected the PC for the
subsequent fetch.

When multiple traps occur in a single bundle, traps from earlier pipeline stages and,
secondarily, lower indexed lanes take precedence. An exception is made for debug traps,
which always take precedence even though they have to be generated in the memory
request stage due to the breakpoint enable control register. This allows a user to set a
breakpoint on an instruction which he or she expects will cause a trap, without having
the trap handler be executed unexpectedly before the breakpoint is handled.
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4.2.12 Run control interface

Aside from the memory and debug port interfaces, the ρ-VEX also has a control interface.
This interface provides the following signals for each context independently:

• A reset signal, first PC and ‘done’ flag. The latter is activated when the ρ-VEX
executes the STOP instruction. This allows the ρ-VEX to be used as a basic copro-
cessor. In particular, the ‘done’ signal could be wired such that it allows the ρ-VEX
to interrupt the master when it finishes a task.

• A ‘run’ input and ‘idle’ output. May be used to pause execution temporarily for
whatever reason.

• An interrupt interface. This consists of an interrupt request and a 32-bit identifier
input, as well as an ‘acknowledge’ output signal.

Let us look at the interrupt interface in greater detail. Put simply, when the interrupt
request signal is asserted while the interrupt enable flag is set, an interrupt trap is gen-
erated, using the 32-bit identifier as the trap argument. The ‘acknowledge’ signal is then
used to signal to the interrupt controller that a trap has been handled. It is important
that this is done in such a way that it is impossible for an interrupt to be acknowledged
without it being handled, otherwise there is a possibility of missing an interrupt. In
particular, since the interrupt trap is not the highest-priority trap, we cannot simply
acknowledge the interrupt whenever interrupts are enabled.

This problem is solved by having the branch unit assign the interrupt identifier to the
trap argument and acknowledge the interrupt in the same cycle only when it branches to
the trap handler to handle the interrupt trap that was generated a few cycles earlier. In
addition to solving the aforementioned problem, it also allows a higher priority interrupt
to override the original interrupt within those cycles. However, if the interrupt controller
allows interrupts to be canceled, there is a possibility that a trap is generated for an
interrupt that is no longer active at trap handler entry. It is then up to the interrupt
controller to specify a special ‘canceled’ interrupt identifier, which can then simply be
ignored in software.

4.2.13 Tracing

When enabled, the trace unit takes execution information from the last stage of the
pipeline of each lane, and serializes that data to a byte stream. That stream may then be
logged outside the processor for evaluation. While serialization is performed, the entire
processor is stalled. Furthermore, the trace data sink can stall the serialization if it
cannot keep up with one byte per clock cycle.

The byte stream is divided up into trace packets. Each packet encodes the information
for a single syllable. A packet is at most 37 bytes long, and can encode the following:

• The index of the lane that executed the syllable, and the index of the context that
this lane is bound to, to convey the current runtime configuration.
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• The PC, and whether it was fetched because of normal execution flow or some kind
of branch.

• The memory operation performed (if any), including address, write data, and write
bytemask. Read data is not recorded explicitly, but can be deduced from the
register commit data.

• Any writes to the general-purpose, branch, or link registers, including which register
is written as well as the written data.

• Information about the trap that caused the branch (if any), including the trap
point, cause and argument.

• Cache information from the block associated with this lane for the reported bundle,
including hit/miss information, whether the data access (if any) bypassed the cache,
and whether or not the write buffer was filled when the request was made.

• The executed syllable.

Sending all this information for each executed syllable is not efficient. Assuming that
the debug UART is used to transfer the trace data and eight-way execution, process-
ing speed would be limited to merely 33 bundles per second. This performance loss is
mitigated in several ways:

• Tracing can be enabled or disabled for each context independently.

• Information about memory accesses, register writes, traps, cache performance, and
the current syllable can be disabled independently if they are not needed.

• Information that is common to all lanes (such as the PC) is only given once per
cycle.

• If all information other than the PC is disabled, or for some other reason a trace
packet would be empty save for the PC, the packet is omitted entirely, unless the
instruction causes a branch or is the first instruction after a branch.

• If only the lower 8 bits or 16 bits of the PC have changed since the previous packet,
the rest of the bits are omitted.

Which fields of a packet are omitted is encoded in two header bytes. Furthermore, the
existence of the second header byte is encoded by a bit in the first. In the most extreme
case, all fields are disabled, resulting in a NOP packet. These are used to encode clock
cycle boundaries. The smallest useful packet is two bytes long, encoding a change in the
lower 8 bits of the PC.
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Trace buffer While not strictly a part of the processor (it is instantiated separately),
the trace buffer can be used to make the trace data stream available to debug interfaces
that can only do bus transactions, such as the one implemented in this work. The trace
buffer is a bus slave consisting of two memory-mapped buffers. While the debug interface
accesses one of these buffers, the other is used to record the trace data stream.

The buffers are implemented using BRAMs. The size of the buffers is configurable.
The two buffers can share a single BRAM if the size is small enough. One of the two
access ports of each BRAM is used to write the incoming trace data, the other port is
connected to the bus slave interface.

Each buffer has an accompanying increment/reset counter. It is incremented for every
byte written to the buffer. Its value is used for three purposes: stalling the processor
when it reaches its maximum value (i.e., when the buffer is full), the write address for
the port that records the trace data, and a memory-mapped status register. This status
register is laid over the first word of the buffer, making the first 32-bit word inaccessible
from the bus. For this reason, the counter register resets to four, so the first four bytes
are never used.

Reading the trace buffer with the debug interface is done by alternating between read-
ing the two buffers using bulk read accesses. As stated, buffer swaps occur automatically
every time the interface starts reading the other buffer. For every bulk read, the first
word indicates how many of the read bytes are valid. The invalid bytes and the counter
can then simply be trimmed from the read data to extract the trace data.

4.3 Cache

In this section, we describe the implementation of the reconfigurable instruction and data
caches. We first look at the interconnect between the ρ-VEX lane groups and the cache
blocks. This is what gives the cache its reconfigurable nature. Subsequently, we look at
how the cache blocks are implemented.

4.3.1 Reconfigurable interconnect

Figure 4.11 depicts the interconnect between the ρ-VEX lane groups and the cache blocks
for both caches. Based on the runtime configuration, each routing logic block can either
pass its inputs through without modification to decouple lane groups/cache blocks, or it
can apply a logic function to couple them. This function depends on the signal. Let us
list the signals that pass through the routing and the applied logic functions by tracing
a request and its response through the network.

The data cache only allows one of the coupled lane groups to give a request at a
time. This request is broadcast to all coupled blocks. If any routing block receives two
requests in the same cycle, it asserts a fault signal, canceling the requests and trapping
the offending ρ-VEX context. The instruction cache does not need any special routing
logic for the request, as coupled ρ-VEX lane groups always fetch the same line. The
current implementation, however, broadcasts the request of the highest-indexed coupled
lane group to all blocks, and ignores the requests from the other coupled lane groups.
This was done to make the cache compatible with the previous ρ-VEX as well.
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Figure 4.11: Cache block interconnect structure for both the instruction and data caches.
Depicted for an ρ-VEX with four lane groups.

The cache blocks then return the hit/miss status and the cache line corresponding
to the requested address after one cycle. The output network then routes these signals
such that the signals from the highest-indexed coupled cache block that returned a hit
are broadcast to all coupled lane groups. This is sufficient to handle data cache read hits.
For the instruction cache, multiplexers are needed after the output network to select the
appropriate syllables from the cache line. This could be done using the offset portion of
the incoming addresses as generated by the context-lane interface of the new ρ-VEX, but
again, for compatibility reasons, these offsets are generated within the routing network
based on the runtime configuration.

If a read miss occurs, the affected ρ-VEX context is stalled. In addition, the signal
is forwarded back to the input routing, which is then to determine which block should
handle the miss, according to the selected replacement policy. As decided during the
design of the cache, this is done simply using the address bits immediately following the
cache tag. After the selected block finishes updating the tag and data memories from the
bus, it will report a hit, thereby releasing the stall signal and supplying the newly read
data.

The stall signals from the cache blocks are broadcasted only to coupled ρ-VEX lane
groups in the output network. In other words, decoupled lane groups can be stalled
independently.

Data cache writes are handled as follows. First, each block checks if the written
address is currently cached. When that information is known, the routing networks
determine which block is to service the write by assigning a 2-bit priority level to each
block. The following levels are defined:

1. Highest priority, assigned when a block is already servicing the write to prevent a
second block from ‘taking over’ the request.

2. Second highest priority, assigned when the written address is cached. This is nec-
essary for cache consistency. Refer to Section 3.6.3 for more information.
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3. Third highest priority, assigned when the write buffer is empty. This causes suc-
cessive writes to be load-balanced between the available write buffers.

4. Lowest priority, assigned when none of the above apply.

If there is a tie, the highest-indexed block is chosen.
Finally, data accesses which are to bypass the cache are always handled by the highest-

indexed block.

4.3.2 Cache blocks

Like the interconnect, the instruction and data cache blocks have a similar structure. It
is shown in Figure 4.12. The primary difference between the two is that an instruction
cache block does not support write or bypass operations, because the dashed paths do
not exist.

Valid

Tag

Address

Write cmd.

Stall Data

Control
unit

Block select

Bus master

Write buffer state

Hit

Data/instruction

Write/bypass stall

(a) Main datapath.

Valid

TagAddress

Current master ID

Write enable

Our master ID

Flush

(b) Invalidation and flushing datapath.

Figure 4.12: Block diagram of a cache block. The bus snooping and flushing datapath is
drawn separately from the rest of the logic for clarity.
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The data and tag memories are implemented as BRAMs, and thus have a one-cycle
latency. The ‘valid’ memory is implemented in the configurable FPGA fabric however,
because neither BRAM or distributed RAM can be reset in a single cycle, needed to
support cache flushing. This is much more expensive in terms of area per bit, but this is
still feasible as the ‘valid’ memory consists of only one bit per cache line.

Notice that the direct path from the control unit to the data/instruction output is
dashed: it only exists for data cache blocks, and is only used for requests that are to
bypass the cache. The data from a normal read miss is always passed through the data
BRAMs. Essentially, while the control unit is executing the bus transactions to service
the miss, the data, tag and ‘valid’ memories are continually being read. Thus, as soon
as the control unit updates them, the remainder of the request is serviced as a read hit.

To understand the registers and the multiplexer on the left of Figure 4.12a, observe
the timing diagram depicted in Figure 4.13. The request from the processor can only
be considered valid when it is not stalled, as the request may depend combinatorially on
the resource that is currently stalling the processor because it is not available yet. Thus,
the request needs to be saved while it is being serviced. At the same time, it is desired
to pass the request on to the memory blocks as soon as possible. This is the function of
the multiplexer. While the processor is stalled, the registered request is passed on, but
in the first cycle of a request, it is passed through combinatorially.

Clock

Stall

Request from processor A B C

Registered request A B

Multiplexed request A B C

Data, hit, and block select A B

Figure 4.13: Cache block timing behavior, showing when certain signals are valid relative
to the cycle in which the request is made.

Notice that the write command receives no such treatment. This is because the tag
and ‘valid’ memory blocks need to be checked before the interconnect can select the
cache block which is to service the write anyway. Thus, all write accesses take at least
two cycles to complete, and thus incur at least one stall cycle.

4.4 Complete processing systems

In this section, the ρ-VEX processor, trace buffer, and cache are combined to form
complete processing systems. To connect these devices together, a basic bus protocol is
first designed and implemented in the first section. Two basic processing systems are
implemented, one that uses BRAM-based instruction and data memories, and one that
connects to GRLIB peripherals and DDR memory through the cache and an AHB bus
bridge.
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4.4.1 ρ-VEX bus

In order to be able to connect ρ-VEX project components together without having to
rely on external IP or having to implement complex features that are not necessary or
not supported by the ρ-VEX, an easy-to-use bus protocol is specified. The protocol is
point-to-point; that is, it allows a single master device to connect to a single slave device.
In order to connect more than two devices together, routing blocks must be instantiated.
Two kinds of routing blocks are implemented; arbiters and demultiplexers.

An arbiter has multiple slave interfaces and a single master interface, thus connecting
multiple master devices to a single slave device. When multiple masters make simul-
taneous requests, they are forwarded to the slave device one by one using round-robin
scheduling. If necessary, a master can claim exclusive access to the slave device for any
number of transfers by setting the ‘lock’ flag for all but the last request. This, for instance,
allows read-modify-write accesses to be performed atomically.

A demultiplexer performs the opposite function, connecting a single master device
to multiple slave devices. The selection is based upon the requested address. In addi-
tion, the demultiplexer allows the outputted slave address to be a non-unit function of
the requested address, allowing address space transformations to be made. In certain
situations, it also allows write transactions to be routed to multiple slaves at a time.

Figure 4.14 depicts how these blocks can be combined to form a conventional multi-
master bus. In this diagram and in later ones we represent the slave end of an ρ-VEX
bus connection with a filled arrow and the master end with a normal arrow.

Arb
Master 0
Master 1

Master n
Mux

Slave 0
Slave 1

Slave n

Figure 4.14: Diagram indicating how an ρ-VEX bus arbiter and demultiplexer can be
used to construct a conventional multi-master bus.

In addition to the arbiter and demultiplexer, blocks are implemented that permit
clock-domain crossings and/or insertion of registers into the request and response paths
to break a critical path.

The timing of the ρ-VEX bus and the signals it consists of are depicted in Figure 4.15.
Five transactions are shown as examples. Transaction A is a read that completes in a
single cycle. Transaction B is also a read, but this read takes three cycles to complete.
The slave indicates this by means of the ‘busy’ and ‘ack’ signals. While the slave reports
that it is ‘busy’, the master must keep its request stable, preventing slaves from having
to save the request themselves. Transaction C is a read yet again, but the slave device
reports that it cannot complete it. It does this by asserting the ‘fault’ signal, while also
asserting ‘ack’ to terminate the transaction. When the ‘fault’ signal is asserted, the read
data signal may be used to provide an error code. Transaction D and E are writes. D
completes successfully within a single cycle, whereas E takes two cycles to return a fault
condition. Notice that, even though transaction E is a write, the read data signal may
still be used to indicate the error code.
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Master to slave:

Clock

Read enable

Write enable

Address A B C D E

Write data & mask D E

Flags A B C D E

Slave to master:

Busy

Ack

Read data A B Code Code

Fault

Figure 4.15: ρ-VEX bus timing example.

The ‘flags’ signal is a record consisting of burst identification signals and the ‘lock’
signal for arbiters. The burst signals are are not used by any ρ-VEX bus component, and
are only intended for bridges to bus architectures that do support bursts.

The ρ-VEX bus is fixed to a width of 32 bits. Addresses must always be 32-bit
aligned. It is not possible to read only a part of a 32-bit word. However, it is possible to
write to 8-bit or 16-bit words by means of the write mask signal, which contains a mask
bit for each of the four bytes in the word.

4.4.2 Standalone processing system

The standalone processing system is designed to provide a functional ρ-VEX system
with minimal dependencies and deterministic timing for the memory system, to provide
a platform for experimentation. It comes in two versions; one with a cache, and one
without. These are shown in Figure 4.16.

In the version without cache, as long as the debug access port is idle, instruction
fetches are single-cycle. Memory operations only take more than one cycle when multiple
requests are made simultaneously by either the first or the second half of the lane groups.
This makes the platform suitable for testing the raw performance of the ρ-VEX, when
not limited by the memory system.

The cached version is primarily intended for verifying the functionality of the cache in
a controlled environment. The latency of the BRAM-based data memory is configurable
at runtime using a control register. This control register can also be used to flush any
cache block individually.

Both versions of the system are compatible with all design-time configuration options
of the processor and the cache. In addition to that, the following things can be configured
at design time:

• The sizes of the instruction and data memories.

• The memory map as observed by ρ-VEX memory operations.
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Figure 4.16: Block diagram of the standalone processing.

• The memory map as observed by the debug access port.

• Which addresses should bypass the cache.

For more information about this system, refer to Section 9.3 of the ρ-VEX user manual
(Appendix C).

4.4.3 GRLIB processing system

The GRLIB-based processing system is designed to allow the ρ-VEX to be connected to
a wide variety of peripherals as well as the DDR3 memory of the FPGA development
boards, by means of the GRLIB IP library [10]. The block diagram of this system is
depicted in Figure 4.17.

The system control block contains control registers that can be used to reset the entire
ρ-VEX system or flush any cache block individually. Note that the debug access port is
an ρ-VEX bus interface, instead of an AHB or APB slave. Instead, an AHB-to-ρ-VEX-
bus bridge is implemented as a separate unit. This allows multiple ρ-VEX slave devices
to share the same AHB interface, similar to an AHB-APB bridge.
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Figure 4.17: Block diagram of the GRLIB processing system.

For more information about this system, refer to Section 9.4 of the ρ-VEX user manual
(Appendix C).

4.5 Debug UART

In this section, we discuss the implementation of the universal asynchronous receiver/-
transmitter (UART) debug link peripheral. We first specify the communication protocol
that will be used, and then describe the structure of the hardware.

4.5.1 Protocol

The UART protocol is an asynchronous serial protocol that encodes a stream of (usually)
bytes using a single wire. Usually, two wires are used, one for either direction. Different
frame formats exist to encode the frames [18, pp. 133]. We will be using the ‘8n1’ frame
format, i.e., 8 data bits, no parity bit, one stop bit. This format is shown in Figure 4.18.

D0 D1 D2 D3 D4 D5 D6 D7

Figure 4.18: A UART frame.

Note that no clock signal is encoded. The transmitter and receiver must be configured
to approximately the same frequency for transmission to be successful. When the receiver
receives the start bit, it must wait 1.5 bit periods before sampling the first data bit, and
then sample each subsequent bit at the expected bitrate.

As mentioned in Section 3.4.4, the debug UART is to be used both for executing bus
transactions and to communicate with the application running on the ρ-VEX. Thus, we
need to encode a packet stream as well as a byte stream, the latter emulating a normal
serial port. Furthermore, error detection is desired for the packet stream.

To accomplish this, we first need a way to encode the start and end of a packet. We
will arbitrarily reserve the characters 0xFD and 0xFE for these purposes. Furthermore, we
reserve the character 0xFC as an ‘escape’ character. Whenever this value is transmitted or
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received, the next value is to be one’s-complemented. If any value between 0xFC and 0xFE

is to be encoded as a data byte within the packet or application data stream, the ‘escape
sequence’ is sent instead. This allows the packet receiver to reset itself to a defined state
whenever 0xFD or 0xFE is received. Finally, in order to accelerate transmission of many
subsequent packets, we specify that the end-of-packet code does not need to be sent if a
second packet is started immediately after the first.

To add error detection to packets, we specify that the last byte in a packet is an 8-bit
cyclic redundancy check (CRC) checksum, using x8 + x2 + x1 + x0 as the polynomial.
The CRC is computed over the preceding data bytes of the packet without taking escape
sequences into consideration. Note that the CRC byte itself may also need to be escaped.
If a packet with an incorrect CRC is received, it is to simply be discarded.

Figure 4.19 shows an example transmission. The transmission represents the appli-
cation data ‘Hi’ and two packets, [0x00, 0x11, 0x22] (CRC = 0xAC) and [0xFD] (CRC
= 0xFD).

‘H’ FD 00 11 22 AC FD FC 02 FC 02 FE ‘i’

Figure 4.19: Example debug link protocol transmission.

Let us now specify the packet-level protocol. A transaction consists of a command
and a reply packet. Transfers are always initiated by the host, so a packet sent from host
to target is always a command, and vice versa. If the host sends a command but does not
receive a reply within a set amount of time, one of the following three things happened:
the command packet was received incorrectly by the target, the reply packet was received
incorrectly by the host, or there is no connection at all. In any case, the host is to handle
this case by resending the command packet until it does receive a reply, or until it has
tried this a set amount of times. In the latter case, the connection is likely interrupted
and the user is to be informed. Note that, while this protocol ensures that the command
is executed or the user is informed, the command may be executed multiple times if one
or more of the reply packets are corrupted.

The first byte of every packet constitutes the header. The high-order nibble of the
header specifies a command code, whereas the low-order nibble is used as a sequence
number. The header of a reply packet is always set to equal the header of the command
packet it is replying to, allowing the host to identify which command packet a received
packet was sent in response to.

Table 4.1 lists the commands supported by the debug link protocol. Observe that
a distinction is made between single bus transactions and bulk transfers. The former is
slow, as it requires two debug link transactions that cannot be parallelized. However, it
supports all possible ρ-VEX bus transactions, can report bus faults, and it is guaranteed
that the bus transaction is only performed once, regardless of retransmissions due to
UART reply packet corruption.

The bulk read and write commands, on the other hand, are designed such that data
can be transferred with as little overhead as possible, using only packets that fit within
a 32-byte buffer. However, they are intended only for aligned 4 kiB blocks of memory.
Furthermore, it is not guaranteed that the block is read/written in any specific order,
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Table 4.1: List of debug link protocol command codes.

Code Description
0x0..0x9 Reserved.
0xA Set bulk write page. Sets the start address for subsequent bulk write commands. The

command payload must be three bytes, specifying bit 31..8 in big endian order. The
reply payload is undefined and should be ignored.

0xB Bulk write. The payload from the host should be 5-29 bytes. The first byte sets the
address: bits 31..12 are taken from the most recent bulk write page command, whereas
bits 11 downto 0 are set to the byte value times 28. The remainder of the payload
is interpreted as words which are to be written to the memory, starting at the initial
address. The number of bytes written must be divisible by four, and bulk writes may
not cross 4 kiB boundaries. The reply payload is undefined and should be ignored.

0xC Bulk read. The payload from the host should be five bytes in size. The first four bytes
should specify the initial address in big-endian order. The fifth byte should be set to what
the LSB of the address will be when the bulk read should stop. This must be at most
the LSB of the initial address plus 28, and at least the LSB plus four. Both addresses
must be divisible by four. The reply payload contains the read data. Bulk reads may
not cross 4 kiB boundaries.

0xD Prepare bus transaction. The payload from the host should be nine bytes in size. The
first four bytes specify the address of the bus transaction and the next four bytes specify
the write data. The high-order nibble of the last byte specifies the write bytemask. Bit 3
must be set to perform a write and cleared to perform a read. Bits 2..0 must be zero. The
bus transaction is not actually performed until the ‘perform bus transaction’ command
is received. The reply payload is undefined and should be ignored.

0xE Perform bus transaction. If the previously received command is a ‘prepare bus transac-
tion’ command, the bus transaction described therein is performed. The payload from
the host is undefined and should be ignored. The reply payload consists of five bytes.
The first four bytes specify the read data. The fifth byte is set to 0 if the bus transaction
completed successfully or to 1 if a bus fault occurred.

0xF Reserved. This command code may result in the header byte needing to be escaped.

nor is it guaranteed that a memory location is only accessed once.

4.5.2 Structure

The structure of the debug UART is depicted in Figure 4.20. Notice that the interfaces
are such that it can be connected directly to the standalone processing systems (recall
Figure 4.16). The function of each block is described below.

Packet
handler

Debug bus

Slave
interface

Peripheral bus

Interrupt

Packet
control

Stream
switch

RX byte RX bit

Clk. div.

TX
UART

RX

TX

Figure 4.20: Structural overview of the debug UART.
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Clk. div. This unit generates a strobe signal that is asserted eight times per UART bit
period. A fractional divider is used to approximate the bitrate as closely as possible in
the long run. The divisor and multiplier are generated automatically during synthesis by
means of constant propagation. The debug UART uses 115200 bits/second by default,
thus causing this unit to generate a pulse at a frequency of 921.6 kHz.

TX bit This unit serializes incoming to-be-transmitted bytes using the UART frame
format.

RX bit This unit handles bit-level synchronization and performs glitch filtering. The
unit synchronizes whenever the input signal has been stable for half a bit period after a
transition. The value of a received bit is determined by means of majority voting between
three samples centered around the expected center of the bit.

RX byte This unit handles frame-level synchronization. After it detects a start bit
(the first low bit in Figure 4.18), it stores the subsequent 8 bits in a byte register and
then forwards it to the stream switch block.

Stream switch This unit handles packet-level synchronization in the receive direction,
and arbitration among the packet and application steam inputs in the transmit direction.
It also handles the escape sequences.

Packet control This unit handles CRC checking and generation, and maintains the
transmit and receive buffers. Both directions are double-buffered. Packets are 32 bytes
in size at most, so 128 bytes of memory are used for the buffers. They are implemented
such that the synthesizer infers distributed RAM for the buffers, thereby using only a
minimal amount of area. Note that this is the primary reason for limiting the number of
bytes per bulk transfer command to 28, instead of using a power-of-two amount.

Packet handler This unit contains the FSM that manages the ρ-VEX bus master
interface. When the packet control unit signals that a new command is available, the
receive packet buffer is swapped, allowing the FSM to decode and execute the command.
While executing, the reply can be constructed in the transmit packet buffer. When the
FSM is done and the previous reply has been completely sent, the transmit packet buffer
is swapped, so the packet control unit can start transmitting it.

Slave interface This unit provides a slave interface for the application stream to the
processor. It can also be tied directly to the UART block, in which case it forms a normal
UART peripheral, although with a fixed bitrate. The interface was inspired by [36, pp.
182-208]. It contains a 16-byte first-in-first-out (FIFO) buffer for both the receive and
transmit direction. It can be configured to generate an interrupt under the following
circumstances:

• When the transmit FIFO buffer is empty.
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• When the transmit FIFO buffer is not full.

• When the application wrote to the data register while the transmit FIFO buffer
was full, in which case the written value was ignored.

• When there are at least 1, 4, 8 or 14 bytes available in the receive FIFO buffer.
The amount is configurable using a 2-bit control register.

• When the receive line has been idle for at least one frame period.

• When a byte was received while the receive FIFO buffer was full, in which case the
received byte is lost.

4.6 Debug software

As a custom external debug protocol is implemented, software needs to be written that
makes use of this protocol. Three separate command-line utilities are implemented to
fulfill this function. They are described in the following sections.

4.6.1 ρ-VEX server: rvsrv

The first of the three programs is called rvsrv, short for ρ-VEX server. It connects to the
USB serial port of the FPGA development board and allows other programs to access it
through two TCP server sockets. One of these servers acts as the other end of the virtual
serial port peripheral that the ρ-VEX application can use freely. That is, any data or
text sent by the ρ-VEX is broadcast to every connected TCP client, and any data from
the TCP clients is merged and sent to the ρ-VEX. This is called the application port.

The other server, called the debug port, accepts memory access commands from any
TCP client and returns the result to the client that sent it. If rvsrv receives commands
from multiple clients at the same time, the commands are simply executed one by one.

TCP server sockets are used because of their ability to let multiple clients connect
at the same time, and because they allow users to connect to the ρ-VEX through the
Internet. This is particularly useful when the FPGA development used for the ρ-VEX is
shared by multiple researchers. It is intended that rvsrv is run as a background process
in this scenario, so a user connecting to rvsrv from the internet does not need execute or
dialout permissions that would otherwise be needed to start it. For this purpose, rvsrv
is written such that it will automatically reconnect to the serial port if the connection is
lost, for instance because the FPGA board is power-cycled.

Connecting to the application port for manual interaction with the ρ-VEX can be
done using netcat. This standard Linux tool can simply connect its stdin and stdout

streams to a TCP server, thus essentially connecting the terminal it is run in to the
ρ-VEX, as if the ρ-VEX application was run in that terminal.

4.6.2 ρ-VEX debugger: rvd

The commands that rvsrv expects on the debug port can theoretically be entered man-
ually by the user. However, this is not very practical. Instead, a second program is
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created to do this, called rvd (short for ρ-VEX debugger). rvd is used as a command
line tool, where every invocation typically only sends a single debug command before
it terminates again. This makes it very easy to automate debug commands using shell
scripts, makefiles, and so on.

The basic rvd commands are rvd read and rvd write. These commands may be
used to read a register or a block of memory, or write to a register. Extensions of
these commands allow file transfers to and from memory locations, allowing binaries to
be uploaded to the ρ-VEX and result data to be downloaded. However, while these
commands are technically enough to control the ρ-VEX and easier to use than writing
rvsrv debug commands manually, it still is not very practical for debugging.

To improve things, additional commands are made for stopping and restarting the
ρ-VEX, single stepping, printing the current state, and so on. As the ρ-VEX is intended
to be a very configurable however, not every ρ-VEX processing system has the ρ-VEX
control registers mapped to the same address, and not every ρ-VEX is the same either.
To deal with this, such rvd commands are scripted through system-specific memory map
configuration files. These files are specified using command line arguments. rvd is in-
tended to be called either through an alias or through a shell script that appends these
arguments to the user-specified ones automatically.

In order to support multiple contexts and in fact multiple processors, rvd allows the
user to select one or more contexts using a command line parameter or through the
rvd select command. Different addresses can be configured for different contexts in the
memory map configuration files.

While rvd can be used reasonably efficiently on its own for small test programs, it has
no concept of what program is being debugged. As such, you cannot, for instance, query
rvd what the value of some C variable is or what line of code the program is currently
stopped at: you have to cross-reference with the disassembled sources manually. For
debugging more complex software, it is thus desirable to interface rvd with the existing
(though buggy) ρ-VEX gdb port.

This is achieved using the gdb remote serial protocol. With the appropriate command
line arguments, gdb can use this protocol to connect to the target using a TCP connection.
Instead of connecting to the target directly, however, we connect it to rvd. Note that it
is not desirable to simply implement the remote serial protocol in rvsrv, as rvsrv has no
concept of memory maps or even a processor to be debugged. To prevent the user from
having to set up the connection manually, the rvd gdb command that hosts the remote
serial protocol server simply runs gdb as a child process with the suitable command line
arguments.

4.6.3 ρ-VEX trace decoder: rvtrace

Software is also needed to handle tracing. In order to acquire the raw trace data from the
trace buffer, rvd trace may be used, which enables tracing and then simply downloads
data from the trace buffers to a file until some condition becomes true. However, this
trace data is still in the raw binary format in this stage.

In order to decompress the trace data to a human-readable log file, rvtrace is created.
rvtrace takes as input a raw trace file, the context index to interpret the data for,
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and a disassembly file. It then outputs the disassembly information for every executed
instruction in the order of execution, while annotating the disassembly with the traced
runtime information.

4.7 Conclusion

In this chapter, we have discussed the implementation of the complete ρ-VEX ecosystem.
In Section 4.1 we evaluated which hardware-description language is best suited for

the project. We considered VHDL and SystemC in particular. We ended up choosing
VHDL primarily due to the lack of toolchain support for SystemC.

The implementation of the processor was then extensively discussed in Section 4.2,
starting with the reconfiguration system, and then going through the remainder of the
components one at a time, roughly ordered by pipeline stage. We also described the trace
buffer component at the end of the section.

Subsequently, the cache implementation was presented in Section 4.3. We first dis-
cussed the reconfigurable interconnect in detail, and then gave an overview of how the
individual cache blocks are implemented.

In Section 4.4, we described ways in which the processor and cache can be tied together
to form a complete processing system. In particular, we have seen the standalone system,
designed to provide a controlled environment for doing experiments with the ρ-VEX, and
the GRLIB-based system, which interfaces the ρ-VEX with the GRLIB IP library. In
particular, the latter allows the ρ-VEX to use the DDR3 memories available on the FPGA
development boards, thereby allowing large, complex applications to be run.

Finally, the protocol and implementation of the debug UART was described in Sec-
tion 4.5, and the software used to control it was presented in Section 4.6.
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Verification 5
In this chapter, we discuss how the functionality of the designed and implemented pro-
cessing system is verified. This is done using a simulation-based conformance test and
by running benchmarks on the synthesized design.

The conformance test suite for the processor is discussed in detail in the first section.
In the subsequent section, a separate simulation-based verification platform for the cache
is described, as the conformance test suite only tests the processor.

The remaining sections concern the synthesized design. First, the third section lists
which design-time configurations are synthesized and how. It also lists the area and
approximate operating frequency results. The fourth section lists the results of running
the PowerStone benchmark suite [37] on the various synthesized designs. The fifth section
explains how the functionality of the reconfiguration and trap systems is verified. The
remaining two sections discuss the performance of the debug link and tracing respectively.

5.1 Conformance test suite

In order to test the processor, a simulation platform was constructed that automatically
runs a set of conformance tests for various design-time configurations of the processor.
It consists of a test runner implemented in behavioral VHDL, a set of test description
files interpreted by the test runner, and a set of GNU make and python scripts that run
the test suite in ModelSim, a simulation toolchain by Mentor Graphics, for each selected
design-time configuration of the processor.

The conformance test is started using make. The make script first compiles any tests
that are written in C, and then starts an instance of ModelSim for each design-time
configuration. The -j command line switch allows multiple instances to be run on parallel
to speed up the simulation. The ModelSim instances are automated using a TCL script,
that compiles and loads the test runner VHDL, starts the simulation, and terminates
ModelSim when the test runner signals completion. A python script filters the console
output from ModelSim to write the result of each test to a log file. When all simulations
complete, the make script returns whether any tests failed.

The VHDL test runner works by reading an index file that specifies a list of test
description files. It then interprets the commands in these test files one by one. When
the last test has been executed, the simulation is halted. Test description files may
contain memory access commands, debug port commands, and the ‘wait’ command. The
latter fulfills two purposes. First, it allows the execution of the next command to be
delayed by a set amount of cycles. Secondly, it can make the test runner wait for a
specified number of cycles for a specific event to occur. Events include the core starting
or halting, instructions being fetched, or data memory being accessed by the core in a
certain way. If the event does not occur in time, or (in some cases) a similar but different
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event occurs, the test case fails.
Initializing the memory may be done by means of commands that write integer values

directly, a data file load command, or assembly commands. The latter allows syllables
to be specified in a simple, human-readable way that is independent from the compiler
toolchain. This is particularly important for testing error handling. Furthermore, the
assembly syntax definitions are extracted directly from the opcode decoding table, and
are therefore always in sync with the processor hardware description.

Test description files may also contain guards, that prevent the test case from being
executed if an incompatible design-time configuration is used. This allows the same set
of test cases to be used for various configurations, even if some test cases do not apply to
some of them. When such a test case is encountered, the test runner marks the result of
the test as inconclusive. It also does this if a test description is syntactically incorrect.

The instruction and data memories are modeled in such a way that they return
explicitly undefined values for all cycles except for the ones in which the result is supposed
to be valid. In addition, the access latencies are pseudo-randomly generated. This tests
whether the timing of the memory interfaces is correct.

The conformance test suite may also be run in graphical user interface (GUI) mode.
This allows the processor to be debugged should a test case fail. A screenshot of the
GUI is depicted in Figure 5.1. Notice that the operations performed by the processor are
available in a human-readable textual format in the waveform view. If a test fails or is
inconclusive, the test runner also outputs a console message indicating what event caused
the test to fail. This allows the test cases and the processor to be easily debugged.

Figure 5.1: Screenshot of ModelSim after running the conformance test suite in GUI
mode.
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The following design-time configurations are currently tested by the conformance test
suite:

• Configuration A: static two-way, fixed-length instructions (minimal configuration).

• Configuration B: eight-way, four lane groups, four contexts, fixed-length instruc-
tions, supporting both long immediate forwarding paths.

• Configuration C: eight-way, four lane groups, four contexts, variable-length instruc-
tions aligned by two syllables, only supporting long immediates forwarded from the
other syllable in an aligned pair.

The created test cases and their results are shown in Table 5.1. They test the following
things:

• Test 1 checks whether memory instructions and the stop instruction operate as
expected in conjunction with the test runner.

• Tests 2 to 7 test the various register files and forwarding behavior, including the
corner case where a register is read and written in the same cycle, and the behavior
if a single register is written by multiple lanes at once.

• Tests 8 to 13 test the various long immediates routes, as well as trap behavior
in case they are used in an incorrect or unsupported way. Only configuration
C supports the long-immediate-from-previous-pair forwarding route, causing the
different results.

• Tests 14 to 23 test the arithmetic logic unit (ALU) instructions for various inputs.

• Test 24 is a C program that computes the factorial for a number of inputs, thereby
testing the multiplication unit.

• Tests 25 and 26 test various branch instructions.

• Test 27 tests the interrupt controller interface and the trap control registers.

• Tests 28 and 29 test the reconfiguration system. These are inconclusive for config-
uration A, because it only has one lane group and one context and thus does not
support reconfiguration.

• Tests 30 and 31 test the debug interface. Both of these tests rely on reconfiguration.

• Test 32 consists of the PowerStone ucbqsort benchmark with a reduced input size.
It intends to test compatibility with the compiler toolchain.

As can be seen in the table, all test cases succeed.
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Table 5.1: List of test cases in the conformance test suite.

Test case Config. A Config. B Config. C
1. sanity check 3 3 3

2. GP. reg. consistency 3 3 3

3. GP. reg. forwarding 3 3 3

4. Br. reg. consistency 3 3 3

5. Br. reg. forwarding 3 3 3

6. link reg. consistency 3 3 3

7. link reg. forwarding 3 3 3

8. LIMMH from neighbor OK 3 3 3

9. LIMMH from prev. OK n/a n/a 3

10. LIMMH from prev. trap 3 3 n/a
11. LIMMH prefetching n/a n/a 3

12. LIMMH to invalid lane trap 3 3 3

13. LIMMH conflict trap n/a n/a 3

14. ALU adder ops 3 3 3

15. ALU bitwise ops 3 3 3

16. ALU min/max/select ops 3 3 3

17. ALU shift ops 3 3 3

18. ALU single-bit ops/CLZ 3 3 3

19. ALU sign/zero ext. ops 3 3 3

20. ALU comparison ops 3 3 3

21. ALU logical ops 3 3 3

22. ALU accellerated division 3 3 3

23. ALU link register moves 3 3 3

24. factorial (multiplier) 3 3 3

25. unconditional branch 3 3 3

26. conditional branch 3 3 3

27. interrupts/trap ID regs. 3 3 3

28. externally-triggered reconf. n/a 3 3

29. software-triggered reconf. n/a 3 3

30. single step with reconf. n/a 3 3

31. soft breakpoint trap n/a 3 3

32. ucbqsort-fast 3 3 3

5.2 Cache simulation

The conformance test suite discussed in the previous section uses a simulation model for
the memories specially suited to test the processor, and thus does not include the cache.
Therefore, a separate platform is constructed to test the cache.

This platform consists of a make script capable of compiling C programs for various
ρ-VEX configurations, converting the binaries to a VHDL memory initialization file, and
starting ModelSim to run the simulation. The simulation itself consists of a memory
model for the cache to access with similar features as the conformance test suite, and
a secondary memory model that monitors the instructions and data as accessed by the
processor. Inconsistencies between the two are reported to the simulation console.

The cache simulation was run for various PowerStone benchmarks using an eight-
way ρ-VEX with four lane groups for debugging purposes. However, doing extensive
verification in this way is impractical due to the long simulation run time. The cache is
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mostly verified by means of the FPGA-based tests.

5.3 Synthesis

We now present synthesis results for the processor. Table 5.2 lists the designs that were
synthesized. Note that all designs were synthesized using the default pipeline configura-
tion. Experimentation with different configurations is left to future work.

Table 5.2: List of synthesized designs.
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gr96 8 4 4 2 3 all 0,2,4,6 64 32 524288 3

gr24 8 4 4 2 3 all 0,2,4,6 16 8 524288 3

sa96 8 4 4 2 3 all 0,2,4,6 64 32 256 3 3

sa24 8 4 4 2 3 all 0,2,4,6 16 8 256 3 3

4x2b2 8 4 4 2 3 all 0,2,4,6 - - 256 3 3

4x2b8 8 4 4 8 3 3 all 0,2,4,6 - - 256 3 3

1x8b2 8 1 1 2 3 all 0 - - 256 3 3

1x8b8 8 1 1 8 3 3 all 6 - - 256 3 3

1x2b2 2 1 1 2 3 all 0 - - 256 3 3

gr24 and gr96 are derived from the GRLIB version 1.3.7-b4144 LEON3 example
project for the ML605 development board by replacing the LEON3 with the ρ-VEX
GRLIB-based processing system (Section 4.4.3). The other designs use the standalone
processing system (Section 4.4.2). The debug UART is included in all designs. The
standalone designs also include a simple repetitive interrupt timer.

The designs are synthesized with Xilinx ISE 14.7. The standalone designs use the
default optimization parameters. The GRLIB design is synthesized using the custom
parameters that come with the example project, with the exception that retiming is
disabled. This is done because the tools use an excessive amount of time and memory to
synthesize the ‘valid’ memories in the cache otherwise.

The normal synthesis design flow requires the designer to set the operating frequency
beforehand. The synthesis tools will then attempt to place and route the design such that
it will function at that frequency. This flow is used for the GRLIB-based designs, using a
30 MHz clock. However, it is desired to determine how the design-time configuration of
the processor affects the maximum frequency. Performance evaluation mode may be used
to do this [38, pp. 103, 128]. In this mode, the synthesis tools ignore the user-specified
timing constraints. Instead, the tools constrain themselves at runtime, increasing the
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Table 5.3: Synthesis results.

Design Slices LUTs Registers BRAMs DSPs Frequency
gr96 ML605 32075 88018 58807 237 16 30.0 MHz
gr24 ML605 29469 76799 51152 213 16 30.0 MHz
sa96 ML605 19617 54125 22351 247 16 35.2 MHz

VC707 23775 55388 22338 247 16 60.9 MHz
sa24 ML605 23883 66270 30047 271 16 35.3 MHz

VC707 26662 68438 30032 271 16 61.5 MHz
4x2b2 ML605 18195 46975 16155 347 16 37.5 MHz

VC707 20614 47458 16148 347 16 51.9 MHz
4x2b8 ML605 17591 46379 16044 347 16 34.0 MHz

VC707 20262 47055 15972 347 16 57.8 MHz
1x8b2 ML605 11180 27321 8543 271 16 43.3 MHz

VC707 12362 26040 8574 271 16 59.6 MHz
1x8b8 ML605 10781 26833 8134 271 16 44.4 MHz

VC707 12345 27267 8143 271 16 61.7 MHz
1x2b2 ML605 4544 10679 3891 145 4 47.8 MHz

VC707 4713 11057 3935 145 4 66.2 MHz

frequency constraint when possible and relaxing it when necessary. Still, the actual clock
frequency that is generated by the frequency synthesizer must be specified at design time.
It is set to 10 MHz, which is significantly lower than the expected maximum frequency,
thereby making it highly probable that the synthesized design will work.

Table 5.3 lists an overview of the synthesis results. Figure 5.2 and Figure 5.3 depict
the resource distributions of the processor and the cache respectively. Some notes:

• While the number of slice registers and lookup tables (LUTs) are similar for the
ML605 and VC707, the VC707 design consistently occupies more slices. This is
likely a result of lesser area constraints on the place and route tools, as the VC707
contains about twice as many slices as the ML605.

• Each of the synthesized eight-way processors use 128 block rams (BRAMs) for the
general purpose-register file, and the two-way uses eight. The differing amounts of
BRAMs between the reconfigurable and static designs is for the most part due to
the the fact that the reconfigurable processor can access the instruction memory
in more ways than the static processor. For instance, the first lane of a static
eight-way ρ-VEX will only ever fetch 32-byte aligned words, while the first lane of
a reconfigurable ρ-VEX can fetch any 8-byte aligned word.

• Each lane supporting multiplications uses two DSP blocks. This makes sense, as a
single DSP block can only perform a 25x18 multiplication, and the ρ-VEX supports
32x16 multiplications.

• 4x2b8 is routed at a higher clock frequency than 4x2b2 on the VC707 as expected,
but interestingly, this is not the case on the ML605. This is most likely due to the
inherent randomness of the place-and-route heuristics.
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Figure 5.3: FPGA resource of the reconfigurable cache. The left bars represent the results
for the ML605, the right bars represent the VC707.
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• The additional area needed to support variable-length instructions appears to be
negligible.

• While the overhead of supporting reconfiguration does not seem to cost that much
logic by itself, the area needed to store the additional contexts needed to support
parallel execution is very significant.

• The majority of the register and LUT resources of the cache are devoted to the
‘valid’ memories. This is because they cannot be mapped to BRAMs or distributed
RAM resources, as it needs to be possible to clear all bits at once to support cache
flushing.

• The BRAM resources of the cache do not appear to scale linearly with the total size,
implying that at least the sa24 cache is not large enough to fill all the instantiated
BRAMs. To understand this, consider that the cache is divided into four blocks.
Therefore, each data cache block is only 4 kiB in size, while a BRAM is 36 kiB in
size, explaining why sa24 uses four BRAMs for the data lines. The same applies
to the instruction memory, although here it is even worse, because the maximum
width of a single-port BRAM is only 72 bits, while we need 256. Therefore, each
instruction cache block needs four BRAMs, leading to sixteen BRAMs in total.

5.4 Benchmarks

In order to evaluate the performance and verify the correctness of the processor in hard-
ware, benchmarks are run. The PowerStone benchmark suite [37] is used because it had
already been ported to the ρ-VEX architecture. The initial reason for using PowerStone
was because the applications in it are simple enough to not rely significantly on the C
standard library, which had not yet been ported at the time1. The auto and whetstone

benchmarks are missing as their sources could not be found. All benchmarks except
compress and des were fitted with self-test code at the end that checks (part of) the
computed result against the correct result. The result of the check is returned through
the virtual serial port exposed by the debug link.

The benchmarks are compiled with HP VEX compiler version 3.43 [39]. In addi-
tion to the machine model and issue width, the following flags are specified: -fno-xnop

-fexpand-div -O2 -S. The assembly output is then passed to the vexparse python pro-
gram for the reconfigurable designs, which reschedules the assembly to allow it to be
assembled as a generic binary. Finally, the code is assembled using the GNU binutils

port for the ρ-VEX. vexparse and the binutils port were developed at the TU Delft
Computer Engineering Lab and have not been published at the time of writing.

Compilation is done for each design individually, allowing the tools to optimize the
code for the processor configuration. The benchmarks are compiled and run twice for
the sa24 and gr24 platforms, once with the optimal settings, and once with the bundle
length forced to eight syllables. This allows the behavior of fixed-length instructions to
be tested on the design supporting variable-length instructions.

1At the time of writing, newlib has been partially ported, but it is still somewhat experimental.
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Table 5.4: Benchmark results for the various configurations. The results of the individual
benchmarks are combined. The designs marked with an * use code compiled with the
bundle size fixed to eight syllables.

Design Code size Config. Cycles Stalls NOPs Insn. miss Data miss Speedup

gr96 514 kiB 8-way 8114 k 22.3% 25.4% 0.0% 7.3% -

4-way 8399 k 22.9% 25.4% 0.1% 8.0% 0.97

2-way 10017 k 25.1% 25.4% 0.4% 9.8% 0.81

gr24 514 kiB 8-way 8848 k 28.7% 25.4% 0.5% 9.4% 0.92

4-way 9344 k 30.7% 25.4% 0.7% 11.0% 0.87

2-way 11710 k 36.0% 25.4% 1.6% 13.6% 0.69

gr24* 1392 kiB 8-way 9484 k 39.8% 74.5% 2.0% 9.4% 0.86

4-way 27399 k 61.2% 74.5% 9.6% 10.8% 0.30

2-way 53277 k 61.6% 74.5% 10.4% 13.6% 0.15

sa96 510 kiB 8-way 20465 k 69.2% 25.4% 0.0% 7.2% 0.47

4-way 21659 k 70.1% 25.4% 0.1% 7.9% 0.44

2-way 28507 k 73.7% 25.4% 0.4% 9.8% 0.33

sa24 510 kiB 8-way 27529 k 77.1% 25.4% 0.5% 9.3% 0.35

4-way 30635 k 78.9% 25.4% 0.7% 10.9% 0.31

2-way 47672 k 84.3% 25.4% 1.6% 13.6% 0.20

sa24* 1387 kiB 8-way 42377 k 86.5% 74.5% 2.0% 9.3% 0.23

4-way 214208 k 95.0% 74.5% 9.6% 10.9% 0.04

2-way 430756 k 95.3% 74.5% 10.4% 13.6% 0.02

4x2b2 510 kiB 8-way 6307 k 0.0% 25.4% - - 1.61

4-way 6475 k 0.0% 25.4% - - 1.56

2-way 7498 k 0.0% 25.4% - - 1.35

4x2b8 1387 kiB 8-way 5704 k 0.0% 74.5% - - 1.61

4-way 10618 k 0.0% 74.5% - - 0.87

2-way 20445 k 0.0% 74.5% - - 0.45

1x8b2 507 kiB - 24999 k 0.0% 24.5% - - 0.47

1x8b8 1372 kiB - 22641 k 0.0% 74.3% - - 0.53

1x2b2 579 kiB - 28640 k 0.0% 23.1% - - 0.45

Table 5.4 lists the results of running the following benchmarks sequentially on the
various designs: qurt, crc, bcnt, blit, compress, des, engine, fir, g3fax, jpeg, pocsag,
ucbqsort, and v42. The self-test was completed successfully by all supporting benchmarks
on all designs.

The ‘config.’ column in the table lists the runtime configuration with which the
benchmarks were run. The ‘stalls’ column lists the percentage of the total cycles during
which the processor is stalled due to the memory system. The ‘NOPs’ column lists the
percentage of committed no-operation (NOP) syllables, providing an indication of code
compression efficiency. The ‘speedup’ column lists the speedup of the designs with respect
to gr96, computed using the operating frequency for the ML605 board listed in Table 5.3.
The remaining columns should be self-explanatory. Some notes:
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• The instruction cache miss rates are negligible in all but the sa24* and gr24* runs.
This is due to the fact that the PowerStone benchmarks are all very short programs,
that simply fit in the instruction cache in their entirety. The programs only become
large enough to cause a significant amount of instruction cache lines to be evicted
in the 16 kiB instruction caches when compiled with fixed-length bundles.

• The sa24 and sa96 designs were configured to simulate a memory access penalty
of 20 cycles per 32-bit bus transaction. Evidently, the memory controller in the
GRLIB platform is faster than that.

• The high amount of executed NOP syllables and the small difference in cycle count
between 1x8b8 and 1x2b2 compared to the difference in execution resources indicate
that the PowerStone benchmarks do not have a high amount of instruction level
parallelism (ILP).

Table 5.5 lists the individual benchmark results for the gr24 design in 8-way mode,
indicating the differences between the benchmarks. The code size of the benchmarks is
dominated by the initialization code and the software floating point library. However,
only qurt and fir use floating point arithmetic. This can be observed clearly from the
instruction cache miss rate.

Table 5.5: Individual benchmark results for the gr24 design in 8-way mode.

Benchmark Code size Data size Cycles Stalls NOPs Insn. miss Data miss

qurt 37 kiB 1 kiB 70 k 58.6% 20.7% 7.5% 1.5%

crc 36 kiB 1 kiB 18 k 10.7% 21.1% 0.4% 16.9%

bcnt 36 kiB 9 kiB 7 k 36.5% 8.8% 0.9% 81.9%

blit 37 kiB 9 kiB 33 k 54.2% 25.9% 0.4% 90.0%

compress 47 kiB 33 kiB 197 k 33.6% 20.8% 0.2% 26.5%

des 38 kiB 6 kiB 56 k 27.2% 12.0% 0.2% 9.1%

engine 40 kiB 1 kiB 764 k 9.0% 21.3% 0.0% 0.1%

fir 37 kiB 1 kiB 1103 k 55.2% 20.2% 6.2% 0.4%

g3fax 37 kiB 9 kiB 857 k 18.9% 24.4% 0.0% 0.8%

jpeg 39 kiB 79 kiB 2659 k 37.5% 25.2% 0.0% 15.4%

pocsag 39 kiB 2 kiB 25 k 20.7% 15.8% 0.7% 7.2%

ucbqsort 40 kiB 2 kiB 290 k 5.2% 28.7% 0.0% 0.8%

v42 44 kiB 40 kiB 2761 k 19.4% 29.2% 0.0% 10.2%

5.5 Runtime reconfiguration and interrupts

In the benchmark runs performed thus far, runtime reconfiguration and traps (aside
from the stop trap caused by the stop instruction) are not used and are therefore not
yet tested. Initially, the following method was used to test reconfiguration. First, four
benchmarks are modified to run in a loop and output a single character to the serial port
when a run completes. The character written depends on the benchmark and on whether
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the run was successful or not. The initialization code is then modified to start a different
benchmark with a different stack pointer in each context. This program is compiled
as a generic binary and run on the gr24 platform. While it runs, reconfigurations are
requested manually through the debug interface. No erroneous runs were observed with
extensive testing.

To test interrupts and simultaneously test runtime reconfiguration in a more scientific
manner, a second program is made. This program includes two of the previously modified
benchmarks, qurt and jpeg, which it runs in a loop for five seconds each. The number
of runs and the actual time taken to run them are recorded (which may be slightly
longer, as the individual runs are not interrupted when the time expires), so the average
execution time of each benchmark can be determined afterward. qurt and jpeg are chosen
specifically because qurt suffers from a significant amount of instruction cache misses and
jpeg has the largest dataset.

Before the first benchmark is started, the repetitive interrupt timer is configured
to generate an interrupt at some specified rate. In the interrupt service routine, a re-
configuration is requested, such that the configuration with which the benchmarks are
run toggles between two configurable configurations. The way in which the interrupt
is serviced is also configurable; it may be serviced by trapping the context that runs
the benchmarks, by using reconfiguring to interrupt the thread and run the handler in
dedicated context, or by handling the interrupt in parallel to the benchmarks. The lat-
ter two methods use the interrupt-triggered reconfiguration system specified in the last
paragraph of Section 3.2.4.

The program is run using the configurations listed in Table 5.6 at interrupt rates
ranging from 10 Hz to 100 kHz. Notice that all configurations of the program toggle
between running the benchmarks in a two-way and four-way configuration. The difference
between configurations A and B is that the cache blocks used overlap in configuration B,
but are different in A. This serves to test the measures taken to ensure cache coherence and
consistency in a runtime reconfigurable system. Simultaneously, it allows the effectiveness
of splitting and merging the caches as opposed to using different caches for each runtime
configuration to be evaluated. Likewise, testing both interrupt handling methods serves
to verify the functionality both systems, but also to evaluate the performance of either
method.

Table 5.6: Configurations with which the reconfiguration/interrupt test program is run.

Name Benchmark configs. Interrupt handling method
trap-A 0x8808 and 0x0088 Regular trap
trap-B 0x8808 and 0x8800 Regular trap
rcfg-A 0x8818 and 0x1188 Interrupt by reconfiguring to 0x8880
rcfg-B 0x8818 and 0x8811 Interrupt by reconfiguring to 0x8088
para-A 0x8818 and 0x1188 Run in parallel by reconfiguring to 0x8810/0x1180
para-B 0x8818 and 0x8811 Run in parallel by reconfiguring to 0x8018/0x8011

The program is run using the sa24 design, using a simulated bus access latency of 20
cycles as before. No errors were detected while running the program. Figure 5.4 depicts
the acquired performance results. Some notes:
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(d) jpeg average cycle count.

Figure 5.4: Performance results of the reconfiguration/interrupt test program.

• The data for the trap configurations ends at an interrupt frequency of around 3
kHz. This is because a single jpeg run at this point takes significantly more than
five seconds to complete, causing the script that runs the tests to time out.

• As can be expected, dedicating a hardware context to only servicing interrupts is
much more performant than handling the interrupts in the normal way.

• Handling the interrupts in parallel is slightly more performant than pausing the
application. The effect is not very severe because the interrupt handler is very
short and fits entirely in the cache.

• Configuration B almost always outperforms A, as expected.

• The increase in data cache performance at higher interrupt rates in configuration
trap-B is due to the fact that the software context saving and restoring in the trap
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handler becomes more prominent.

5.6 Debug link and software

The debug link and software were used to debug and run all the previous tests, and
have therefore already been implicitly verified to work. It is interesting to determine the
performance of the link, however.

This was done by first uploading a 256 kiB file with randomized contents (generated
using dd and /dev/urandom) to the memory of the sa24 design, and subsequently down-
loading it again. The upload took 27.5 seconds, indicating a transfer speed of 9525 bytes
per second. The download took 29.2 seconds, indicating 8980 bytes per second. Recall
from Section 3.4.4 that the the theoretical bandwidth of the UART is 11520 bytes per
second, although it has not been tested whether the USB to UART converter on the
FPGA development boards is sufficiently buffered to sustain this speed.

5.7 Tracing

Finally, the functionality of the trace system is to be verified. This is done by tracing
the benchmarks at various level-of-detail settings. The total cycle count and executed
bundle count performance counters are then read when tracing completes to determine
the average number of bundles executed per cycle. The results of these tests are listed in
Table 5.7. The gr96 design was used to run the tests.

Table 5.7: Performance of the trace unit using the UART debug link.

Level of detail Average bundles per second

No tracing 20185102

Program counter only 8615

+ cache performance 1080

+ memory accesses 832

+ fetched instructions 150

+ all register writes 132

To give an indication of what the trace output from rvtrace looks like, the following
listing shows a fully annotated instruction bundle from qurt.

# fetch for next bundle serviced by icache block 2: hit

8530: 15 ac 08 80 stw 0x20[r0.1] = r0.22

# mem(0x000118C0) = 0xFD799000 (-42364928)

# Fetched syllable was 0x15AC0880

8534: 59 00 68 42 orl b0.0 = r0.13, r0.2;;

# b0.0 = false

# Fetched syllable was 0x59006842

# write (full line) serviced by dcache block 3: hit
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5.8 Conclusion

In this chapter, we have discussed the steps taken to verify the functionality of the ρ-
VEX system, completing the final step of the method. In addition, the results of various
performance measurement experiments were listed.

In Section 5.1, we have explained how the conformance test suite is implemented.
Furthermore, we have listed 32 test cases, and have shown that all applicable test cases
pass for three different design-time configurations of the processor.

As the conformance test suite does not include the cache, a separate simulation plat-
form was created to test it. This platform is discussed briefly in Section 5.2.

Next, the synthesis results were listed for nine different designs in Section 5.3. Most
of the designs were synthesized in performance evaluation mode, providing estimated
maximum operating frequencies. These were found to range from 34.0 MHz to 47.8
MHz for the ML605 development board, and from 51.9 MHz to 66.2 MHz for the VC707
development board.

In Section 5.4, the PowerStone benchmark suite results were listed for the various
synthesized designs. Then, in Section 5.5, we specified how the reconfiguration system
was tested.

Finally, the performance of the debug link and the trace system were briefly discussed
in Sections 5.6 and 5.7 respectively.
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Conclusion 6
This chapter serves to conclude the thesis. In the first section, a summary is provided.
The second section reiterates the problem statement and project requirements, and lists
the main contributions made. The third section documents the additional contributions
that were made during the course of the project. Finally, the fourth section lists recom-
mendations for future work.

6.1 Summary

Chapter 2 presents the background information needed to understand this thesis.
In Section 2.1, field-programmable gate arrays (FPGAs) are introduced. Both the

theory of operation of a generic FPGA and the features of the specific FPGA development
board used in this project (the Xilinx ML605 and VC707) are discussed. Furthermore,
it is described that FPGAs can be programmed using hardware description languages
(HDLs), most notably VHDL, Verilog and SystemC. Finally, examples of other softcore
processors are given, and use cases are presented.

Next, Section 2.2 details processor design. In particular, pipelining, trap handling,
and debugging are discussed. Existing processor implementations are referenced to com-
pound the theory. The ρ-VEX architecture and the existing implementations thereof are
discussed in particular. At the end of the section, the components of the previous ρ-VEX
implementations that are reused in the processor designed in this work are listed.

Finally, Section 2.3 discusses caches and other memory hierarchy components. Several
cache implementation styles and their effect on cache consistency and coherence are
described.

Chapter 3 describes the design of the main components of the new ρ-VEX processor.
Section 3.1 presents the design of the control registers. A distinction is made between

context control registers and global control registers, the former being local to a thread
and the latter being shared between all threads. The way in which the debug port is
connected to the registers is also discussed.

Next, in Section 3.2, the runtime reconfiguration system is designed. It is illustrated
how a configuration can be abstracted to a mapping from lane groups (the computational
resources) to contexts (the register files and control logic), and how this can be encoded
in a configuration word. Subsequently, the ways in which a reconfiguration may be
requested are determined. Finally, the configuration word decoder and synchronization
logic are designed.

The precise trap system is designed in Section 3.3. Here, it is determined that all traps
can best be handled by the same set of trap handlers, regardless of the cause of the trap.
Instead, it is defined that traps will be identified by means of a trap cause and a trap
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argument context control register. We then distinguish between the regular trap handler
and the panic handler to deal with non-maskable nested traps. To allow interrupts to be
postponed, an interrupt enable flag is specified. Finally, potential problems to do with
returning from a trap handler after reconfiguration are illustrated, and the approach
taken to solve these problems is described.

In Section 3.4, the debug system is designed. Here, it is decided that both self-hosted
and external debugging are to be supported, and determined how this can be imple-
mented. Particularly, a universal asynchronous receiver/transmitter (UART)-based de-
bug interface peripheral is specified. Furthermore, the need for a trace unit is illustrated,
and the required features are specified.

Subsequently, in Section 3.5, the design of the variable-length instruction system
is described. It is determined that stop bits can be best used to encode the bundle
boundaries, as the toolchain already supports this method. It is also argued that it is
preferable to hide the complexity of fetching misaligned bundles from the memory system
by implementing an instruction buffer in the processor.

The reconfigurable cache for the processor is designed in Section 3.6. Here, the
requirement is set that a thread can only perform one memory operation per cycle.
This allows the caches that belong to separate lane groups to be combined to form a
larger, set associative cache when multiple lane groups are coupled. Next, it is discussed
how transient cache performance after a reconfiguration can be optimized, although we
specify that many optimizations will not be implemented and are left to future work.
Finally, cache coherence and consistency problems caused by runtime reconfigurations
are illustrated, and solutions to these problems are provided.

Finally, although not a requirement of the project, we specify additional requirements
for design-time configurability in Section 3.7 that are relatively simple to implement,
intended to accelerate future research.

Chapter 4 presents the implementation of the complete ρ-VEX ecosystem.
In Section 4.1, the hardware-description language used to implement the design is

chosen based on the context of the project. VHDL and SystemC are considered in
particular. VHDL is ultimately chosen, primarily due to the lack of SystemC toolchain
support for the ML605 development board.

The implementation of the processor is extensively discussed in Section 4.2, starting
with the reconfiguration system and then going through the remainder of the components
one at a time, roughly ordered by pipeline stage. The trace buffer peripheral is also
discussed along with the trace unit at the end of the section.

Subsequently, Section 4.3 discusses the cache implementation. The implementation
of the reconfigurable interconnect between the cache blocks is first described in detail.
The implementation of the cache blocks themselves is discussed in lesser detail, as they
are not affected by any of the unique features of the processor.

Section 4.4 describes ways in which the processor and cache can be tied together to
form complete processing systems. Two processing systems are implemented: the stan-
dalone system, designed to provide a controlled environment for conducting experiments
with the ρ-VEX, and the GRLIB-based system, which interfaces the ρ-VEX with the
GRLIB IP library. In particular, the latter allows the ρ-VEX to use the DDR3 memories
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available on the FPGA development boards, thereby allowing large, complex applications
to be run.

Finally, the protocol and implementation of the debug UART are described in Sec-
tion 4.5, and the software written to control the debug link is presented in Section 4.6.

Chapter 5 details the steps taken to verify the functionality of the system. In addition,
the results of various performance measurement experiments are provided.

Section 5.1 explains how the conformance test suite is implemented. Furthermore,
32 test cases are described, and it is shown that all applicable test cases pass for three
different design-time configurations of the processor.

As the conformance test suite does not include the cache, a separate simulation plat-
form was created to test it. This platform is discussed briefly in Section 5.2.

Next, synthesis results are listed for nine different designs in Section 5.3. Most of the
designs were synthesized in performance evaluation mode, providing estimated maximum
operating frequencies. These are found to range from 34.0 MHz to 47.8 MHz for the
ML605 development board, and from 51.9 MHz to 66.2 MHz for the VC707 development
board.

In Section 5.4, the PowerStone benchmark suite results are listed for the various
synthesized designs. Then, in Section 5.5, the ways in which the reconfiguration system
is tested is described.

Finally, the performance of the debug link and the trace system is briefly discussed
in Sections 5.6 and 5.7 respectively.

6.2 Main contributions

The problem statement of this thesis was:

How to design and implement a dynamically reconfigurable and parameteriz-
able VLIW processor?

We have answered this question by presenting a possible design, implementing it, and
verifying the functionality on two FPGA development boards. Particularly, we have
demonstrated that runtime reconfigurability can be accomplished by means of a reconfig-
urable interconnect structure between the register files (the contexts) and the functional
units (the lane groups). The number of contexts, lane groups, and the issue width are
parameterizable at design-time, among other things.

At the start of the project, a number of requirements were set. These are listed again
here, along with a short summary of how the requirement was met.

1. The design must be compatible with the current ρ-VEX compiler toolchain.

This was accomplished by making the new design binary-compatible with the design
presented in [3].

2. The design must be dynamically (runtime) reconfigurable.

As stated, this was accomplished by separating the processor into contexts and
lane groups, connected by means of a reconfigurable interconnect. Reconfiguration
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is controlled by a state machine that first decodes the requested configuration, then
determines which contexts and lane groups are affected by the reconfiguration, and
subsequently halts these contexts in order to synchronize them before committing
the new configuration. The reconfiguration overhead is only six cycles, measured
from the last instruction issue before the reconfiguration to the first instruction
issue after the reconfiguration.

3. The design must support precise traps.

Trap preciseness is accomplished by flushing the pipeline when a trap occurs. Han-
dling the trap is delayed until earlier instructions can no longer cause traps to
ensure in-order trap handling. If a trap occurs while the reconfiguration controller
is halting the running context, the program counter (PC) is set to the trap point,
so the trap will be generated again after resumption. Special cases were identified
with regards to returning to the application after handling a trap if a reconfigu-
ration occurred during the execution of the handler. These cases and the way in
which they are handled are discussed in detail in Section 3.3.5.

4. The design must support debugging.

Both self-hosted and external debugging were implemented. In self-hosted mode, a
trap is generated when a breakpoint or watchpoint is hit; in external debug mode,
the context is halted. To allow external debug peripherals to access the processor,
all register files are exposed through a bus slave interface.

A UART-based debug interface peripheral was developed to facilitate external de-
bugging. A custom communication protocol was developed for this interface. This
protocol allows the application running on the ρ-VEX processor to use the debug
peripheral as a normal UART, while at the same time allowing the host to give bus
access commands. These commands are decoded and handled using a state machine
in the peripheral, so they are transparent to the application. Transmission errors
in the commands are detected using a cyclic redundancy check (CRC). Timeout
and retransmission is employed to correct errors.

A set of Linux tools was developed to communicate with the debug interface on
the host side. This software can either be used for debugging on its own, or in
conjunction with the existing gdb port [5].

Finally, in addition to supporting traditional debugging, a trace system was con-
structed. This system allows various execution information to be recorded for later
analysis, without needing to interrupt the program to analyze the current state.

5. The design must support variable-length instructions.

Variable-length instructions are supported by allowing bundle boundaries to be ex-
plicitly marked using stop bits. When the stop bit is set in a syllable, subsequent
syllables that are fetched in parallel are disabled, and the PC is incremented only
by the amount of executed syllables. To handle the resulting misaligned instruc-
tion fetches, an ‘instruction buffer’ was developed. This buffer splits a misaligned
fetch into two aligned instruction memory accesses, which are then performed se-
quentially. The instruction buffer always stores the result of the latest memory
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access, such that consecutive instruction fetches require at most one memory ac-
cess. In other words, only misaligned branches require two memory accesses; any
other instruction fetch can still be serviced in a single cycle.

6. The design must include a coherent, dynamically reconfigurable cache.

This was accomplished by separating the instruction and data caches into multiple
blocks, one for each cache/lane group pair. The blocks are connected to each other
and to the processor through a reconfigurable interconnect, such that when lane
groups are coupled in the processor, the associated blocks function as sets in a
set associative cache. Coherence is achieved by using the write-through method
in conjunction with bus snooping. Each block is equipped with a write buffer to
hide the memory access latency for writes as much as possible. While the write
buffer is filled, reconfigurations involving that buffer are blocked to ensure cache
consistency.

In addition to those needed to meet the requirements, the following features were also
designed and implemented:

• Configuration system

To make the ρ-VEX design-time configurable beyond parameterization, a configu-
ration system was developed, capable of generating parts of the hardware descrip-
tion. The relevant parts of the user manual, C/assembly header files, and debug
interface memory map specifications are generated in tandem, to ensure that they
remain synchronized. This system fully specifies the control register functionality
and layout, and partially specifies instruction encoding, trap identification, and the
pipeline layout.

• GRLIB processing system

In order to test the cache with an off-chip memory controller, and simultaneously
allow large applications to be run on the ρ-VEX, an AHB bus interface was con-
structed to allow the ρ-VEX to be used in conjunction with the GRLIB IP library
and associated memory controller interface.

6.3 Additional contributions

During the course of the project, several additional contributions were made. These are
listed in this section.

• Vexparse

None of the C compilers currently available for the ρ-VEX can output code that
can explicitly be assembled as a generic binary directly. Instead, it is the task of the
assembler to schedule syllables accordingly if a generic binary is desired. However,
the assembler was not able to do this in all cases, requiring the programmer to
manually modify the assembly code. As a workaround, a python program called
vexparse was developed by A. A. C. Brandon to do register renaming between
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the compilation and assembly phases. I have contributed to this program to allow
it to fully reschedule basic blocks when needed, as register renaming alone was
sometimes not enough.

• ALMARVI project contribution

ALMARVI is a European research project aiming to construct a low-power many-
core execution platform for low-power image processing [40]. The author has con-
tributed to this project by constructing a wrapper for the standalone processing
system compliant with the ALMARVI coprocessor interface specifications. In par-
ticular, an AXI slave to ρ-VEX bus bridge was developed. The system was tested
using the Zedboard FPGA development board, based on the Xilinx Zynq XC7Z020-
1CLG484 FPGA.

• Conference papers

Two conference papers based on the processor implemented in this work were co-
authored. The first of these papers discusses the implementation of the general-
purpose register file in conjunction with runtime reconfiguration and multiple con-
texts ([7], Appendix A). The second describes the variable-length instruction en-
coding technique utilized ([8], Appendix B). Both papers were presented at the
2015 International Conference on ReConFigurable Computing and FPGAs (Re-
ConFig). Two additional papers were based on the implemented processor but
were not co-authored [41][42].

• User manual

In addition to this thesis, a manual was written to describe the functionality of the
processor in more detail. It was written such that changes made in the configuration
files for the processor are automatically reflected, as long as the documentation in
the configuration files is kept up-to-date. It intends to make the processor easily
understandable and usable by future researchers. The current version of the manual
is attached to this thesis in Appendix C.

• Technical support

The implemented processor has enabled several other MSc projects. Three of these
projects have already been completed: [43], [44] and [45]. I have provided advise
and technical support to these students during their projects to help them use and
modify the processor. I was asked and am intending to continue this work for at
least two more years as an employee of the TU Delft.

6.4 Future work

This section lists recommendations for future work.

6.4.1 Implementation

The following list shows examples of things that can be improved in the current hardware
implementation.
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• The opcode encoding used by the processor is defined in a configuration file. How-
ever, the assembler toolchain (GNU binutils) does not currently use this configura-
tion. It may be useful to add support for this in the future, to make it even simpler
to configure the instruction set.

• The line sizes and the number of bus access ports of the instruction and data caches
are currently fixed. This was done merely to keep the initial implementation simple.
It may be possible to improve the performance and area efficiency of the system by
changing these parameters.

• The current variable-length instruction system requires a path from every 32-bit
instruction memory word to every lane. It may be possible to optimize this by
imposing additional restrictions on the placement of syllables within a bundle to
reduce logic resources.

• When a breakpoint or watchpoint is hit, the current debug unit can only halt the
context that caused it. It may be useful to add a feature that allows it to halt the
entire processor as well, as this may be helpful in debugging parallel programs and
synchronization methods.

• The trace unit currently has only limited use in debugging the cache and/or memory
system, as it slows down execution and thus affects the timing of the cache/memory
accesses. It would be useful to construct a secondary trace unit that is capable of
logging data in bursts, either without stalling the processor or by clock-gating
everything except for the trace data output.

• Floating point operations are very expensive on the ρ-VEX due to the lack of a
hardware floating point unit. Implementing such a unit would make the ρ-VEX
suitable for a wider range of applications.

• During the course this project, a memory management unit (MMU) was designed
and implemented for the ρ-VEX in [45]. This MMU was integrated and tested with
the latest version of the processor and cache at the time, but changes have since
been made. Effort should thus be put into updating the MMU-enabled design.

• Similar to the MMU, a fault-tolerant version of the ρ-VEX was developed in [43],
which is also based on an older minor version and should thus be updated. In
particular, it may be integrated such that it can be enabled or disabled at design-
time, allowing it to be merged into the mainline design without a hardware penalty
in applications that do not need fault tolerance.

• In addition to an MMU, contemporary operating systems also require security fea-
tures such as privilege levels from the hardware.

In addition, the following things could be improved on the software side.

• The current Linux kernel port uses an old MMU-less branch of the kernel. Now
that an MMU is available, a more recent version can be ported.
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• Two C standard libraries have been partially ported thus far: uClibc for programs
compiled for the Linux kernel, and newlib for standalone applications. However,
many system calls have not been implemented. This prevents complex programs
from being compiled for the ρ-VEX, including many benchmark suites. Thus, work
could be put into extending C standard library support.

• None of the compilers currently available for the ρ-VEX have C++ support that is
verified to work.

• It is currently impossible to single-step through lines of C code using gdb or other-
wise, as the assembler does not generate accurate debug symbols for anything but
the start of a function. This is likely related to the fact that a very large instruction
word (VLIW) processor is explicitly parallel and may thus be processing multiple
lines of code at once. It should however be possible to prevent this behavior in the
assembler when compiling with debug symbols and without optimizations.

6.4.2 Research opportunities

The following list shows examples of future research that can be conducted on the ρ-VEX
processor.

• Only one pipeline configuration has been evaluated and verified to work. The effect
of the configuration on the area, speed, and energy efficiency should be researched.

• The replacement policy of the cache when multiple blocks are coupled is simplistic
in the current implementation. Using a better policy, such as least recently used
(LRU), may improve cache performance significantly. It may also be possible to
minimize the cache penalty of reconfiguration in cases where the program is aware
of the reconfiguration in advance, by allowing the program to limit the blocks used
to handle cache misses to those that will also be available in the later configuration.
Thus, research should be conducted to determine an appropriate policy.

• The system currently does not support any primitive synchronization operation
such as compare-and-swap or load-link/store-conditional. This limits synchroniza-
tion between threads to less performant software-based approaches. Reconfigu-
ration may affect the way in which such primitives can be implemented. Thus,
research should be conducted to determine a suitable synchronization operation for
the ρ-VEX.

• In Section 3.2.2, we argued in favor of an any-to-any interconnect network between
contexts and lane groups in order to maximize the flexibility of the design. It may
be worth researching whether such a network is worth the cost compared to more
constrained solutions.

• It should be researched how competitive the ρ-VEX is compared to conventional
architectures. In particular, it is hypothesized that the ρ-VEX can reach a simi-
lar energy efficiency as a conventional VLIW processor for applications with high
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instruction level parallelism (ILP), and similar performance as conventional multi-
core processors for applications with high thread level parallelism (TLP). In order
to do this, the ρ-VEX must first be implemented as an application-specific inte-
grated circuit (ASIC), as FPGAs are fundamentally less efficient than a custom
silicon implementation.
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Glossary

arbitration In the context of a bus: the process of determining which master is allowed
access to the bus, if multiple masters request access at the same time. 27

bitstream The configuration file for an FPGA. 7, 21, 50

block ram A dedicated memory component of a Xilinx FPGA. Block RAMs have two
fully independent synchronous access ports, allowing two simultaneous accesses per
clock cycle. In the Virtex-6 and Virtex-7 series, a single BRAM is 36 kib in size.
8, 73, 98

branch The operation of modifying the program counter (PC) register in a way other
than incrementing it to point to the subsequent instruction. 9, 21, 44, 57, 70, 71,
73, 77

branch instruction An instruction that can modify the program counter (PC) register.
9, 11, 12, 21, 44

branch target The target of a branch instruction is the instruction that is to be exe-
cuted after the branch if the branch is taken. 9, 11, 12, 69, 71, 72

breakpoint A breakpoint is an instruction address or line of source code that, when
executed, causes the program to pause, to allow a software developer to inspect
what the program was doing. 15–17, 22, 40, 41, 57, 71, 75, 110, 113

bundle A different name for a VLIW instruction, to disambiguate between syllables and
bundles. A bundle is a set of syllables that are to be executed in parallel. xi, 19,
21, 22, 38–40, 42–44, 46, 47, 51, 53, 64–67, 69–72, 75, 77, 100, 102, 108, 110, 113

burst access A bus access requesting more than one word at a time. The words can
then be transferred one every cycle, unaffected by latency. 23, 24, 27, 83

bus A data channel through which two or more devices can communicate with each
other. 27–30, 41, 48–50, 78, 79, 81–83, 86, 87, 110, 111, 113

bus latency The time it takes for a request to propagate from a master to a slave, plus
the time it takes for the reply from the slave to reach the master again. 27

bus width The number of physical wires in a bus dedicated to data. 27

bypass access In the context of a cache: a bypass access bypasses the cache entirely.
Used for accessing peripherals or other addresses with often-changing values. 26,
50

cache A small but fast piece of memory that stores copies of results of previous accesses
to a larger but slower memory, to prevent the same access from needing to be made
again if the same memory is accessed in the near future. 4, 23–28, 30, 35, 42, 45–50,
53, 64, 74, 77–81, 83, 84, 91, 93, 96, 100, 102, 103, 106–109, 111, 113, 114
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cache coherence Cache coherence is the requirement of a cache that a piece of data
stored in the cache is either updated or invalidated when or shortly after another
processor with its own cache writes to the data. 18, 26, 47, 48, 53, 103, 108, 111

cache consistency Cache consistency is the requirement of a cache that serviced mem-
ory accesses appear to be executed sequentially. That is, a write immediately
followed by a read to the same address must return the written value. 26, 47, 49,
53, 103, 108

cache flush The action of marking all entries in a cache as invalid, effectively resetting
the cache. 46, 49, 100

call instruction A special case of a branch instruction that unconditionally modifies
the program counter (PC) register and stores the PC of the subsequent instruction
in the link register. Used for function calls. 9, 20

configurable logic block Configurable logic blocks (CLBs) are the basic computa-
tional resource of an FPGA. They typically contain LUTs, registers and carry logic.
6

configuration word A specification of an ρ-VEX runtime configuration. 29, 34, 53,
107

context In the context of software: a context is the state of a running or halted thread,
to be saved when switching to a different thread, and loaded when switching from
a different thread. In the context of the ρ-VEX processor: the combination of all
registers that constitute a software context. ρ-VEX contexts can be configured to
run in parallel by reconfiguration. 31–35, 41, 46–48, 50, 53, 57–59, 61, 62, 70, 72,
74, 76–79, 90, 95, 100, 103, 104, 107, 109, 110, 112–114

context control register An ρ-VEX control register that is associated with and private
to a certain context. The program counter is an example of such a register. 29, 30,
35, 36, 40, 41, 53, 57, 58, 71, 73, 74, 107, 108

critical path The critical path of a hardware design is the longest combinatorial path
in terms of delay from the output of a register to the input of a register. This
delay plus the register delays defines the minimum clock period, i.e., the maximum
operating frequency for the design. 44, 82

critical section A critical section is a piece of code in a parallel program or a program
with interrupts that may not be executed concurrently or interrupted. 37

debugging The process of finding the cause of a problem with a piece of software by
inspecting the program while running it on the target hardware. 15

distributed RAM An alternative to BRAMs in Xilinx FPGAs. Unlike BRAMs, dis-
tributed RAM is spread out over the FPGA, which may allow for more efficient
timing for small memories. Also unlike BRAMs, distributed RAM can be read
asynchronously. 8, 30, 81, 88, 100
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entity A VHDL construct containing a number of processes and entity instantiations to
represent a logic block. 6, 7, 55, 56

external debugging In an external debugging environment, the to be debugged soft-
ware runs on a different processor than the debugging software. The two are con-
nected through some kind of physical link, such as JTAG or a serial port. The
debugging software usually runs on a PC. 16, 40, 53, 89, 108, 110

fault A trap that is caused by a problem arising in the processor itself. 14, 36, 37, 71

field-programmable gate array An integrated circuit of which the hardware func-
tionality can be reconfigured by reprogramming a bitstream. 2, 5, 32, 55, 107

forwarding The process of supplying computed data to the logic of preceding pipeline
stages (executing later instructions) directly, to avoid having to delay later instruc-
tions that depend on the data until the data has been written to the register file.
13, 14, 21, 57, 73

frame pointer The value of the stack pointer at the start and end of a function. 10

fully associative In the context of a cache: a fully associative cache allows any memory
location to be stored in any cache line. 24

generic A VHDL construct that serves as a configuration parameter for an entity. 7, 55

generic binary A software binary that can be run on multiple processors. In the context
of the ρ-VEX, it is a binary that can run in eight-, four- or two-way mode. 22, 23,
38, 39, 44, 67, 69–71, 100, 103, 111

global control register An ρ-VEX control register that is global to the entire proces-
sor, as opposed to being related to a specific context. 29, 30, 53, 57–59, 73, 74,
107

GRLIB A library of mostly open-source HDL components developed by Aeroflex Gaisler
[10]. 6, 41, 42, 81, 97

hazard A hazard is a dependency that has not been met yet in a pipelined processor,
requiring the pipeline to be stalled to avoid incorrect execution. 12

hit In the context of a cache: a cache hit means that the requested memory was found
in the cache, preventing the need for a main memory or next level cache access. 24,
25, 79, 81

host In the context of debugging: the program and/or the processor that is being de-
bugged. 16, 40, 41, 86, 87

immediate A constant operand, embedded in the instruction word. 20
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interrupt A trap that is requested by a source external to the processor, such as a
peripheral. 14, 21, 22, 28, 33, 36–38, 40, 53, 71, 76, 88, 95, 103, 104, 108

invalidation The process of preventing an instruction to affect the state of the program
in any way. 15, 22, 39

ISE An FPGA design suite by Xilinx. Supports all Xilinx FPGAs, but does not support
high-level synthesis. 55

issue Verb. The process of starting execution of an instruction. 10

issue width of a VLIW processor: the number of instructions that can be issued in a
single cycle. 19, 20, 30, 50, 51

JTAG A serial protocol intended for debugging hardware. 16, 41, 42

jump instruction A special case of a branch instruction that unconditionally modifies
the program counter (PC) register. 9, 11, 14, 20, 36

lane The part of a VLIW that executes a syllable. VLIWs have one lane for each syllable
that it can execute in parallel. 19, 21, 30, 32, 34, 35, 44, 45, 50, 51, 56–58, 62, 64,
66–70, 73–77, 98, 113

lane group A group of lanes in a runtime reconfigurable ρ-VEX processor that cannot
be split over multiple programs. 30–35, 45–51, 53, 59–62, 64, 66–68, 73, 78, 79, 83,
95, 96, 107–111, 114

line In the context of a cache: a cache line is a piece of cache memory containing cached
data and a tag specifying which memory address the data corresponds to and
whether that data is up-to-date. 24, 25, 46, 48–50, 65, 66, 78, 79, 81, 102, 113

link register The register that stores the return address of a function call. 9, 10, 36

load instruction An instruction that copies data from memory to a register file. 9

long immediate A syllable in the ρ-VEX that supplies the upper 23 bits of an imme-
diate to another syllable. It does not on its own perform any function. 20, 21, 39,
44, 51, 57, 66–68, 71, 95

master In the context of a bus: a device that initiates transfers with slaves on the bus.
27, 28

mirror In the context of memory: an address that maps to the same physical resource
as another address. 27

miss In the context of a cache: a cache miss means that the requested memory was not
found in the cache, meaning that the main memory or next level cache needs to be
queried. 24, 25, 79, 102
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ML605 A Virtex-6 FPGA development board manufactured by Xilinx. 8, 41, 106, 108,
109

ModelSim A toolchain by Mentor Graphics that allows VHDL, Verilog and SystemC
hardware descriptions to be simulated.. 93

nibble Half a byte, i.e., 4 bits. 34

no-write allocate In the context of a cache: a no-write allocate cache does not allocate
space for the written memory in the case of a write miss, and instead only forwards
the write to the next level cache or memory. 25, 26

non-associative In the context of a cache: an non-associative cache maps a memory
location to only one specific line. 24, 25

operating system A piece of software that manages system resources and provides
services to applications running on it. 16, 40

page fault A fault caused by a virtual memory access or instruction fetch that is either
not mapped to physical memory or is not allowed to be accessed in that way. 22,
27

panic handler The panic handler is a secondary trap handler in the ρ-VEX processor.
It is used instead of the regular trap handler when the software running on the
processor is not in a state that can be interrupted without losing information needed
to return to the interrupted program. 36, 37, 40, 53, 71, 108

peripheral A device that connects to a processor to perform a special function, such as
communicating with the outside world. 28, 29, 50, 88, 110

pipeline The pipeline of a processor is a set of stages of instruction execution that are
processed sequentially in their own clock cycles, while at the same time a new
instruction can be issued every cycle. 10–12, 18, 21, 44, 51, 57, 62, 68, 70, 72,
74–76, 110

preciseness In the context of traps: a precise trap is a trap where A) all instructions up
to and optionally including the instruction at the trap point completely and cor-
rectly execute, B) all instructions following and optionally including the instruction
at the trap point do not modify the state of the program, and C) the trap point
points to exactly the instruction that caused the trap, if applicable [21]. 15, 22, 27,
110

process A VHDL construct containing a number of sequential statements that describe
the functionality of a logic block. 6, 7

program counter The address of the current instruction being executed by a processor.
9, 29, 57, 110
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reconfiguration The process of changing the configuration of a reconfigurable processor
in order to allow it to more efficiently execute the task at hand. 21, 23, 30, 32–35,
38, 41, 45–47, 49, 53, 57–59, 61, 62, 72, 74, 93, 95, 100, 102, 103, 107–110, 112, 114

register file A piece of local data memory in a processor that has greater connectivity
and is faster than main memory. 9, 10, 12, 13, 16, 20–22, 31, 35, 53, 57, 73, 74,
107, 109, 110

replacement policy In the context of a set associative cache: the algorithm used to
determine which set is to be updated when a miss occurs. 25, 46–48

return instruction A special case of a branch instruction that unconditionally sets the
program counter (PC) register to the link register. Used to terminate a function
and return to the caller. 9, 10

self-hosted debugging In a self-hosted debugging environment, the to be debugged
software runs on the same processor as the debugging software. The operating
system provides the interface between the two processes. 16, 40, 41, 53, 108, 110

set In the context of a set associative cache: each set has exactly one line that corre-
sponds to a given address. Sets are queried in parallel when a request is made to
determine which set contains the requested value, if any. 24, 25, 46, 47, 111

set associative In the context of a cache: an n-way set associative cache maps a memory
location to one specific line within each of its n sets. 24, 25, 46, 108, 111

signal A VHDL construct representing a physical connection or wire. 6, 7

slave In the context of a bus: a device that responds to transfers initiated by masters
on the bus. 27, 28, 78, 110

slice A component used in Xilinx FPGAs that contains LUTs, registers and carry logic.
Virtex-6 and Virtex-7 series FPGAs have two slices per configurable logic block. 8,
98

snooping In the context of caches: the process of monitoring writes made by other
processors in a multiprocessing system, to invalidate or update the cache entries of
the written memory. 26, 48, 49, 111

spatial locality A phenomenon exhibited by programs, stating that if a program uses
a bit of data, it is likely to use data at nearby addresses in the near future. 24

stack First-in last-out data structure used to save and restore local function data. 10,
16, 36, 103

stack corruption The inadvertent process of modifying the stack causing a program to
fail. 10

stack pointer Pointer to the ‘top’ of the stack, used to store how large the stack is. 10
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stall Verb. The process of suspending execution of instructions while waiting for a
dependency to be resolved. 12, 79, 81

stop bit A bit encoded in each syllable of a supporting VLIW architecture. The stop
bit being set marks that it is the last syllable in the bundle. 19, 22, 23, 38, 43, 44,
53, 57, 108, 110

store instruction An instruction that copies data from a register file to memory. 9

syllable Word encoding a single operation. Multiple syllables make up an instruction
bundle. 3, 19–21, 38, 39, 41–44, 47, 51, 56, 57, 64, 66–71, 74, 76, 77, 79, 94, 95,
100–102, 110, 111, 113

syscall A ‘function call’ from an application to the operating system. Normally imple-
mented as a trap caused by a special instruction. 22

SystemC A hardware description language based on the C programming language. 6,
55, 91, 107, 108

tag In the context of a cache: a cache tag the part of a cache line that specifies which
memory address the line corresponds to and whether the data is valid. 24, 25, 46,
48, 49, 79, 81

target In the context of debugging: the program and/or the processor that is being
debugged. 16, 40, 86, 90

temporal locality A phenomenon exhibited by programs, stating that if a program
uses a bit of data, it is likely to use it again in the near future. 24

testbench A piece of typically non-synthesizable HDL code that simulates the external
environment of the UUT. 7

thread A task within a program that can execute in parallel to other tasks in a multi-
processing environment. 17, 35

timer A peripheral that generates an interrupt periodically or a certain amount of time
after being triggered. 28

toplevel entity The VHDL entity that represents the design as a whole. 7

trap A trap is a transient condition that prevents a program from continuing normally.
Normally handled by branching to a trap handler. 14–16, 21, 22, 27, 35–40, 53, 57,
66, 68, 70–77, 93, 95, 102, 107, 108, 110

trap argument One of the two trap identification registers in the ρ-VEX, the other
being the trap cause. The significance of this 32-bit value is based on the value of
the trap cause register. 35, 38, 53, 71, 76, 107

trap cause One of the two trap identification registers in the ρ-VEX, the other being
the trap argument. This 8-bit register specifies the index of the trap that occurred.
35, 38, 53, 107
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trap handler Also known as a trap service routine. A trap handler is a special function
that performs the appropriate actions to resolve a trap such that normal program
execution can be resumed, or alternatively signals an error if this is not possible.
14–16, 35–40, 53, 71, 75, 76, 104, 107, 108, 110

trap point The program counter (PC) of the instruction that was interrupted due to
the occurrence of a trap. 14–16, 29, 36, 39, 67, 71, 77, 110

universal asynchronous receiver/transmitter A peripheral that communicates
with another device serially using the RS232 protocol. 28, 41, 85, 108

VC707 A Virtex-7 FPGA development board manufactured by Xilinx. 8, 41, 55, 106,
109

Verilog A hardware description language. 6, 55, 107

VHDL The hardware description language that is used in this work. 6, 52, 55, 93, 107

Vivado An FPGA design suite by Xilinx supporting high-level synthesis. Only supports
7-series Xilinx FPGAs. 55

watchpoint A watchpoint is a data address that, when accessed, causes the program to
pause, to allow a software developer to inspect what the program was doing. 16,
17, 41, 57, 71, 110, 113

word In the context of a bus: a datum that is defined to use the same amount of bits
as the bus width. 27

write allocate In the context of a cache: a write allocate cache allocates space for the
written memory in the case of a write miss, similar to a read miss. 25, 26, 49

write buffer A piece of hardware in a cache that stores a pending write request to the
memory or next level cache, to allow the processor to continue executing before the
write is complete. 25, 35, 47, 49, 50, 80, 111

write-back In the context of a cache: a write-back cache deals with writes by only
saving the written value in the cache and setting a flag in the tag indicating that
the value has been modified. The memory or next level cache is only updated when
the line is removed from the cache. 25, 26

write-through In the context of a cache: a write-through cache deals with writes by
saving the written value in the cache as well as to the memory or next level cache.
25, 26, 49, 111
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Abstract—The register file is an expensive component in
the design of any processor, especially, when considering the
additional ports that are needed to support multiple datapaths
within a wide-issue VLIW processor. In a recent work, these
additional resources were used to dynamically reconfigure the
register file to support a dynamically reconfigurable VLIW core.
The design can be perceived as a single 8-issue, two 4-issue, or
four 2-issue VLIW cores. Consequently, the multi-ported design
can operate in different modes, namely as one, two, or four
register files, respectively, corresponding to the active number of
cores. The implementation of the register file design on FPGAs
using Block RAMs still results in unused resources due to the
coarseness of the Block RAMs.

In this paper, we propose to re-purpose these unused BRAM
resources to additionally support multiple contexts next to earlier-
mentioned modes. In this manner, the 8-issue, 4-issue, and 2-
issue cores have access to 4, 2, and 1 contexts, respectively.
Consequently, we can avoid saving and restoring of the task states
in a multi-task environment, turning context switching from a
traditionally time-consuming event to an almost instantaneous
event. The advantage of this is the reduction of interrupt latency
and task switching latency, which are important in real-time and
embedded systems.

Our results show that our technique can improve interrupt
latency by a factor of 17.4× compared to using a software register
spill routine, depending on the behavior of the memory system.
Likewise, the task switching time can be improved by 6.7×.

I. INTRODUCTION

The ρ-VEX processor [1] is a dynamically reconfigurable
VLIW processor that can adapt its organization to the require-
ments of different workloads. One of its most important run-
time parameters is the issue-width that allows for adaptation
towards the ILP of the task(s) at hand. The design can be
configured as a single 8-way (1× 8-way), two 4-ways (2× 4-
way), four 2-way (4 × 2-way) VLIW processor core(s), or
combinations of those: e.g., two 2-ways and one 4-way. This
capability requires the design of an extensive register file to
support these different modes. In the worst case, the register
file must provide:

• 8 write ports and 16 read ports when running in the 1×8-
way mode

• 4 architecturally separate register files when running in
the 4× 2-way mode

This work has been supported by the Almarvi European Artemis project
nr. 621439.

To design a register file that satisfies these requirements we
use techniques such as Block RAM (BRAM) duplication and
a Live Value Table (LVT), which we will discuss in Section II.

A major drawback of the current design is the large resource
utilization. The BRAMs used to implement the register file on
the FPGA need to be duplicated multiple times to provide the
necessary amount of read and write ports. Every BRAM has a
capacity of 512 32-bit words (2KiB); however, the architecture
only requires 64 32-bit registers. Because of this, the resulting
design has an enormous storage capacity of which at most an
eighth is used by the processor in any particular configuration.

The design presented in this paper aims to convert the
drawback of the high BRAM usage of the register file for
wide-issue VLIW softcore processors into an advantage by
using the overcapacity to store different execution contexts.
The actual utilization of the BRAM storage capacity will in-
crease from 1

8 to 1
2 . Support for multiple contexts in hardware

relieves the core from having to spill and restore its entire
register file contents to and from memory in the event of a
task switch or interrupt. In a multi-tasking environment, this
concept changes task switches, which are traditionally very
time-consuming, into a virtually instantaneous event. Faster
context switching has advantages in numerous computing
scenarios, as it will increase responsiveness for interactive
workloads and improve interrupt latency and task switching
speeds in real-time systems. In the following, we illustrate
several cases in which our work can improve performance:

• Frequently used threads: Kernel threads, like schedulers,
must be frequently executed. In a traditional core im-
plementation, timers interrupt the core and trigger con-
text switching in order to execute such threads. In our
work, these threads can be maintained within the core
and thereby remove the need for context switching. For
example, an application is executing in the 8-issue mode
using 1 out of 4 contexts. When the scheduler needs to
execute, the current thread can be scheduled to run on a
4-issue core - this mode switch only takes several cycles
when using generic binaries [2]. In the remaining 4-issue
core, the execution of the scheduler can be resumed by
using its own context that remained “dormant” within the
core.

• Dynamic switching of execution by different cores: When
threads require more resources, e.g., when their ILP



increases, our processor design allows for it to claim
additional datapaths to execute the code more efficiently.
This does mean that another thread must be stalled for
a while. However, in our case, the context of the second
thread does not need to be saved into the memory and can
remain within the core until it is resumed. In the latter,
another context switching operation is saved.

• Context-cycling after cache misses: When our processor
is running in the 8-issue (4-issue) mode, it can have
up 4 (2) contexts stored within each core. This means
that when one thread is encountering a cache miss, thus
execution is stalled, the core can easily switch to another
thread (context) and continue execution, i.e., Switch-on-
Event Multi-Threading SoEMT.

• Embedded real-time systems with multiple tasks that
require stringent real-time constraints (e.g., control loops
with sensors and actuators). A single core can process
more events using multiple contexts [3]. Therefore, a
softcore can be used as microcontroller on an FPGA
which would save the designer from having to design
hardware circuits to handle some events or having to
resort to a multi-core system where distinct events are
handled by a dedicated core.

The register file of our ρ-VEX is a complex topic, as it is
also instrumental in supporting the core’s dynamic reconfig-
urability [4]. We limit the scope of this paper to evaluating the
benefits from multiple hardware contexts. It must therefore be
noted that the costs of this design (see Table I) are paid not
only for multiple contexts, but also to support the dynamic
reconfigurability. Our approach in this paper gives us a 17.4×
reduction in interrupt latency and 6.7× reduction in context
switching time.

II. BACKGROUND

The multi-ported register file is a challenging component in
the design of softcore VLIW processors. Wide-issue VLIW
processors like the ρ-VEX need register files with a large
number of read and write ports. The VEX instruction set
architecture (ISA) supports operations that use two source
registers and one destination register. Because of this, the
number of write ports required is equal to the issue-width,
and the number of read ports is equal to twice the issue-
width. Creating such complex register files using FPGA LUT
resources is very expensive and scales very poorly with the
number of ports. The reconfigurable ρ-VEX design and the
implementation of its multi-ported register file are introduced
in [5]. Moreover, in [6], the idea of using a Live Value Table
(LVT) is discussed that enables the use of banked memories
with duplication to create multi-ported BRAM memories. The
ideas presented in this paper are built upon a register file
design that is implemented using this technique. We will
discuss the concepts and challenges briefly in this section.

Creating RAM memories that have more read ports is
straightforward and achieved by duplicating the BRAM and
writing data into each block simultaneously. In this way, each
BRAM contains the same data, and their read ports can be

used independently of each other. Increasing the number of
write ports, however, is more difficult. Several solutions exist
in literature. The simplest solution is to divide the register
file into banks, each connected to one of the write ports [7].
This solution restricts the range of registers each write port
can write to and thus reduces the freedom the compiler has
to schedule instructions. Another solution introduced in [8]
increases the size of each bank to the original register file
size and renames the registers in between the compiler and
assembler. This solution enables a banked design with the
same scheduling freedom as an actual multi-ported register
file but utilizes a multiple of the number of registers. Note
that this technique does not necessarily require more BRAMs
since their size is a lot larger than the 64 registers specified
in the VEX ISA. It does, however, increase the number of
bits required to specify the source and destination registers in
instructions.

The register file used in the ρ-VEX uses the technique
introduced by [6]. This scheme also duplicates the register file
for each write port. However, instead of uniquely naming the
registers in each bank, a Live Value Table (LVT) keeps track
of which bank holds the most recent value of each register. It
uses this information to multiplex the right bank to the read
ports, as shown in Figure 1. The LVT needs to be implemented
as a multi-ported LUT based RAM because it still needs one
write port per register file write port. However, since it only
needs to hold a bank address, it is much narrower than the
original register file that the scheme seeks to replace. While
this technique enables the register file to be implemented
mostly with BRAMs instead of LUTs, it still scales poorly
with the number of ports. The number of BRAMs required is
equal to the product of the number of read and write ports. The
depth of the LVT scales linearly with the number of registers
in the register file while the width scales logarithmically with
the number of write ports. The number of ports required for
the LVT is equal to the number of ports on the register file.

III. RELATED WORK

In [9] the authors analyzed the high requirements that wide-
issue VLIW processors pose on the register file. They discuss
hypothetical FPGA primitives similar to existing BRAMs but
featuring many more read and write ports. These primitives
do not exist in current FPGAs, therefore, the use of large
BRAM or LUT-based structures is required to emulate this
behavior [6].

In [10], it is stated that “the context switch time is one of the
most significant overhead factors in any operating system” and
shows that high timer interrupt handling latency can impede
schedulability of real-time tasks. In [3], it is measured that
using a multi-threaded architecture with 4 register sets allows
an autonomous guided vehicle to run at a 28% higher velocity.
In [11], measurements were performed to quantify the interrupt
latency of several embedded Linux distributions running on a
Xilinx Microblaze.

There are numerous examples of processors which use
the concept of multiple register files to enhance the context
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Figure 1. Block diagram of register file implementation using multiple banks
of BRAMs. The green arrows indicate write ports, while the blue arrows
indicate read ports. The shaded area represents the portion of the BRAM
used for storing a single context.

switching time and interrupt latency in hardware. In [12],
comparisons are made (by means of simulations) between
increasing the number of cores and increasing the number of
register sets in terms of increasing performance for a parallel
workload. In [13], the MIPS architecture is extended by
duplicating the register file multiple times and adding special
instructions to switch between them when a context switch is
required. In [14], the authors propose a novel architecture,
which also supports holding multiple contexts in hardware
simultaneously, and extend it with a dedicated cache to hold
contexts to prevent spilling to main memory. Among other
things the effects of the additional contexts on interrupt latency
is investigated. Storing multiple contexts is also a requisite for
(Simultaneous) Multi-Threading (SMT) [15]. An example of a
VLIW processor with SMT support is the Itanium [16]. These
technologies target high-end ASIC processors while this work
targets the embedded (FPGA) domain.

The synthesizable ARPA-MT [17] and RTBlaze [18] proces-
sors also use SMT to improve schedulability and performance
for embedded real-time systems. However, all the resource
investments in this core are only used for SMT. The ARPA-
MT core has a single execution pipeline. The fetch and decode
circuits as well as the register file need to be duplicated for
each thread slot.

In contrast, the ρ-VEX uses the additional resources to
support: 1) a very wide VLIW to exploit ILP, 2) multiple
hardware contexts and 3) a multi-core configuration (in other
words, all contexts can be active and executing at the same
time). Therefore, it uses the additional resources in a more
efficient way compared to the previous work.

IV. IMPLEMENTATION

Figure 1 shows the implementation of a register file with
four write ports and eight read ports (4W×8R), using BRAMs
and an LVT. The 8W × 16R version would be 4 times as
large. The hatched area represents the part of the BRAM that
is actually used to store the 64 registers used by the ρ-VEX.
The figure shows that a large part of the BRAMs is unused.
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Figure 2. Block diagram of register file implementation supporting multiple
contexts. Here the number of BRAMs is the same, but the LVT is larger.

Because the ρ-VEX can be configured as four independent
processors, it also needs four separate register files. However,
the total number of read and write ports is the same for one
large 8-issue processor or four separate 2-issue processors.
Because of this characteristic, the same multi-ported register
file can be used in each configuration. The number of registers,
however, needs to be quadrupled, for a total of 256 registers,
since each core needs a separate register file of 64 registers.
The BRAM resources on contemporary FPGA boards provide
more than sufficient storage capacity to accommodate this, so
there is no added cost in BRAM resources. However, the LVT
does need to increase in size, to keep track of the most recent
location of all 256 registers.

Figure 2 shows how the multiple contexts can be stored
in the previously unused space of the BRAMs. Creating four
separate register spaces is a necessary cost to enable the ρ-
VEX to be split into four separate processors. However, not
all of the register spaces are used when the core is configured
as a single 8-issue processor or two 4-issue processors. This
creates the opportunity to re-purpose these unused register
spaces as alternative register windows, which can be used
to store the register context of inactive processes. Since the
four register windows are implemented as a larger continuous
address space, the uppermost bits can be used to select one of
the four register windows.

The ρ-VEX utilizes more registers than just the 64 general
purpose registers. It also has the following registers, that must
be stored for a context switch:

1) A special 32-bit register used to store the return address
for a function call (the link register).

2) Eight 1-bit registers used for conditional branching.
3) The program counter.
4) Various control registers, used for example for interrupt

handling.
These registers cannot easily be stored in BRAMs, as the
control logic needs to be able to access all these registers at
once. Therefore, these registers are implemented in LUTs. To
support running as 4 × 2-issue processors, all these registers
need to be duplicated as well, and can thus be used as part of
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the hardware contexts. Some additional hardware is required
to use these registers for context switching, as not every lane
would necessarily need access to all duplicates of the registers
for reconfiguration only, while this is necessary for context
switching. However, when this is done, the only registers
which need to be spilled and restored are those registers which
are used by the context switching routine, or scheduler itself.
Because the additional hardware cost is small, our context
switching design incorporates this feature.

A hardware context switch is not entirely free in terms of
cycles in the current ρ-VEX design. To avoid complicating
the forwarding logic, context switches are only possible when
the pipeline is empty. Because the ρ-VEX has a five stage
pipeline, five cycles are needed to flush the pipeline before a
context switch can occur. In addition, the context switches are
currently controlled by the dynamic reconfiguration controller,
which takes three additional cycles to decode and commit
a new configuration. Two of these are spent still executing
instructions in the old context.

V. EXPERIMENTAL SETUP

Our measurements are carried out using the ρ-VEX VLIW
softcore processor clocked at 37.5 MHz running on a
Xilinx ML605 development board, which incorporates an
XC6VLX240T Virtex 6 FPGA. We use a timer connected
to the interrupt request input of the processor to generate
interrupts at different rates to measure the impact of our
approach on the performance of the system.

We quantify the impact on performance by measuring two
different values, namely:

1) Interrupt Latency: The number of cycles elapsed be-
tween the moment an interrupt request is received by
the core, and the first instruction of the interrupt handler
being executed.

2) Context switching latency: The number of cycles elapsed
between the moment a context switch is requested (due
to an interrupt), and the first instruction being executed
in the new context.

Figure 3 shows what these latencies are made up of, namely:
pipeline flushing, saving context registers, running the inter-
rupt service routine (in our case the task scheduler), and finally
restoring the context registers. By using hardware contexts the

latency of saving and restoring registers can be eliminated.
We measured these quantities by creating a workload of
four programs. At every timer interrupt a scheduler selects a
different program to execute, and performs the context switch
to that program. The programs themselves have no impact on
the measurements, since they are purely dependent on the time
it takes to save and restore all context registers.

In order to measure the difference between hardware and
software context switching, we wrote a software and a hard-
ware context switching routine. The software version saves the
complete context to the stack of the currently running task,
stores the stack pointer to a predefined memory location, and
starts executing the interrupt handler. The interrupt handler
then calls the scheduler in order to schedule the next task. The
current stack pointer is then replaced with the stack pointer
of the new task. Next, the application context of the newly
selected task is restored from the stack, after which control is
handed back to the application. The hardware switch routine
does not need to save or restore all registers. Instead it only
has to do so for the registers used by the interrupt routine, in
this case the scheduler.

The scheduler utilizes a linked list in memory to determine
which task to switch to; each entry representing a task, with a
mapping to another task. When a task completes, the linked list
is rebuilt such that the context switching code does not switch
back to the completed task, and a context switch is requested
immediately using a software trap instruction. When the last
task completes, it signals completion to the platform.

Because cache behavior will impact the latencies for saving
and restoring the contexts we perform the measurements for
different memory access latencies. We measure using latencies
from 0 (single cycle memory access) to 30 cycle memory
access on cache miss. The cache itself consists of a separate
instruction and data cache, respectively 32KiB and 8KiB in
size. The size has intentionally been kept small, because the
programs under test had to be small as well for the entire
memory to fit on the FPGA; it is assumed that, under normal
circumstances, larger caches will be used, but the running
programs will also use wider regions of more memory. Both
caches have single-cycle hit latency for reads. The data cache
has a two-cycle latency for writes for both hits and misses, as
long as one of the four write buffers is vacant.

To evaluate the context switching overhead in multi-process
time-sharing systems, overall performance of the multi-task
system is tested on hardware using the cached system. The
timer is used to generate an interrupt at a fixed frequency, often
referred to as the system “tick,” in which a context switch is
performed. Clearly, the context switching overhead is directly
related to the frequency of the system tick [10]. The frequency
of the tick is usually in the order of 50 to 1000 Hz. A lower
frequency will lead to lower switching overhead, but higher
frequencies will result in a more responsive system. Systems
that require more responsiveness will therefore have a higher
tick frequency. For example, the Linux kernel uses a system
tick of 1000 Hz for desktop systems, but this can be reduced
to 100 Hz for server systems to reduce overhead. On the other



Table I
RESOURCE USAGE OF REGISTER FILE WITH AND WITHOUT SUPPORT FOR

MULTIPLE CONTEXTS.

Register File
1 Context 4 Contexts Core Increase

over Core
Slice Registers 806 1392 8529 6.9%
Slice LUTs 10764 15591 35148 13.7%
RAMB18E1 128 128 147 0%
RAMB36E1 0 0 128 0%

hand, the Windows kernel uses 66 Hz. The frequency is varied
between tests to evaluate its effect. In addition, the system is
evaluated with varying bus latencies. The latencies used are
estimates of what the average latency would be for a real off-
chip memory system.

A cycle counter available within the ρ-VEX processor is
used to measure the time from system reset to the program
completion signal, which is given by the task switching
implementation when all tasks have completed. For each timer
and memory system configuration, both context switching
implementations are evaluated. Because all other factors are
kept constant, the difference in total execution time is only
dependent on the context switching overhead. The speedup
between the baseline and hardware context switching imple-
mentations is then determined to quantify this overhead.

VI. RESULTS

In Table I we show the increase in resource utilization of
the register file when adding support for four contexts. As
expected the number of BRAMs used does not increase. Only
the number of registers and LUTs increases, since these are
used to implement the LVT. While these increases seems
large, when compared to the total usage of the core they
are less significant. Additionally, note that this increase in
resources in the register file is required to support the dynamic
reconfigurability of the processor.

As we can observe in Table II, the interrupt latency is 87
cycles for software context switching. The interrupt latency
when using hardware contexts is only 5 cycles, solely due to
the pipeline flush performed by the trap handling logic. A full
context switch, i.e., the time between a tick interrupt request
and the execution of the first instruction in the new context,
takes 174 cycles using the software implementation, compared
to 26 cycles using the hardware contexts.

Table II
INTERRUPT AND CONTEXT SWITCHING LATENCY WITH SINGLE-CYCLE

MEMORIES IN CYCLES.

Software Hardware Reduction

Interrupt Latency 87 5 17.4×
Context Switch Latency 174 26 6.7×

In Table III, we can observe the results of the same
experiments run using a cached memory system, with a bus
latency of 20 cycles. We observe that the improvement due
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Figure 4. Speedup of the multi-task system due to the hardware context
switching implementation.

to the hardware context switching is greater in this system,
with the improvement in interrupt latency increasing from
17.4 to 23.5×, and the improvement of context switching time
increasing from 6.7 to 14.8×.

Table III
INTERRUPT AND CONTEXT SWITCHING LATENCY WITH CACHE AND 20

CYCLES BUS LATENCY IN CYCLES.

Software Hardware Reduction

Interrupt Latency 16798 713 23.5×
Context Switch Latency 31861 2148 14.8×

Figure 4 shows the speedup for different frequencies of the
timer tick parameterized for different memory latencies, as
measured on hardware using the cached system. It can be seen
that in the region of higher task switching frequencies the
difference between hardware and software context switching
can be quite substantial depending on the memory system. A
speedup of over 1.3× can be achieved for a bus latency of 40
cycles at a switching frequency of 1280 Hz.

VII. CONCLUSIONS

The concept of using additional register files to speed up
multi-threading performance has been applied in numerous
designs in the past. In this paper, we apply the concept to
an existing design, exploiting the overcapacity of the BRAMs
in the existing implementation of the multi-ported register
file and the additional logic required by the parameterized
reconfigurability of the ρ-VEX softcore. We have demon-
strated that the proposed design can decrease the interrupt
latency by a factor of over 20 times in a realistic environment.
Likewise, the total context switching time can be decreased by
a factor of over 10 times. In a simple multi-task system the
effect of this is apparent as the decrease in overhead results
in a speedup of 1.3× in the most extreme case evaluated.
For applications with few real-time requirements, where the



system tick frequency would be relatively low, the speedup is
negligible, as the task switching code would not be executed
as often. However, embedded real-time systems that need to
process large numbers of events will benefit most from the
improvements.
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Abstract—Very Long Instruction Word (VLIW) processors are
commonplace in embedded systems due to their inherent low-
power consumption as the instruction scheduling is performed
by the compiler instead by sophisticated and power-hungry
hardware instruction schedulers used in their RISC counterparts.
This is achieved by maximizing resource utilization by only
targeting a certain application domain. However, when the
inherent application ILP (instruction-level parallelism) is low,
resources are under-utilized/wasted and the encoding of NOPs
results in large code sizes and consequently additional pressure
on the memory subsystem to store these NOPs.

To address the resource-utilization issue, we proposed a dy-
namic VLIW processor design that can merge unused resources
to form additional cores to execute more threads. Therefore, the
formation of cores can result in issue widths of 2, 4, and 8.
Without sacrificing the possibility of code interruptability and
resumption, we proposed a generic binary scheme that allows a
single binary to be executed on these different issue-width cores.
However, the code size issue remains as the generic binary scheme
even slightly further increases the number NOPS.

Therefore, in this paper, we propose to apply a well-known
stop-bit code compression technique to the generic binaries that,
most importantly, maintains its code compatibility characteristic
allowing it to be executed on different cores. In addition, we
present the hardware designs to support this technique in our
dynamic core. For prototyping purposes, we implemented our
design on a Xilinx Virtex-6 FPGA device and executed 14
embedded benchmarks. For comparison, we selected a non-
dynamic/static VLIW core that incorporates a similar stop-bit
technique for its code compression.

We demonstrate, while maintaining code compatibility on top
of a flexible dynamic VLIW processor, that the code size can
be significantly reduced (up to 80%) resulting in energy savings,
and that the performance can be increased (up to a factor of
three). Finally, our experimental results show that we can use
smaller caches (2 to 4 times as small), which will further help in
decreasing energy consumption.

I. INTRODUCTION

VLIW processors exploit ILP by means of a compiler,
which statically analyzes the code and builds large instruction
words (bundles) composed of instructions (syllables) that will

This work has been supported by the Almarvi European Artemis project
nr. 621439.

execute in parallel. Since the compiler takes the burden of
finding parallelism, VLIW processors occupy less area and
dissipate less power when compared to superscalar processors.
However, one of the major drawbacks of traditional VLIW
processors is the large code size [1]. Because of this, in-
struction cache misses are more likely for VLIW processors
when compared to conventional processors for a given cache
size. Consequently, there will be more accesses to the main
memory, which has higher delay and needs even more energy
when compared to cache memories [2]. One solution would be
increasing the cache size. However, this will also significantly
increase the power dissipation, as several studies [3], [4] show
that the energy consumption of the cache subsystem accounts
for over 50% of the overall chip.

One reason for the large code size is the canonical in-
struction format that dictates the location of the syllables
within each instruction word to correspond with the location
of the functional units in the different datapaths. Consequently,
unused datapaths must be issued NOPs that in turn must
be encoded. One way to address this issue is to loosen the
relationship between the instruction encoding and the datapath
locations at the expense of having a more complex instruction
decoder/scheduler. An intermediate solution maintains the
canonical nature but encodes all NOPs at the end of an
VLIW word with a single bit, the stop bit. These solutions
reduce the code size and, consequently, reduce the pressure
on the instruction cache (I-cache), reduce the number of I-
cache misses, improve the performance of an application, and
reduce energy consumption.

The code size issue is mainly due to the low inherent
parallelism of the application, i.e., it is not possible to fill
all parallel slots of a VLIW word. The nature of VLIW archi-
tectures automatically translates this issue into underutilized
hardware resources. The ρ-VEX processor was introduced to
deal with this low resource utilization by either power gating
of datapaths to lower power consumption or merge datapaths
together to form additional cores to execute parallel threads
(if any). This capability allows the dynamic version of the
ρ-VEX to switch at run-time between 2-, 4-, and 8-issue
modes. One of the key innovations of the ρ-VEX processor



is the introduction of the generic binary [5] that maintain
code compatibility among different (dynamic) configurations
of the processor allowing the code to be executable on any
configuration (2-, 4-, or 8-issue) and interruptable at any point.
The generic binary “suffers” from the same fate as their static
counterparts when considering the code size.

In this paper, we propose a modified version of the variable
length instruction bundle technique, which can be applied to
the generic binaries of the dynamic VLIW processor (ρ-VEX).
We also show how this compression technique leverages the
current dispatch hardware and extra functional units to make
its implementation more straightforward. More specifically,
our approach is to apply the sparse instruction encoding
(supported by the ISA of the processor) to the dynamic VLIW
by using functional units required for supporting dynamic re-
configuration in order to reduce the complexity of dispatching
sparse instruction bundles. In conclusion, we are proposing a
new approach for code size reduction that marries the benefits
of a well-known technique with the dynamic characteristics
of the ρ-VEX processor. For comparison purposes, we use
a static (non-reconfigurable) VLIW with an implementation
of sparse instruction encoding similar to that found in the
st200 [1]. The result is twofold: code sizes are reduced, and
the difference in performance and energy between the static
and dynamic versions decreases (slightly decreasing the price
paid for adaptability).

Our contributions in this paper are:
• We implement support for the variable length instruction

bundle, based on stop bits, in the dynamic ρ-VEX core
to decrease code size, while maintaining compatibility for
generic binaries, and therefore the run-time adaptability.

• By leveraging the additional functional units and dispatch
logic already present, we show that the extra hardware
complexity and overhead needed are insignificant.

• We compare the proposed approach to the non-dynamic
version (with and without code compression) of the same
processor, which is similar to a processor from the indus-
try (STmicroelectronics’ st200 VLIW). We demonstrate
that the code compression is highly efficient in both
versions, and that in most cases the dynamic version with
compression has almost the same performance and energy
consumption as the static one.

Comparing the dynamic version with and without the pro-
posed technique, we achieve a code size reduction of over
50%, resulting in cache performance equivalent to that of a
cache up to 4 times larger. Additionally, we can save up to
63% on energy consumption, while a maximum speedup of 3
times can be obtained in the best case.

II. RELATED WORK

Conventional VLIW implementations had major drawbacks
in the form of low instruction encoding efficiency (a large
fraction of the code consisted of NOPs), which, together with
the large number of operations that can be needed in a single
cycle, resulted in enormous memory bandwidth requirements

for instruction fetching. In order to address this issue, several
approaches have been proposed:

• Instruction mask bits. The MAJC architecture [6] from
Sun Microsystems exploits the parallelism at multiple lev-
els: instruction, data, thread and process, through vertical
and speculative multithreading, and chip multiprocessing.
Mask bits indicate how many and what type of operations
the instruction contains. In [7] and [8], the authors use a
mask word that encodes which operations are present in
the following bundle.

• Instruction template bits. These templates are used to
limit code size, helping to decode and route the instruc-
tions, as used in the Itanium [9] and TM3270 media-
processor [10]. The latter uses the templates to determine
the compression of the next bundle, which relaxes the
timing requirements of the decoding process.

• Stop-bits. A bit is reserved in each syllable, indicating
whether it is the last syllable in a bundle or not, as
presented in [11], [12], [13], [14], and [15].

However, none of the above-mentioned approaches are
directly applicable to a dynamically reconfigurable VLIW
processor. In order to apply variable length instruction bun-
dle encoding to the ρ-VEX, we implement an extension of
the stop-bit approach, which makes it suitable for variable
issue widths, therefore maintaining the processor’s dynamic
adaptability.

III. IMPLEMENTATION

We will compare our implementation of sparse instruction
encoding in a dynamic core to an existing encoding scheme
applied to a static core. Both schemes are based on the stop-
bit approach. The dynamic core is run-time reconfigurable in
the number of datapaths. It can be configured as an 8-, 4-, or
2-issue core, whereas the static core has a fixed issue-width
of 4 because the st200 toolchain which we use to compile
applications for it only supports 4-issue.

A. Shared requirements

A number of properties are required by both cores. They
will be outlined here and the precise implementations will
be discussed in their respective sections. To support a sparse
encoding, the hardware must support the following:

• Instruction bundles of variable length. That is, the loca-
tion of the stop-bit determines which syllables should be
executed, and also impacts the calculation of the next
Program Counter (NextPC).

• Instruction bundles that cross a cache line boundary. An
instruction buffer is used to store the relevant parts of the
previous cache line to accommodate this in both designs.

B. Static Core

1) Overview: The VEX ISA is very closely related to
STmicroelectronics’ st200/Lx [11]. Both use an instruction
encoding scheme with the following restrictions [16] that help
to reduce the complexity of the fetch hardware [17]:

• Branch operations must be the first syllable in a bundle.
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Fig. 1. Possibilities for the dynamic issue hardware using the st200 encoding
scheme for bundles stored on even (left) and odd (right) word addresses.

• Multiplication operations must be stored at odd word
addresses. This also restricts the number of multiplication
operations to two per bundle.

• Long immediate extensions must be stored at even word
addresses.

Considering these restrictions, the next section discusses the
hardware modifications necessary for the implementation of
the encoding technique.

2) Hardware: As opposed to the st200 implementation,
our instruction cache does not support unaligned accesses and
the core is designed to be generic (design-time configurable).
To be generic, the design is very “lane-oriented”, because
the number of execution lanes or “datapaths” is generic, and
every lane can be configured with multiple functional units
(load/store, branch, ALU, and multiplication unit).

The first step in order to enable variable sized instruction
bundles in the design is to add support for unaligned in-
struction cache accesses and bundles that cross a cache-line
boundary. To this end, we add an instruction buffer between
the cache and the fetch unit. This adds an additional stage
to the datapath, increasing the branch delay by one cycle.
The instruction buffer is similar to the design discussed in
Section III-C2a.

The second step is to add dispatching logic that can send
each syllable to a datapath that contains the functional unit
that can execute the syllables operation type. The hardware
required to fully support this can be quite complex. When
every datapath needs to be able to accept an operation from
any syllable slot in a bundle, a full crossbar is required [14].
Fortunately, the restrictions in the encoding scheme reduce
this routing complexity to the diagram depicted in Fig. 1.
The figure shows the locations of the MEM (load/store),
MUL (multiplication) and BR (branch) units. Each datapath
also contains an ALU, which is not depicted. The figure
also depicts whether each syllable slot can contain a long
immediate extension (I) or a multiplication (M) for even or
odd instruction bundle start addresses. The arrows show which
lanes it is possible to dispatch a particular syllable to. The
dotted arrows depict an indirect requirement that is needed
when two operations need to be swapped (e.g., if a MEM
operation is located in syllable 0 and an ALU operation is
located in slot 3, they will need to be swapped as the MEM

TABLE I
LAYOUT OF FUNCTIONAL UNITS IN AN 4-ISSUE DYNAMIC ρ-VEX.

Datapath 0 Datapath 1 Datapath 2 Datapath 3

ALU ALU ALU ALU
MUL MUL MUL MUL
MEM BR MEM BR

unit is located in datapath 3).
3) Discussion: As we can see in Fig. 1 the dispatch logic

for a 4-issue core is already quite complex. Expanding the
dispatch hardware discussed in this section to an 8-way VLIW
would complicate the circuitry even more. The complexity
would increase considerably, but not exponentially, because
not all of the functional units (e.g. load/store, branch) are
duplicated when doubling the issue width. As we will see in
the following sections, our approach in the dynamic ρ-VEX
core is able to dispatch operations with simpler logic that can
be more efficiently scaled to an 8-way VLIW.

C. Dynamic Core

1) Overview: The dynamic core consists of multiple datap-
aths, which are divided into groups of two. Each datapath has
a fixed set of functional units. Each group of two datapaths
can function as a separate VLIW core, or can be combined
with adjacent groups to form a larger VLIW core. In order to
allow this, each group of two datapaths must have a functional
unit layout that is identical to that of the the other groups.
Additionally, to allow each datapah group to function as a
separate VLIW core, each group must have a load/store unit
and a branch unit. However, when the groups are configured to
combine into a 4-issue VLIW, these additional load/store and
branch units go unused. For example, the layout of functional
units in each datapath is shown in Table I for a 4-issue
configuration. By using this arrangement of functional units
we are able to support sparse instruction encoding without
decoding logic to dispatch instructions to different functional
units.

2) Hardware: In addition to the requirements mentioned in
Section III-A, in order to support sparse instruction encoding
in the dynamic core, we also require the next PC calculation
to be able to support dynamic switching of issue-width. This
means that it should be possible to calculate either a single
address, or multiple addresses based on the core configuration.
Additionally, unlike in the static core, branch instructions must
be able to appear in any lane to maintain the single/multiple
core adaptability.

a) Instruction Buffer: When using sparse instruction
encoding, bundles no longer have a fixed size. Because of
this, the cache line size is no longer divisible by the bundle
size, which means that instruction bundles can cross cache line
boundaries. We handle this by fetching the next cache line and
storing the previous one in a buffer in order to complete the
instruction bundle.

Fig. 2 shows a diagram of the instruction buffer. Each lane-
group has a register to store the previously fetched syllables



...

Group 1

Group 0

Lane 1

Lane 2

Lane 3

Lane 0

Group 0
register

Group 1
register

Current fetchPrevious fetch

Group 0
ICache

Group 1
ICache

Fig. 2. This figure shows how the instruction buffer is implemented for a
4-issue dynamic core consisting of two lane groups.

(two syllables per group). The muxes select which syllable
goes to which datapath based on the current configuration of
the core (2-, 4-, or 8-issue), and the least significant bits of the
program counter. The gray lines indicate paths that are only
used when the core is configured in 4-issue mode. The dotted
line indicates a path which would be used if the core were in
8-issue mode.

The instruction buffer registers are loaded whenever a new
fetch address is sent to the cache. This can be determined by
comparing the least significant bit of the current and previous
fetch address, reducing the size of the required comparator
significantly. Note that when a branch to an unaligned address
occurs, the syllables in the instruction buffer are undefined.
Additional logic is present in the branch unit to stall the core
for an extra cycle in this case, during which an additional
instruction fetch is performed in order to fill the instruction.
This additional stall could adversely affect performance if it
occurs often enough.

The muxes that select between the previously fetched data
and the current fetched data are controlled by signals based on
the current configuration (2-issue, 4-issue, or 8-issue) and the
LSBs (Least Significant Bits) of the Program Counter (PC).
For the case where the core is configured as the largest possible
configuration (all lane-groups work together as one core) the
mux select signals are equal to the least significant bits of the
Program Counter.

b) Address Calculation: When using variable sized in-
struction bundles, the next value of the program counter
depends on the size of the current fetched instruction bundle.
This complicates the calculation of the next PC, which can
now be PC + 4, 8, 12 or 16 (for a 4-issue VLIW). We deal
with this by splitting the calculations into two parts:

• Calculation of the least significant bits (depicted in Fig. 3)
is done for each lane to determine what the least signif-
icant bits would be if the instruction bundle ended in a
particular lane. In each lane, a value corresponding to
a different instruction bundle size is added to the least
significant bits of the PC. For example, if the stop-bit is
in the first instruction, that means the instruction bundle
size is 4 bytes, and 4 is added to the PC. Additionally, the

+

0 1 0 1
0 1

+
PC add

value (8)

Stop bit
0 1 0 1

0 1

Disable
lane

Disable
lane

Next PC

PC

1

1

Align up

Align up

Group 0

Lane 1

Lane 0PC add
value (4)

Stop bit

Next fetch
addressConnect

groups

PC add value
(8 or 16)

Next PC

Next fetch
address

PC

Group 1
PC add value

(4 or 12)

0--

Lane 3

Lane 2

Fig. 3. This figure shows how the LSB of the next PC and next fetch address
are calculated in each lane.

“align up” adder rounds up the calculated least significant
bits to a cache line boundary. This will be used for the
next fetch address.

• The most significant bits of the next PC are calculated
in each branch unit (for the 4-issue configuration used in
this paper that would be lanes 1 and 3). Finally, the least
and most significant bits are combined to form the next
PC based on the final position of the stop bit.

By splitting the program counter calculation in this way, we
only need four 27-bit adders to calculate the most significant
bits, of which only two are used in 4-way mode, and eight
3-bit adders for the least significant bits, instead of needing
eight 32-bit adders.

c) Branch Instruction Dispatch: As mentioned in [5],
generic binaries require that the branch instruction is always
the last in a bundle, rather than the first. This requirement is in
place to ensure that the bundle will still be executed completely
by a core running in a 2-way configuration (otherwise, the
syllables following the branch would be skipped because of
the branch). In order to support this, additional logic is present
to route the last instruction in a bundle to the last coupled
lane if it is a branch instruction, so only one physical branch
resource is used for executing branch instructions.

Because instruction bundles can now cross cache line
boundaries, it is possible that after a branch only part of the
next instruction bundle is fetched. The hardware detects this
by checking if one of the fetched syllables (starting from the
branch target address) has a stop-bit set. If not, the core stalls
while the second part of the bundle is fetched. This means that
for unaligned branches the branch delay is two cycles instead
of one, which can cause performance degradation.



TABLE II
THE RESOURCE USAGE ON THE FPGA FOR THE DYNAMIC CORE WITH

AND WITHOUT STOP-BIT IMPLEMENTATION.

Resource Original Stop-bit Increase

Registers 30153 30537 1.3%
Luts 61927 62379 0.7%
BRAMs 125 125 0.0%

IV. RESULTS

We evaluated four different versions of the processors: static
baseline, static with stop-bit, dynamic baseline, and dynamic
with stop-bit — all of them in their 4-issue configurations.
We use the 4-issue configurations to provide a fair comparison
between the static and dynamic cores. The difference between
dynamic and static versions is that the binaries for the former
are compiled as generic binaries. We considered instruction
cache sizes ranging from 1KiB to 32KiB. These sizes were
chosen so that at the largest cache size each of the programs
fits in the instruction cache entirely.

The designs are implemented in VHDL and prototyped on
a Xilinx Virtex 6 FPGA (ML605 Development board). With
these prototypes, we use performance counters to determine
the number of cache accesses, misses, and the number of
running cycles. The cache stall time is 16 cycles per 4-byte
bus access. We use the Cadence Encounter RTL Compiler
to obtain power dissipation in ASIC (Application Specific
Integrated Circuit), using a 65nm CMOS cell library from
STMicroeletronics. The energy consumption of the memory
subsystem was calculated with the Cacti Tool [18].

We use applications from the Powerstone benchmarks [19].
All sources are compiled with the HP VEX compiler [20]
and assembled with either the ρ-VEX port of GNU as, or our
modified version of the st200 assembler. The dynamic stop-
bit versions are assembled with alignment turned off, so that
instruction bundles are not padded at all. Since the processor
lacks floating point operations, we use the floatlib library
included with the HP VEX compiler (based on Berkeley
SoftFloat [21]).

A. FPGA Resource usage

Table II shows the resource usage of the dynamic core on the
FPGA. It shows that the increase is only 1.3% for the number
of registers and 0.7% for the number of lookup tables. As we
will show in the following sections, with this small increase
in area we achieve significant improvements in performance,
energy, and code size.

B. Code Size Reduction and Instruction Cache Miss Rate

In Table III, we show the reduction in code size for each of
the 14 benchmarks used. We can see that the average reduction
is around 50%. The reductions for the dynamic core in 8-way
configuration are included for reference, and are even more
extreme. These reductions will impact the cache behavior. In
Fig. 4, we show the cache miss rates for the two different
cores with and without sparse instruction encoding. The results

TABLE III
THE CODE SIZE REDUCTION FOR EACH OF THE BENCHMARKS.

Program code size reduction
static dynamic dynamic

4-way core 4-way core 8-way core

adpcm 49% 48% 73%
bcnt 35% 38% 64%
blit 47% 45% 67%

compress 53% 51% 74%
crc 48% 48% 71%
des 42% 44% 68%

engine 57% 54% 77%
fir 60% 54% 76%

g3fax 58% 55% 76%
jpeg 53% 51% 73%

pocsag 55% 51% 74%
qurt 67% 65% 82%

ucbqsort 57% 54% 76%
v42 56% 53% 75%

average 53% 51% 73%
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Fig. 4. Cache miss percentage for the dynamic and static cores, both with
and without sparse instruction encoding for different instruction cache sizes.
The dots represent the individual benchmarks, whereas the lines represent the
average miss percentage for a particular configuration.

show that both designs achieve a similar reduction in cache
misses. In fact, with sparse instruction encoding the miss rates
are similar to those of canonical encoding with a cache almost
four times as large. This might seem like a larger improvement
than expected, since the code size was only reduced by half.
However, because loops account for a majority of the executed
instructions, code size reduction that allow an entire loop body
to fit into the cache will have a disproportionate impact on the
cache miss rate.

C. Execution Time

Fig. 5 shows the speedup in execution time achieved for
both the dynamic and static cores. We can see that for larger
cache sizes, the execution time of some benchmarks is larger
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Fig. 5. Speedup for stop-bit implementation for different instruction cache
sizes. The lines represent the average speedup for a particular cache size.

with sparse instruction encoding than without. This is because
at those cache sizes the entire application fits in the cache,
and the reduction in cache misses is offset by the penalty
of having a longer branch delay. This could be remedied by
inserting alignment NOPs to ensure that branch targets are
always aligned, at the cost of an increase in cache misses.

In the same figure we also observe that for very small
instruction cache sizes, the speedup is not as significant as
it is for intermediate sizes. This is caused by the fact that the
reduction in cache misses for intermediate cache sizes is far
larger than for small cache sizes, as seen in Fig. 4.

Fig. 6 shows the normalized execution times for the dy-
namic core. The baseline is the average of the worst execution
time of each application individually, executing on the dy-
namic baseline design with a cache size of 1KiB. This figure
shows, for instance, that for smaller cache sizes, the dynamic
stop-bit implementation performs equivalent to the dynamic
version without stop-bit with a cache between 2 and 4 times
larger.

D. Energy Results

Fig. 7 presents the total energy consumed by each of
the benchmarks. The lines show the geometric mean of all
applications at each cache size. We can see that for small
cache sizes, due to the additional hardware required to support
reconfiguration, the dynamic core consumes more energy than
the static core. However, at large cache sizes the different
designs are closer together in terms of energy consumption.

Fig. 8 depicts the energy consumption of the dynamic
core relative to that of the static core (values greater than
1 mean that the static version consumes less energy than the
dynamic one). We can see that the baseline dynamic design
consumes far more energy at small cache sizes, whereas when

●

●

●

● ● ●

● ● ● ● ● ●● ● ● ● ● ●●

●

●
● ● ●

●
● ● ● ● ●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●
0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32
Cache Size (KiB)

E
xe

cu
ti

on
 T

im
e 

(N
or

m
al

iz
ed

)

● Dynamic Baseline Dynamic Stopbit
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Fig. 7. Energy consumption for each of the benchmarks at different cache
sizes.

using sparse instruction encoding the designs consume similar
amounts of energy.

As one can observe, the huge difference in energy consump-
tion between the static and dynamic versions is significantly
decreased when using the proposed stop-bit approach. Most
notably, both processors consume approximately the same
amount of energy at larger cache sizes. It means that one can
take advantage of all the adaptability that the dynamic version
provides, with limited additional costs in terms of energy.

V. CONCLUSION

In this paper, we extended the stop-bit technique for sparse
instruction encoding to a dynamically reconfigurable VLIW
processor. We showed that, by implementing this technique,



Fig. 8. Relative energy consumption between the static and dynamic cores
(dynamic/static) at different cache sizes.

we reduce the cost of reconfigurability in terms of energy
consumption and the performance overhead of cache misses.
This is achieved without sacrificing the code compatibility of
the generic binary and we thereby maintain full (dynamic)
adaptability of the core. Using this technique, we bring the
energy consumption of the dynamic core closer to that of the
static design. Our results show that using the stop-bit technique
in the dynamic core we can achieve similar performance and
energy consumption with up to 4× smaller I-caches.

We do notice that for some applications at certain cache
sizes the performance with stop-bit is slightly lower than
without stop-bit due to the increased branch delay. Therefore,
for future work we will investigate the effect of ensuring
that branch target addresses are always correctly aligned. This
would result in a slight increase in cache misses but also a
decrease in delays due to branches.
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Introduction 1
This manual intends to document the ρ-VEX reconfigurable VLIW processor. It is in-
tended for software developers using the processor and hardware developers who are only
interested in instantiating the processor in their system. It does not aim to document the
internal workings of the processor; the comments in the source code are a better source
of documentation for this. It also does not document the design choices that were made
in the construction of the core; for this, readers are referred to [1].

The next chapter gives a top-level overview of the processor. The third chapter
documents the instruction set architecture (ISA) in detail. The fourth chapter lists all
the control registers of the processor. The fifth chapter handles the trap and interrupt
system of the processor. The sixth handles reconfiguration, the component of the ρ-
VEX that makes it special. The seventh documents how the core may be debugged
using a computer. The final two chapters are intended for the hardware developers
only, documenting the design-time configuration options of the core and how it may be
instantiated.
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Overview of the ρ-VEX
processor 2
Let us begin by defining some terminology. The ρ-VEX processor is a Very Large In-
struction Word (VLIW) processor, which means that each instruction can specify multiple
independent operations. Such operations are called syllables; a full instruction is called a
bundle. Instruction may be used for either a bundle or a syllable, depending on context.
A VLIW processor capable of executing n syllables per cycle is called an n-way VLIW
processor.

Because the amount of syllables in a bundle is usually1 not fixed, the processor needs
a way to tell which syllables belong to which bundle. In the VEX architecture, this is
done by means of a stop bit in each syllable. If the stop bit is set, the next syllable in the
program starts a new bundle. Otherwise, the next syllable is part of the same bundle.

When a VLIW processor executes a bundle, each syllable will be routed to its own
(pipe)lane. Note the ‘a’ in lane; this is not a typo for pipeline (although each pipelane,
confusingly, does contain its own pipeline). In other words, the pipelane is the thing that
contains the computational resources to execute a syllable.

2.1 Reconfiguration

What makes the ρ-VEX processor special compared to other VLIW processors, is that
while the total number of pipelanes is obviously fixed, the pipelanes can be distributed
between different programs, running in parallel. This distribution can be changed at
runtime by means of reconfiguration.

Note that ‘reconfiguration’ here is used to describe a process within the system de-
scribed by a single FPGA bitstream. In other words, the FPGA bitstream does not
need to be fully or partially reloaded when the ρ-VEX processor reconfigures itself. This
allows reconfiguration to be done in a single cycle in theory, although it comes at the
cost of needing FPGA slice muxes or LUTs to permit reconfiguration, instead of using
the FPGA fabric directly.

Not all pipelanes are seperable by means of reconfiguration. Groups of inseperable
pipelanes are called lane groups. Sometimes they are also referred to as lanepairs when
a lane group contains two pipelanes, which is the most common configuration.

In order to be able to run multiple programs on a single ρ-VEX processor core at the
same time, an ρ-VEX processor supports multiple contexts. Formally, a context contains
the complete state of a program, from program counter to register file. However, a

1It is uncommon for the compiler to find enough parallelism in a program to fill an entire bundle.
Therefore, if the bundle size is fixed, a lot of syllables will be NOP. While a fixed bundle size results in
much simpler hardware, the size of the binary will be excessive. While main memory footprint is not
so much an issue nowadays, memory throughput and latency is; the efficiency of the instruction coding
directly affects execution speed as the memory is usually the bottleneck.
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more useful way to think of ρ-VEX contexts is as virtual processor cores. By means of
reconfiguration, the amount of lane groups dedicated to each virtual core can be changed.
In fact, it is possible to completely pause such a virtual core by simply assigning zero
lane groups to it.

2.2 Generic binaries

To compile for a VLIW processor, the compiler needs to be aware of what the maxi-
mum number of syllables per bundle is. However, reconfiguration changes this value at
runtime, which would imply that each program should be compiled multiple times, for
each bundle size possible with reconfiguration. This would severely limit the usefulness of
reconfiguration, as it would be extremely difficult to reconfigure in the middle of program
execution. At best, the program counters would be the only things that would not match
between the two binaries.

The solution to this problem is a generic binary [2]. Generic binaries are compiled
for the largest possible bundle size at which they may execute, referred to as the generic
bundle size. This allows the compiler to extract as much parallelism as may ever be used.
The difference between a normal binary compiled for the generic bundle size and a generic
binary lies in additional rules imposed to the program by the assembler. These rules are
carefully picked to ensure that, for instance, a bundle with four syllables in it still runs
correctly if the two syllable pairs are run sequentially. Unless otherwise specified, an
ρ-VEX generic binary refers to a binary compiled such that it runs correctly on 8-way,
4-way and 2-way ρ-VEX processor cores.

2.3 Intended applications

On the short term, the current version of the ρ-VEX processor is still primarily intended
for research. The VHDL is written in a highly flexible and configurable way, thus making
modifications for experiments relatively easy. At the same time, several complex features
have been added to the core, in order to make it possible to, for instance, run Linux on
it. Most notably, precise trap support has been added since the previous ρ-VEX version,
necessary for adding a memory-management unit.

This combination of flexibility and complexity comes at a cost: speed. The current
version of the ρ-VEX processor only runs at 37.5 MHz on a high-end Virtex 6 FPGA using
the default configuration, while almost completely filling it up. Much more interesting
is what the ρ-VEX architecture is capable of on the long run when better optimized, or
even ported to an ASIC.

In general, VLIW processors are well-suited for executing highly parallel programs,
such as those found in digital signal processing (DSP). In particular, the reconfiguration
capabilities of the ρ-VEX processor allow it to be used in places where multiple DSP
algorithms run in parallel in a real-time system, such that each task has its own deadlines.

To demonstrate, consider a hypothetical audio/video decoder DSP with the following
characteristics as an example.
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• The audio and video decoders do not depend on each other and can thus be executed
in parallel. The decoders themselves are not multithreaded.

• Both tasks run 1.5x as fast when running on a 4-way VLIW compared to a 2-way
VLIW.

• The execution times of both tasks are data dependent. For example, if there is a
lot of movement in the video, then the video task will take longer to complete.

• It is possible to heuristically predict whether or not either decoder will meet its
deadline at its current execution speed before the deadline, in a way that does
not cost an excessive amount of additional computation. This can be done, for
example, by decoding audio and video a few frames in advance, and assuming that
if the current frame is computationally intensive, the next one will probably be too
(locality).

• The audio task takes priority over the video task, as choppy audio is perceived as
more intrusive than choppy video.

• For simplicity, assume that while the video decoder is decoding a single frame, the
audio decoder has to decode a frame’s worth of audio samples. In other words,
the audio and video decoding tasks start at the same time and have the same
deadline. In addition, assume that both tasks need an approximately equal amount
of processing time for a single frame.

Let us now analyze the performance of this system if it were implemented on two 2-way
VLIW processors. Each processor is simply assigned to one of the tasks. The primary
downside to this system in the context of this discussion is that if the audio is overly
complex, the audio decoder will miss its deadline, regardless of the whether the video
processor was fully utilized or not.

To prevent this from happening, one may instead choose to implement the system
on a single 4-way VLIW with a real-time operating system (RTOS) kernel. Notice that
this system has the same amount of compute resources as the previous system. Now,
the RTOS will ensure that the audio decoder runs before the video decoder. Because the
audio decoder runs 1.5x as fast, it will likely meet its deadline now. While unlikely, it is
possible that the video decoder will also complete in time now, but even if it does not,
choppy video was considered favorable over choppy audio. The major downside of this
system is that it is effectively much slower than the 2x2-way system, as the decoders do
not actually run twice as fast when given twice as many computational resources, as the
instruction level parallelism just is not always there.

The power of the ρ-VEX processor is that it can basically switch between these two
implementations at runtime, depending on the actual load each task experiences. When
neither task is in danger of failing to meet its deadline, the ρ-VEX processor could run
in 2x2-way mode. However, if one of the tasks starts falling behind the other because
it is more computationally intensive, the ρ-VEX processor could reconfigure to 1x4-way
mode for that task. When it catches up, it will switch back to 2x2-way mode, as that is
more efficient.
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Instruction set architecture 3
The instruction set architecture (ISA) of the ρ-VEX processor is primarily based on
VEX, an example VLIW architecture used in [3] to explain VLIW concepts. A compiler
was developed for this architecture by HP, which is available as a free download for
noncommercial use [4]. In addition, some enhancements were made to the instruction set
to be compatible with the Lx architecture, introduced in [5]. Lx was designed by HP and
STMicroelectronics for use in SoC (system-on-chip) designs, among which is the ST200
family of processors. This architecture comes with an Open64-based compiler and Linux
port, available for download under the GNU GPL [6]. These tools together provide the
basis for the toolchain used for the ρ-VEX. The instruction encoding for this version of
the ρ-VEX processor is based on that of the previous major version of the ρ-VEX [7].

Instead of noting the differences between these architectures, this section functions
as a reference for the ρ-VEX processor ISA in its current state, to save the reader from
cross-referencing.

3.1 Assembly syntax

The following listing shows the syntax for a single instruction bundle.

start:

c0 stw 0x10[$r0.1] = $r0.53

c0 add $r0.3 = $r0.0, -32

c0 and $b0.2 = $r0.0, $r0.10

c0 call $l0.0 = interrupt

;;

The first line represents a label, as it ends in a colon. Each non-empty line that does
not start with a semicolon and is not a label represents a syllable. The first part of
the syllable, c0, is optional. It specifies the cluster that the syllable belongs to. Since
the ρ-VEX processor currently does not support clusters, only cluster zero is allowed if
specified. The second part represents the opcode of the syllable, defining the operation to
be performed. The third part is the parameter list. Anything that is written to is placed
before the equals sign, anything that is read is placed after. Finally, a double semicolon
is used to mark bundle boundaries.

The syntax for a general purpose register is $r0.index, where index is a number from
0 to 63. The first 0 is used to specify the cluster, which, again, is not used in the ρ-VEX
processor. Branch registers and the link register have the same syntax, substituting the
‘r’ with a ‘b’ or an ‘l’ respectively. The index for branch registers ranges from 0 to 7. For
link registers only 0 is allowed.

Most instructions also accept a literal as their second operand. Literals may be a
decimal or hexadecimal number (using 0x notation), a label reference, or a basic C-
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like integer expression. Literals represent 32-bit values with undefined signedness, i.e.,
0xFFFFFFFF and -1 specify the same value.

Finally, the load and store instructions require a memory reference as one of their
operands. Memory references use the following syntax: literal[$r0.index]. At runtime,
the literal is added to the register value to get the address, i.e. base + offset addressing
is used.

A port of the GNU assembler (gas) is used for assembly. Please refer to its manual
for information on target-independent directives or more information on the expressions
mentioned above.

In general, the C preprocessor is used to preprocess assembly files. This allows usage of
the usual C-style comments, includes, definitions, etc. In particular, the control registers
may be easily referenced as long as the appropriate files are included.

3.2 Registers

The ρ-VEX processor has five distinguishable register files. Each is described below.

3.2.1 General purpose registers

The ρ-VEX core contains 64 32-bit general purpose registers for arithmetic.
Register 0 is special, as it always reads as 0 when used by the processor. Writing to

it does however work; the debug bus can read the latest value written to it. This allows
the register to be used for debugging on rare occasions.

Register 1 is intended to be used as the stack pointer. The RETURN and RFI instructions
can add an immediate value to it for stack adjustment, but otherwise it behaves just as
any other general purpose register.

Register 63 can optionally be mapped to the link register at design time using generics.
This allows arithmetic instructions to be performed on the link register without needing
to use MOVFL and MOVTL, at the cost of a general purpose register.

There are no explicit move or load-immediate operations, as the following syllables
are already capable of these operations.

c0 or $r0.dest = $r0.0, $r0.src // Move src to dest

c0 or $r0.dest = $r0.0, immediate // Load immediate

3.2.2 Branch registers

The ρ-VEX core contains 8 1-bit registers used for branch conditions, select instructions,
divisions, and additions of values wider than 32 bits.

All arithmetic operations that output a boolean value can write to either a general
purpose register (in which case they will write 0 for false and 1 for true) or a branch
register. These include all integer comparison operations and select boolean operations.

Moving a branch register to another branch register cannot be done in a single cycle,
but loading an immediate into a branch register or moving to or from a general purpose
register can be done as follows.
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c0 cmpeq $b0.dest = $r0.0, $r0.0 // Load true

c0 cmpne $b0.dest = $r0.0, $r0.0 // Load false

c0 cmpne $b0.dest = $r0.0, $r0.src // Move general purpose to branch

c0 slctf $r0.dest = $b0.src, $r0.0, 1 // Move branch to general purpose

Branch register can also not be loaded from or stored into memory on their own.
However, to improve context switching speed slightly, the LDBR and STBR instructions are
available. These load or store a byte containing all eight branch registers in a single
syllable.

3.2.3 Link register

The link register is a 32-bit register used to store the return address when calling. It
can also be used as the destination address for an unconditional indirect jump or call, in
cases where the branch offset field is too small or when the jump target is determined at
runtime.

When general purpose register 63 is not mapped to the link register, the MOVTL and
LDW instructions can be used to load the link register from a general purpose register or
memory respectively. MOVFL and STW perform the reverse operations.

3.2.4 Global and context control registers

These two register files contain special-purpose registers. The global control registers con-
tain status information not specific to any context, whereas the context control registers
are context specific.

The processor can access these register files through memory operations only. All
these accesses are single-cycle. 1 kiB of memory space has to be reserved for this pur-
pose, usually mapped to 0xFFFFFC00..0xFFFFFFFF. The location of the block is design-time
configurable. Note that it is impossible for the processor to perform actual memory
operations to this region, so the location of the block should be chosen wisely.

The global register file is read-only from the perspective of the program. The context
register file is writable, but it should be noted that each program can only access its own
hardware context register file. If an application requires that programs can write to the
global register file or the other context register files, the debug bus can be made accessible
for memory operations by the bus interconnect outside the core. In most platforms this
happens coincidentally, as the processor can access the main bus of the platform, and
the debug bus is wired as a slave peripheral on this bus. For more information about the
debug bus, refer to Section 9.2.2.7.

For more information about the control registers in general, refer to Section 4.

3.3 Memory

Each lane group of the ρ-VEX processor currently has exactly one memory unit. The
configurability of this may be extended in the future, as memory operations commonly
end up being the critical path when extracting instruction-level parallelism. However,
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doing so would require significant modifications to the ρ-VEX core and the reconfigurable
cache.

The ρ-VEX processor is big endian. This means that when accessing a 32-bit or 16-bit
word, the most significant byte will reside in the lowest address. This is the opposite of
what you may be used to coming from x86.

The ρ-VEX processor is capable of reading and writing 32-bit, 16-bit and 8-bit words.
Seperate read instructions exist for reading 16-bit and 8-bit words in signed or unsigned
mode. All n-bit accesses must be n-bit aligned. If an access is improperly aligned, a
MISALIGNED_ACCESS trap will be caused.

Note that a 1 kiB block of the external memory space must be selected to be remapped
to the control register file internally. This prevents the processor from being able to access
the block. Refer to Section 3.2.4 for more information.

3.4 Syllable resource classes and delays

Some syllables take more than one cycle to complete. In this case, they are always
pipelined; no multi-cycle syllable will stall the rest of the bundle. While this is good for
performance, it does require the attention of the programmer in order to write properly
functioning code.

In addition, not all pipelanes support execution of all syllables, and as such, require-
ments are imposed on the position of certain syllables within a bundle in the binary.
The assembler will normally ensure that these requirements are met, unlike the delay
requirements, which it cannot detect. However, it is still important for the user to know
them in order to be able to write assembly.

It is also important that the assembler is configured in the same way as the core.
If there are discrepancies, the assembler may still output binaries that the core cannot
execute. If this happens, the core will produce an TRAP_INVALID_OP trap, with the index of
the offending pipelane as the trap argument.

There are five distinguishable classes of syllables. These classes are ALU, multiply,
memory, branch and long immediate.

3.4.1 ALU class

ALU syllables are the basic ρ-VEX instructions. They can be processed by every lane. In
the default pipeline and forwarding configuration of the ρ-VEX, their results are available
after a single cycle. That is, the bundle immediately following can use their results.

3.4.2 Multiply class

Multiply syllables are only allowed in lanes that are configured to have a multiplier. This
configuration is done at design time using generics. In the default configuration, every
lane has a multiplication unit.

In the default pipeline and forwarding configuration of the ρ-VEX, multiply instruc-
tions are two-cycle pipelined. That is, two bundle boundaries are needed between the
syllable producing the value and a syllable that uses it.
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3.4.3 Memory class

Memory syllables are only allowed in lanes that are configured to have a memory unit.
In addition, in most configurations, only one memory unit can be active per context at
a time, even if multiple are available. This is due to the fact the data cache can only
perform one operation per cycle per context. In theory, it is still permissible in such a
system to perform a single memory operation and a single control register operation at
the same time, but there is currently no toolchain support for this.

In the default pipeline and forwarding configuration of the ρ-VEX, memory load
instructions are two-cycle pipelined. That is, two bundle boundaries are needed between
a load syllable and the first syllable that uses the value. However, there is no store to
load delay; if a bundle with a load of a certain address immediately follows a bundle that
stores a value at that address, the newly written value is loaded.

3.4.4 Branch class

All syllables that affect the program counter are considered branch syllables. Only one
branch syllable is permitted per cycle, and in almost all design-time core configurations,
it must be the last syllable in a bundle.

In the previous ρ-VEX version, a delay was needed between a syllable producing a
branch register or link register value and branch operations. This is not the case in the
default pipeline and forwarding configuration of this ρ-VEX version, as the ALU and
branch operations are initiated in the same pipeline stage.

3.4.5 Long immediate class

Sometimes, one syllable does not contain enough information for one pipelane to execute.
The only time when this happens in the ρ-VEX processor is when an immediate outside
the range -256..255 is to be specified. For this purpose, LIMMH syllables exist. These
syllables perform no operation in their own pipelane, but instead send 23 additional
immediate bits to another lane, which allows a 32-bit immediate to be used in a single
cycle.

Any ALU, multiply or memory syllable that supports an immediate can receive a
long immediate. However, long immediates can not be used to extend the branch offset
field.

LIMMH syllables are automatically inferred by the assembler. However, each LIMMH

syllable inferred means that one less functional syllable can be scheduled in a single
bundle. In addition, a certain pipelane can not ‘send’ a long immediate to any other
pipelane.

The ρ-VEX supports two routes for long immediates to take. They are called ‘long
immediate from neighbor’ and ‘long immediate from previous pair’. One or both of these
methods may be enabled at design time using generics.

Long immediate from neighbor

This is the most common route, as it is supported in all ρ-VEX configurations. This
allows all pipelanes to forward a long immediate to their immediate neighbor within a
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pair of pipelanes. This is depicted in Figure 3.2 for an 8-way ρ-VEX processor.

Figure 3.1: Long immediate from neighbor routing.

Long immediate from previous pair

This provides an alternative place where a long immediate can be placed for lanes 2 and
up; when this route is enabled lane n can send a long immediate to lane n + 2. This
is depicted in Figure 3.2 for an 8-way ρ-VEX processor. However, due to limitations
in the instruction fetch unit, this system is incompatible with the stop bit system. For
these reasons, it can only be effectively used in cores with at least four lanes that are not
configured to support stop bits.

Figure 3.2: Long immediate from previous pair routing.

3.5 Generic binaries

Generic binaries are binaries that can be correctly run on different core configurations,
even if the core reconfigures during execution. They were introduced in [2]. Typically,
a generic binary refers to a binary that can be run with two pipelanes (2-way), four
pipelanes (4-way) or eight pipelanes (8-way).

A generic binary is typically compiled in the same way as a regular 8-way binary. It
is the task of the assembler to ensure that the generic binary requirements are met. For
the standard generic binary, these rules are the following.

• The single branch instruction allowed per bundle must end up in the last execution
cycle in 2-way and 4-way execution. The ρ-VEX processor imposes the even stricter
requirement that branch syllables must always be the last syllable in a bundle.

• RAW hazards must be avoided in all runtime configurations. That is, for example, a
register that is written in one of the first two syllables may not be read in subsequent
slots. This is because the old value of the register would be read in 8-way mode,
but the newly written value would be read in 2-way mode.

Extrapolating these rules to the general case should be trivial.
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3.5.1 Generating generic binaries

In order to generate generic binaries, the -u flag needs to be passed to the assembler.
By default, the assembler will only try to move syllables around within bundles in order
to meet the requirements imposed above. However, often this is not possible without
further processing.

There are two ways to process the assembly files to meet the requirements. The first
one can be done by the assembler as well. If the -autosplit flag is passed, it will attempt
to split bundles that it cannot schedule directly. This solves most problems at the cost
of runtime performance. Refer to [2] for more information.

The second way involves running a python script called vexparse on the assembly
compilation output, before passing them to the assembler. Depending on its configura-
tion, vexparse will extract a dependency graph of all syllables in a basic block1 from the
assembly code, and then completely reschedule all instructions. As a side effect, it will
fix hand-written assembly code that failed to take multiply and load instruction delays
into consideration.

Being a python script, vexparse is much slower than the -autosplit option of the
assembler. However, it generates more efficient code, as it is not limited to merely
splitting bundles.

3.6 Stop bits

The stop bit system is the colloquial name for the binary compression algorithm that the
core may be design-time configured to support. It refers to a bit present in every syllable,
which, if set, marks the syllable as the last syllable in the current bundle. In contrast,
when the stop bit system is not used, bundle boundaries are based on alignment; each
bundle is expected to start on an alignment boundary of the maximum size of a bundle.
NOP instructions are then used to fill the unused words. The stop bit should then still be
set in the last syllable, as failing to do so will cause a trap if the bundle contains a branch
syllable.

The major advantage of stop bits is the decreased size of the binary. This does not
only mean that the memory footprint of a program will be smaller; memory is cheap,
so this is usually not an issue. More importantly, it means that the processor will need
to do less instruction memory accesses for the same amount of computation; memory
bandwidth and caches are expensive.

There is an additional benefit when combined with generic binaries. When a generic
binary without stop bits runs in 8-way mode, the NOP instructions needed for bundle
alignment do not cause any delays in execution, aside from the implicit delays due to
the strain on the instruction memory system. However, when the binary is run in 2-way
mode, these alignment NOPs may actually cost cycles. To illustrate, imagine an 8-way
generic binary bundle with only two syllables used. When this bundle is executed in
2-way mode, execution will necessarily still take four cycles, because the processor still

1A basic block is a block of instructions with natural scheduling boundaries at the start and end of
it. The prime example of such boundaries are branch instructions.
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needs to work through eight syllables.2 When stop bits are enabled, such alignment NOPs
do not exist, so they will naturally never waste cycles.

The major disadvantage of using stop bits is its hardware complexity. Without stop
bits, the core naturally always fetches a nicely aligned block of instruction memory to
process. Each 32-bit word in this block can be wired directly to the syllable input of
each lane. In contrast, when stop bits are fully enabled, a bundle may start on any 32-bit
word boundary. Thus, a new module is needed between the instruction memory (which
expects accesses aligned to its access size) and the pipelanes. This module must then
be capable of routing any incoming 32-bit word to any pipelane, based on the lower bits
of the current program counter and even the syllable type, as branch syllables always
need to be routed to the last pipelane. It must also store the previous fetch to handle
misaligned bundles, and when a branch to a misaligned address occurs, it must stall
execution for an additional cycle, as it will have to fetch both the memory block before
and after the crossed alignment boundary.

On the plus side, the large multiplexers involved in this instruction buffer do not
increase in size when adding reconfiguration capabilities to an 8-way core with stop bits.
Some additional control logic is obviously required, but nothing more.

3.6.1 Design-time configuration

The ρ-VEX processor core allows the designer to make a compromise between the large
binary size without stop bits and the additional hardware needed with stop bits. Instead
of simply supporting stop bits or not, the stop bit system is configured by specifying
the bundle alignment boundaries that the core may expect. When the bundle alignment
boundaries equal the size of the maximum bundle size, stop bits are effectively disabled.
When the alignment boundary is set to 32-bit words, stop bits are fully enabled. Midway
configuration are supported equally well.

Every time the bundle alignment boundary is halved, the multiplexers in the syllable
dispatch logic double in size. The complexity of program counter generation increases
with each step as well, as does the instruction fetch buffer size. Meanwhile, the number
of alignment NOPs required in the binary decreases with each step.

The default 8-way reconfigurable core with stop bits enabled have the bundle align-
ment boundary set to 64-bit. Going all the way to 32-bit boundaries does not increase
2-way execution performance of an 8-way generic binary further, and most NOPs have
already been eliminated, so doubling the hardware complexity once more is generally not
justifiable.

2It is certainly possible to avoid this without a complete stop bit system. For example, for the previous
version of the ρ-VEX processor, it was proposed to use the stop bits to mark the end of the useful part
of a bundle, instead of the actual boundaries. In the case of our 8-way bundle with only two syllables
used, assuming the two syllables can be placed in the first two slots, the stop bit would be set in the
second syllable instead of the eighth. When this code is executed in 2-way mode, the ρ-VEX processor
would recognize that it can jump to the next 8-way bundle alignment boundary, thus skipping the six
NOP syllables.

Rev. 5cd37f2, ctag z1KS3dj



CHAPTER 3. INSTRUCTION SET ARCHITECTURE C-21

3.7 Instruction set

The ρ-VEX instruction set consists of 169 instructions. These instructions are defined
by two bitfields in the syllable, called opcode and imm_sw. The opcode field is 8 bits in size,
ranging from bit 31 to 24 inclusive, allowing for 256 different operations to be performed.
imm_sw is a single bit (bit 23) that specifies if the second operand is a register or an
immediate. This thus allows a total of 512 different instructions in theory.

However, not all operations support both register and immediate mode. In addition,
some instructions have operand fields that extend into the opcode, requiring a single
instruction to use multiple opcodes. Taking these things into consideration, the ρ-VEX
instruction set has 113 opcodes that are not yet mapped.

There are two additional fields with a fixed function within the instruction set. The
first is the stop bit, bit 1. This bit determines where the bundle boundaries are. Refer to
Section 3.6 for more information. The second field, bit 0, is reserved for cluster end bits.
The toolchain currently always outputs a 0 bit, and the processor ignores it completely.

The following table lists all the instructions in the ρ-VEX instruction set ordered by
opcode. The subsequent sections document each instruction, ordered by function. If you
are reading this document digitally, you can click any instruction in the table to jump to
its documentation.

3130 29 28 27 26 25 24 2322 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 d x y S mpyll $r0.d = $r0.x, $r0.y

0 0 0 0 0 0 0 0 1 d x imm S mpyll $r0.d = $r0.x, imm

0 0 0 0 0 0 0 1 0 d x y S mpyllu $r0.d = $r0.x, $r0.y

0 0 0 0 0 0 0 1 1 d x imm S mpyllu $r0.d = $r0.x, imm

0 0 0 0 0 0 1 0 0 d x y S mpylh $r0.d = $r0.x, $r0.y

0 0 0 0 0 0 1 0 1 d x imm S mpylh $r0.d = $r0.x, imm

0 0 0 0 0 0 1 1 0 d x y S mpylhu $r0.d = $r0.x, $r0.y

0 0 0 0 0 0 1 1 1 d x imm S mpylhu $r0.d = $r0.x, imm

0 0 0 0 0 1 0 0 0 d x y S mpyhh $r0.d = $r0.x, $r0.y

0 0 0 0 0 1 0 0 1 d x imm S mpyhh $r0.d = $r0.x, imm

0 0 0 0 0 1 0 1 0 d x y S mpyhhu $r0.d = $r0.x, $r0.y

0 0 0 0 0 1 0 1 1 d x imm S mpyhhu $r0.d = $r0.x, imm

0 0 0 0 0 1 1 0 0 d x y S mpyl $r0.d = $r0.x, $r0.y

0 0 0 0 0 1 1 0 1 d x imm S mpyl $r0.d = $r0.x, imm

0 0 0 0 0 1 1 1 0 d x y S mpylu $r0.d = $r0.x, $r0.y

0 0 0 0 0 1 1 1 1 d x imm S mpylu $r0.d = $r0.x, imm

0 0 0 0 1 0 0 0 0 d x y S mpyh $r0.d = $r0.x, $r0.y

0 0 0 0 1 0 0 0 1 d x imm S mpyh $r0.d = $r0.x, imm

0 0 0 0 1 0 0 1 0 d x y S mpyhu $r0.d = $r0.x, $r0.y

0 0 0 0 1 0 0 1 1 d x imm S mpyhu $r0.d = $r0.x, imm

0 0 0 0 1 0 1 0 0 d x y S mpyhs $r0.d = $r0.x, $r0.y

0 0 0 0 1 0 1 0 1 d x imm S mpyhs $r0.d = $r0.x, imm

0 0 0 0 1 0 1 1 0 y S movtl $l0.0 = $r0.y

0 0 0 0 1 0 1 1 1 imm S movtl $l0.0 = imm

0 0 0 0 1 1 0 0 0 d S movfl $r0.d = $l0.0

0 0 0 0 1 1 0 1 1 x imm S ldw $l0.0 = imm[$r0.x]

0 0 0 0 1 1 1 0 1 x imm S stw imm[$r0.x] = $l0.0

0 0 0 1 0 0 0 0 1 d x imm S ldw $r0.d = imm[$r0.x]

0 0 0 1 0 0 0 1 1 d x imm S ldh $r0.d = imm[$r0.x]

0 0 0 1 0 0 1 0 1 d x imm S ldhu $r0.d = imm[$r0.x]
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3130 29 28 27 26 25 24 2322 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 1 1 d x imm S ldb $r0.d = imm[$r0.x]

0 0 0 1 0 1 0 0 1 d x imm S ldbu $r0.d = imm[$r0.x]

0 0 0 1 0 1 0 1 1 d x imm S stw imm[$r0.x] = $r0.d

0 0 0 1 0 1 1 0 1 d x imm S sth imm[$r0.x] = $r0.d

0 0 0 1 0 1 1 1 1 d x imm S stb imm[$r0.x] = $r0.d

0 0 0 1 1 0 0 0 0 d x y S shr $r0.d = $r0.x, $r0.y

0 0 0 1 1 0 0 0 1 d x imm S shr $r0.d = $r0.x, imm

0 0 0 1 1 0 0 1 0 d x y S shru $r0.d = $r0.x, $r0.y

0 0 0 1 1 0 0 1 1 d x imm S shru $r0.d = $r0.x, imm

0 0 0 1 1 0 1 0 0 d x y S sub $r0.d = $r0.y, $r0.x

0 0 0 1 1 0 1 0 1 d x imm S sub $r0.d = imm, $r0.x

0 0 0 1 1 0 1 1 0 d x S sxtb $r0.d = $r0.x

0 0 0 1 1 1 0 0 0 d x S sxth $r0.d = $r0.x

0 0 0 1 1 1 0 1 0 d x S zxtb $r0.d = $r0.x

0 0 0 1 1 1 1 0 0 d x S zxth $r0.d = $r0.x

0 0 0 1 1 1 1 1 0 d x y S xor $r0.d = $r0.x, $r0.y

0 0 0 1 1 1 1 1 1 d x imm S xor $r0.d = $r0.x, imm

0 0 1 0 0 0 0 0 offs S goto offs

0 0 1 0 0 0 0 1 S igoto $l0.0

0 0 1 0 0 0 1 0 offs S call $l0.0 = offs

0 0 1 0 0 0 1 1 S icall $l0.0 = $l0.0

0 0 1 0 0 1 0 0 offs bs S br $b0.bs, offs

0 0 1 0 0 1 0 1 offs bs S brf $b0.bs, offs

0 0 1 0 0 1 1 0 stackadj S return $r0.1 = $r0.1, stackadj, $l0.0

0 0 1 0 0 1 1 1 stackadj S rfi $r0.1 = $r0.1, stackadj

0 0 1 0 1 0 0 0 S stop

0 0 1 0 1 1 0 0 0 d x y S sbit $r0.d = $r0.x, $r0.y

0 0 1 0 1 1 0 0 1 d x imm S sbit $r0.d = $r0.x, imm

0 0 1 0 1 1 0 1 0 d x y S sbitf $r0.d = $r0.x, $r0.y

0 0 1 0 1 1 0 1 1 d x imm S sbitf $r0.d = $r0.x, imm

0 0 1 0 1 1 1 0 1 x imm S ldbr imm[$r0.x]

0 0 1 0 1 1 1 1 1 x imm S stbr imm[$r0.x]

0 0 1 1 0 bs 0 d x y S slctf $r0.d = $b0.bs, $r0.x, $r0.y

0 0 1 1 0 bs 1 d x imm S slctf $r0.d = $b0.bs, $r0.x, imm

0 0 1 1 1 bs 0 d x y S slct $r0.d = $b0.bs, $r0.x, $r0.y

0 0 1 1 1 bs 1 d x imm S slct $r0.d = $b0.bs, $r0.x, imm

0 1 0 0 0 0 0 0 0 d x y S cmpeq $r0.d = $r0.x, $r0.y

0 1 0 0 0 0 0 0 1 d x imm S cmpeq $r0.d = $r0.x, imm

0 1 0 0 0 0 0 1 0 bd x y S cmpeq $b0.bd = $r0.x, $r0.y

0 1 0 0 0 0 0 1 1 bd x imm S cmpeq $b0.bd = $r0.x, imm

0 1 0 0 0 0 1 0 0 d x y S cmpge $r0.d = $r0.x, $r0.y

0 1 0 0 0 0 1 0 1 d x imm S cmpge $r0.d = $r0.x, imm

0 1 0 0 0 0 1 1 0 bd x y S cmpge $b0.bd = $r0.x, $r0.y

0 1 0 0 0 0 1 1 1 bd x imm S cmpge $b0.bd = $r0.x, imm

0 1 0 0 0 1 0 0 0 d x y S cmpgeu $r0.d = $r0.x, $r0.y

0 1 0 0 0 1 0 0 1 d x imm S cmpgeu $r0.d = $r0.x, imm

0 1 0 0 0 1 0 1 0 bd x y S cmpgeu $b0.bd = $r0.x, $r0.y

0 1 0 0 0 1 0 1 1 bd x imm S cmpgeu $b0.bd = $r0.x, imm

0 1 0 0 0 1 1 0 0 d x y S cmpgt $r0.d = $r0.x, $r0.y

0 1 0 0 0 1 1 0 1 d x imm S cmpgt $r0.d = $r0.x, imm

0 1 0 0 0 1 1 1 0 bd x y S cmpgt $b0.bd = $r0.x, $r0.y

0 1 0 0 0 1 1 1 1 bd x imm S cmpgt $b0.bd = $r0.x, imm

0 1 0 0 1 0 0 0 0 d x y S cmpgtu $r0.d = $r0.x, $r0.y

0 1 0 0 1 0 0 0 1 d x imm S cmpgtu $r0.d = $r0.x, imm
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0 1 0 0 1 0 0 1 0 bd x y S cmpgtu $b0.bd = $r0.x, $r0.y

0 1 0 0 1 0 0 1 1 bd x imm S cmpgtu $b0.bd = $r0.x, imm

0 1 0 0 1 0 1 0 0 d x y S cmple $r0.d = $r0.x, $r0.y

0 1 0 0 1 0 1 0 1 d x imm S cmple $r0.d = $r0.x, imm

0 1 0 0 1 0 1 1 0 bd x y S cmple $b0.bd = $r0.x, $r0.y

0 1 0 0 1 0 1 1 1 bd x imm S cmple $b0.bd = $r0.x, imm

0 1 0 0 1 1 0 0 0 d x y S cmpleu $r0.d = $r0.x, $r0.y

0 1 0 0 1 1 0 0 1 d x imm S cmpleu $r0.d = $r0.x, imm

0 1 0 0 1 1 0 1 0 bd x y S cmpleu $b0.bd = $r0.x, $r0.y

0 1 0 0 1 1 0 1 1 bd x imm S cmpleu $b0.bd = $r0.x, imm

0 1 0 0 1 1 1 0 0 d x y S cmplt $r0.d = $r0.x, $r0.y

0 1 0 0 1 1 1 0 1 d x imm S cmplt $r0.d = $r0.x, imm

0 1 0 0 1 1 1 1 0 bd x y S cmplt $b0.bd = $r0.x, $r0.y

0 1 0 0 1 1 1 1 1 bd x imm S cmplt $b0.bd = $r0.x, imm

0 1 0 1 0 0 0 0 0 d x y S cmpltu $r0.d = $r0.x, $r0.y

0 1 0 1 0 0 0 0 1 d x imm S cmpltu $r0.d = $r0.x, imm

0 1 0 1 0 0 0 1 0 bd x y S cmpltu $b0.bd = $r0.x, $r0.y

0 1 0 1 0 0 0 1 1 bd x imm S cmpltu $b0.bd = $r0.x, imm

0 1 0 1 0 0 1 0 0 d x y S cmpne $r0.d = $r0.x, $r0.y

0 1 0 1 0 0 1 0 1 d x imm S cmpne $r0.d = $r0.x, imm

0 1 0 1 0 0 1 1 0 bd x y S cmpne $b0.bd = $r0.x, $r0.y

0 1 0 1 0 0 1 1 1 bd x imm S cmpne $b0.bd = $r0.x, imm

0 1 0 1 0 1 0 0 0 d x y S nandl $r0.d = $r0.x, $r0.y

0 1 0 1 0 1 0 0 1 d x imm S nandl $r0.d = $r0.x, imm

0 1 0 1 0 1 0 1 0 bd x y S nandl $b0.bd = $r0.x, $r0.y

0 1 0 1 0 1 0 1 1 bd x imm S nandl $b0.bd = $r0.x, imm

0 1 0 1 0 1 1 0 0 d x y S norl $r0.d = $r0.x, $r0.y

0 1 0 1 0 1 1 0 1 d x imm S norl $r0.d = $r0.x, imm

0 1 0 1 0 1 1 1 0 bd x y S norl $b0.bd = $r0.x, $r0.y

0 1 0 1 0 1 1 1 1 bd x imm S norl $b0.bd = $r0.x, imm

0 1 0 1 1 0 0 0 0 d x y S orl $r0.d = $r0.x, $r0.y

0 1 0 1 1 0 0 0 1 d x imm S orl $r0.d = $r0.x, imm

0 1 0 1 1 0 0 1 0 bd x y S orl $b0.bd = $r0.x, $r0.y

0 1 0 1 1 0 0 1 1 bd x imm S orl $b0.bd = $r0.x, imm

0 1 0 1 1 0 1 0 0 d x y S andl $r0.d = $r0.x, $r0.y

0 1 0 1 1 0 1 0 1 d x imm S andl $r0.d = $r0.x, imm

0 1 0 1 1 0 1 1 0 bd x y S andl $b0.bd = $r0.x, $r0.y

0 1 0 1 1 0 1 1 1 bd x imm S andl $b0.bd = $r0.x, imm

0 1 0 1 1 1 0 0 0 d x y S tbit $r0.d = $r0.x, $r0.y

0 1 0 1 1 1 0 0 1 d x imm S tbit $r0.d = $r0.x, imm

0 1 0 1 1 1 0 1 0 bd x y S tbit $b0.bd = $r0.x, $r0.y

0 1 0 1 1 1 0 1 1 bd x imm S tbit $b0.bd = $r0.x, imm

0 1 0 1 1 1 1 0 0 d x y S tbitf $r0.d = $r0.x, $r0.y

0 1 0 1 1 1 1 0 1 d x imm S tbitf $r0.d = $r0.x, imm

0 1 0 1 1 1 1 1 0 bd x y S tbitf $b0.bd = $r0.x, $r0.y

0 1 0 1 1 1 1 1 1 bd x imm S tbitf $b0.bd = $r0.x, imm

0 1 1 0 0 0 0 0 S nop

0 1 1 0 0 0 1 0 0 d x y S add $r0.d = $r0.x, $r0.y

0 1 1 0 0 0 1 0 1 d x imm S add $r0.d = $r0.x, imm

0 1 1 0 0 0 1 1 0 d x y S and $r0.d = $r0.x, $r0.y

0 1 1 0 0 0 1 1 1 d x imm S and $r0.d = $r0.x, imm

0 1 1 0 0 1 0 0 0 d x y S andc $r0.d = $r0.x, $r0.y

0 1 1 0 0 1 0 0 1 d x imm S andc $r0.d = $r0.x, imm

0 1 1 0 0 1 0 1 0 d x y S max $r0.d = $r0.x, $r0.y
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3130 29 28 27 26 25 24 2322 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 1 1 d x imm S max $r0.d = $r0.x, imm

0 1 1 0 0 1 1 0 0 d x y S maxu $r0.d = $r0.x, $r0.y

0 1 1 0 0 1 1 0 1 d x imm S maxu $r0.d = $r0.x, imm

0 1 1 0 0 1 1 1 0 d x y S min $r0.d = $r0.x, $r0.y

0 1 1 0 0 1 1 1 1 d x imm S min $r0.d = $r0.x, imm

0 1 1 0 1 0 0 0 0 d x y S minu $r0.d = $r0.x, $r0.y

0 1 1 0 1 0 0 0 1 d x imm S minu $r0.d = $r0.x, imm

0 1 1 0 1 0 0 1 0 d x y S or $r0.d = $r0.x, $r0.y

0 1 1 0 1 0 0 1 1 d x imm S or $r0.d = $r0.x, imm

0 1 1 0 1 0 1 0 0 d x y S orc $r0.d = $r0.x, $r0.y

0 1 1 0 1 0 1 0 1 d x imm S orc $r0.d = $r0.x, imm

0 1 1 0 1 0 1 1 0 d x y S sh1add $r0.d = $r0.x, $r0.y

0 1 1 0 1 0 1 1 1 d x imm S sh1add $r0.d = $r0.x, imm

0 1 1 0 1 1 0 0 0 d x y S sh2add $r0.d = $r0.x, $r0.y

0 1 1 0 1 1 0 0 1 d x imm S sh2add $r0.d = $r0.x, imm

0 1 1 0 1 1 0 1 0 d x y S sh3add $r0.d = $r0.x, $r0.y

0 1 1 0 1 1 0 1 1 d x imm S sh3add $r0.d = $r0.x, imm

0 1 1 0 1 1 1 0 0 d x y S sh4add $r0.d = $r0.x, $r0.y

0 1 1 0 1 1 1 0 1 d x imm S sh4add $r0.d = $r0.x, imm

0 1 1 0 1 1 1 1 0 d x y S shl $r0.d = $r0.x, $r0.y

0 1 1 0 1 1 1 1 1 d x imm S shl $r0.d = $r0.x, imm

0 1 1 1 0 bs 0 d x y bd S divs $r0.d, $b0.bd = $b0.bs, $r0.x, $r0.y

0 1 1 1 1 bs 0 d x y bd S addcg $r0.d, $b0.bd = $b0.bs, $r0.x, $r0.y

1 0 0 0 tgt imm S limmh tgt, imm

1 0 0 1 0 0 0 0 0 x y S trap $r0.x, $r0.y

1 0 0 1 0 0 0 0 1 x imm S trap $r0.x, imm

1 0 0 1 0 0 0 1 0 d x S clz $r0.d = $r0.x

1 0 0 1 0 0 1 0 0 d x y S mpylhus $r0.d = $r0.x, $r0.y

1 0 0 1 0 0 1 0 1 d x imm S mpylhus $r0.d = $r0.x, imm

1 0 0 1 0 0 1 1 0 d x y S mpyhhs $r0.d = $r0.x, $r0.y

1 0 0 1 0 0 1 1 1 d x imm S mpyhhs $r0.d = $r0.x, imm

3.7.1 ALU arithmetic instructions

The ρ-VEX ALU has a 32-bit adder for arithmetic. Some exotic instructions are available
to make efficient multiplications by small constants and to speed up software divisions.

add $r0.d = $r0.x, $r0.y

add $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 0 0 d x y S

0 1 1 0 0 0 1 0 1 d x imm S

Performs a 32-bit addition. Notice that ADD instructions may be used as move or load
immediate operations when x is set to 0. While the OR instruction is often used instead,
there is no functional difference between the two when used inthis way.

$r0.d = $r0.x + [$r0.y|imm];
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sh1add $r0.d = $r0.x, $r0.y

sh1add $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 1 0 d x y S

0 1 1 0 1 0 1 1 1 d x imm S

Performs a 32-bit addition. $r0.x is first left-shifted by one.
$r0.d = ($r0.x << 1) + [$r0.y|imm];

sh2add $r0.d = $r0.x, $r0.y

sh2add $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 0 0 d x y S

0 1 1 0 1 1 0 0 1 d x imm S

Performs a 32-bit addition. $r0.x is first left-shifted by two.
$r0.d = ($r0.x << 2) + [$r0.y|imm];

sh3add $r0.d = $r0.x, $r0.y

sh3add $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 1 0 d x y S

0 1 1 0 1 1 0 1 1 d x imm S

Performs a 32-bit addition. $r0.x is first left-shifted by three.
$r0.d = ($r0.x << 3) + [$r0.y|imm];

sh4add $r0.d = $r0.x, $r0.y

sh4add $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 0 d x y S

0 1 1 0 1 1 1 0 1 d x imm S

Performs a 32-bit addition. $r0.x is first left-shifted by four.
$r0.d = ($r0.x << 4) + [$r0.y|imm];

sub $r0.d = $r0.y, $r0.x

sub $r0.d = imm, $r0.x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 0 0 d x y S

0 0 0 1 1 0 1 0 1 d x imm S

Performs a 32-bit subtraction. Note that, unlike all other instructions, the immediate
must be specified first. This allows SUB to be used to subtract a register from an imme-
diate.

Notice that SUB reduces to two’s complement negation when x or imm equal zero.
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$r0.d = [$r0.y|imm] + $r0.x;

addcg $r0.d, $b0.bd = $b0.bs, $r0.x, $r0.y

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 bs 0 d x y bd S

Primitive for additions of integers wider than 32 bits. Addition is performed by first
setting a scratch branch register to false using CMPNE for the carry input. Then ADDCG

can be used to add up words together one by one with increasing significance, using the
scratch branch register for the carry chain.

Subtractions can be performed by setting the carry input to 1 using CMPEQ and ones-
complementing one of the inputs using XOR.

Notice that ADDCG reduces to rotate left by one through a branch register when x equals
y. This may be used for for shift left by one operations on integers wider than 32 bits.
long long tmp = $r0.x + $r0.y + ($b0.bs ? 1 : 0);

$r0.d = (int)tmp;

$b0.bd = (tmp & 0x100000000) != 0;

divs $r0.d, $b0.bd = $b0.bs, $r0.x, $r0.y

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 bs 0 d x y bd S

Primitive for integer divisions. The following assembly code performs a single nonrestor-
ing division step.
addcg s_lo, shift_bit = s_lo, s_lo, <zero>

;;

divs s_hi, quotient_bit = s_hi, divisor, shift_bit

;;

addcg quotient, <unused> = quotient, quotient, quotient_bit

;;

Here, s_lo and s_hi represent the partial remainder, initialized to the dividend before
the first division step. The first ADDCG and the DIVS instruction together perform a 64-bit
shift-left-by-1 operation. Depending on the sign of the partial remainder before the shift
(i.e., the MSB which was shifted out), the dividend is added to or subtracted from the
partial remainder. If an addition was performed, quotient_bit is set to 1, representing
that the current quotient bit is -1 in binary signed digit representation. Otherwise, the
current quotient bit is 1. The final ADDCG stores the result by left-shifting the bit into
quotient. Post-processing is required to convert the quotient from binary signed digit
representation to two’s complement.

It should be noted that a division step can be done in a single cycle using just
two syllables. This division step has to be applied many times in a loop, and benefits
from modulo-scheduling (also known as software pipelining), allowing each step to be
performed in a single cycle. Furthermore, the quotient_bits can be shifted into s_lo

instead of a different register, as the zero bits shifted into s_lo are unused. This eliminates
the need for the second ADDCG, as well as the zero and scratch branch registers.
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The prologue and epilogue code for various divisions are beyond the scope of this
manual, as the compilers take care of expanding divisions.

int tmp = ($r0.x << 1) | ($b0.bs ? 1 : 0);

bool flag = ($r0.x & 0x80000000) != 0;

$r0.d = flag ? (tmp + $r0.y) : (tmp - $r0.y);

$b0.bd = flag;

3.7.2 ALU barrel shifter instructions

The ρ-VEX ALU includes a barrel shifter. It should be noted that the shift amount
input to the barrel shifter is 8-bit unsigned, not 32-bit as one might expect. That is, the
upper 24 bits of the shift amount are discarded, and for instance a left shift by a negative
amount will not simply result in a right shift.

shl $r0.d = $r0.x, $r0.y

shl $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 1 0 d x y S

0 1 1 0 1 1 1 1 1 d x imm S

Performs a left-shift operation. Zeros are shifted in from the right.

$r0.d = $r0.x << [$r0.y|imm];

shr $r0.d = $r0.x, $r0.y

shr $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 0 0 d x y S

0 0 0 1 1 0 0 0 1 d x imm S

Performs a signed right-shift operation. That is, the sign bit of $r0.x is shifted in from
the left.

$r0.d = $r0.x >> [$r0.y|imm];

shru $r0.d = $r0.x, $r0.y

shru $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 1 0 d x y S

0 0 0 1 1 0 0 1 1 d x imm S

Performs an unsigned right-shift operation. That is, zeros are shifted in from the left.

$r0.d = (unsigned int)$r0.x >> [$r0.y|imm];

3.7.3 ALU bitwise instructions

The ρ-VEX ALU supports a subset of bitwise operations in a single cycle.
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and $r0.d = $r0.x, $r0.y

and $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 1 0 d x y S

0 1 1 0 0 0 1 1 1 d x imm S

Performs a bitwise AND operation.

$r0.d = $r0.x & [$r0.y|imm];

andc $r0.d = $r0.x, $r0.y

andc $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 0 0 d x y S

0 1 1 0 0 1 0 0 1 d x imm S

Performs a bitwise AND operation, with the first operand one’s complemented.

$r0.d = ~$r0.x & [$r0.y|imm];

or $r0.d = $r0.x, $r0.y

or $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 0 d x y S

0 1 1 0 1 0 0 1 1 d x imm S

Performs a bitwise OR operation. Notice that OR instructions reduce to move or load
immediate operations when x is set to 0.

$r0.d = $r0.x | [$r0.y|imm];

orc $r0.d = $r0.x, $r0.y

orc $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 0 0 d x y S

0 1 1 0 1 0 1 0 1 d x imm S

Performs a bitwise OR operation, with the first operand one’s complemented. Notice that
ORC instructions reduce to one’s complement when y or imm is set to 0.

$r0.d = ~$r0.x | [$r0.y|imm];

xor $r0.d = $r0.x, $r0.y

xor $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 0 d x y S

0 0 0 1 1 1 1 1 1 d x imm S

Performs a bitwise XOR operation.

Rev. 5cd37f2, ctag z1KS3dj



CHAPTER 3. INSTRUCTION SET ARCHITECTURE C-29

$r0.d = $r0.x ^ [$r0.y|imm];

3.7.4 ALU single-bit instructions

The ρ-VEX ALU supports several bitfield operations in a single cycle. Note that the bit
selection logic follows the same rules as the shift amount in the barrel shifter. That is,
only the least significant byte of the bit selection operand is used to select the bit, the
rest is ignored.

sbit $r0.d = $r0.x, $r0.y

sbit $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 0 d x y S

0 0 1 0 1 1 0 0 1 d x imm S

Sets a given bit in a 32-bit integer.

$r0.d = $r0.x | (1 << [$r0.y|imm]);

sbitf $r0.d = $r0.x, $r0.y

sbitf $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 1 0 d x y S

0 0 1 0 1 1 0 1 1 d x imm S

Clears a given bit in a 32-bit integer.

$r0.d = $r0.x & ~(1 << [$r0.y|imm]);

tbit $r0.d = $r0.x, $r0.y

tbit $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 0 0 0 d x y S

0 1 0 1 1 1 0 0 1 d x imm S

Copies a given bit to an integer register.

$r0.d = ($r0.x & (1 << [$r0.y|imm])) != 0;

tbit $b0.bd = $r0.x, $r0.y

tbit $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 0 1 0 bd x y S

0 1 0 1 1 1 0 1 1 bd x imm S

Copies a given bit to a branch register.

$b0.bd = ($r0.x & (1 << [$r0.y|imm])) != 0;
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tbitf $r0.d = $r0.x, $r0.y

tbitf $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 d x y S

0 1 0 1 1 1 1 0 1 d x imm S

Copies the complement of a given bit to an integer register.

$r0.d = ($r0.x & (1 << [$r0.y|imm])) == 0;

tbitf $b0.bd = $r0.x, $r0.y

tbitf $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 bd x y S

0 1 0 1 1 1 1 1 1 bd x imm S

Copies the complement of a given bit to a branch register.

$b0.bd = ($r0.x & (1 << [$r0.y|imm])) == 0;

3.7.5 ALU boolean instructions

As well as supporting many bitwise operations, the ρ-VEX ALU also supports some
boolean operations in a single cycle. The boolean operations are defined in the same way
as C boolean operations are defined. That is, the value 0 represents false, and any other
value represents true.

andl $r0.d = $r0.x, $r0.y

andl $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 0 0 d x y S

0 1 0 1 1 0 1 0 1 d x imm S

Performs a boolean AND operation and stores the result in an integer register.

$r0.d = $r0.x && [$r0.y|imm];

andl $b0.bd = $r0.x, $r0.y

andl $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 1 0 bd x y S

0 1 0 1 1 0 1 1 1 bd x imm S

Performs a boolean AND operation and stores the result in a branch register.

$b0.bd = $r0.x && [$r0.y|imm];
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orl $r0.d = $r0.x, $r0.y

orl $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 0 0 d x y S

0 1 0 1 1 0 0 0 1 d x imm S

Performs a boolean OR operation and stores the result in an integer register.

$r0.d = $r0.x || [$r0.y|imm];

orl $b0.bd = $r0.x, $r0.y

orl $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 1 0 bd x y S

0 1 0 1 1 0 0 1 1 bd x imm S

Performs a boolean OR operation and stores the result in a branch register.

$b0.bd = $r0.x || [$r0.y|imm];

nandl $r0.d = $r0.x, $r0.y

nandl $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 0 d x y S

0 1 0 1 0 1 0 0 1 d x imm S

Performs a boolean NAND operation and stores the result in an integer register.

$r0.d = !($r0.x && [$r0.y|imm]);

nandl $b0.bd = $r0.x, $r0.y

nandl $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 bd x y S

0 1 0 1 0 1 0 1 1 bd x imm S

Performs a boolean NAND operation and stores the result in a branch register.

$b0.bd = !($r0.x && [$r0.y|imm]);

norl $r0.d = $r0.x, $r0.y

norl $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 1 0 0 d x y S

0 1 0 1 0 1 1 0 1 d x imm S

Performs a boolean NOR operation and stores the result in an integer register.

$r0.d = !($r0.x || [$r0.y|imm]);
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norl $b0.bd = $r0.x, $r0.y

norl $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 1 1 0 bd x y S

0 1 0 1 0 1 1 1 1 bd x imm S

Performs a boolean NOR operation and stores the result in a branch register.

$b0.bd = !($r0.x || [$r0.y|imm]);

3.7.6 ALU compare instructions

The ρ-VEX ALU supports all 32-bit possible integer comparison operations in a single
cycle. The immediate version of CMPNE that writes to a branch register is used to load an
immediate branch register.

cmpeq $r0.d = $r0.x, $r0.y

cmpeq $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 d x y S

0 1 0 0 0 0 0 0 1 d x imm S

Determines whether the first operand is equal to the second operand and stores the result
in an integer register.

$r0.d = $r0.x == [$r0.y|imm];

cmpeq $b0.bd = $r0.x, $r0.y

cmpeq $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 bd x y S

0 1 0 0 0 0 0 1 1 bd x imm S

Determines whether the first operand is equal to the second operand and stores the result
in a branch register.

$b0.bd = $r0.x == [$r0.y|imm];

cmpge $r0.d = $r0.x, $r0.y

cmpge $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 d x y S

0 1 0 0 0 0 1 0 1 d x imm S

Determines whether the first operand is greater than or equal to the second operand and
stores the result in an integer register.

$r0.d = $r0.x >= [$r0.y|imm];
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cmpge $b0.bd = $r0.x, $r0.y

cmpge $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 bd x y S

0 1 0 0 0 0 1 1 1 bd x imm S

Determines whether the first operand is greater than or equal to the second operand and
stores the result in a branch register.

$b0.bd = $r0.x >= [$r0.y|imm];

cmpgeu $r0.d = $r0.x, $r0.y

cmpgeu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 0 d x y S

0 1 0 0 0 1 0 0 1 d x imm S

Determines whether the first operand is greater than or equal to the second operand in
unsigned arithmetic and stores the result in an integer register.

$r0.d = (unsigned int)$r0.x >= (unsigned int)[$r0.y|imm];

cmpgeu $b0.bd = $r0.x, $r0.y

cmpgeu $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1 0 bd x y S

0 1 0 0 0 1 0 1 1 bd x imm S

Determines whether the first operand is greater than or equal to the second operand in
unsigned arithmetic and stores the result in a branch register.

$b0.bd = (unsigned int)$r0.x >= (unsigned int)[$r0.y|imm];

cmpgt $r0.d = $r0.x, $r0.y

cmpgt $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 0 d x y S

0 1 0 0 0 1 1 0 1 d x imm S

Determines whether the first operand is greater than the second operand and stores the
result in an integer register.

$r0.d = $r0.x > [$r0.y|imm];

cmpgt $b0.bd = $r0.x, $r0.y

cmpgt $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 bd x y S

0 1 0 0 0 1 1 1 1 bd x imm S
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Determines whether the first operand is greater than the second operand and stores the
result in a branch register.

$b0.bd = $r0.x > [$r0.y|imm];

cmpgtu $r0.d = $r0.x, $r0.y

cmpgtu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 d x y S

0 1 0 0 1 0 0 0 1 d x imm S

Determines whether the first operand is greater than the second operand in unsigned
arithmetic and stores the result in an integer register.

$r0.d = (unsigned int)$r0.x > (unsigned int)[$r0.y|imm];

cmpgtu $b0.bd = $r0.x, $r0.y

cmpgtu $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 1 0 bd x y S

0 1 0 0 1 0 0 1 1 bd x imm S

Determines whether the first operand is greater than the second operand in unsigned
arithmetic and stores the result in a branch register.

$b0.bd = (unsigned int)$r0.x > (unsigned int)[$r0.y|imm];

cmple $r0.d = $r0.x, $r0.y

cmple $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 0 d x y S

0 1 0 0 1 0 1 0 1 d x imm S

Determines whether the first operand is less than or equal to the second operand and
stores the result in an integer register.

$r0.d = $r0.x <= [$r0.y|imm];

cmple $b0.bd = $r0.x, $r0.y

cmple $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 1 0 bd x y S

0 1 0 0 1 0 1 1 1 bd x imm S

Determines whether the first operand is less than or equal to the second operand and
stores the result in a branch register.

$b0.bd = $r0.x <= [$r0.y|imm];
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cmpleu $r0.d = $r0.x, $r0.y

cmpleu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 d x y S

0 1 0 0 1 1 0 0 1 d x imm S

Determines whether the first operand is less than or equal to the second operand in
unsigned arithmetic and stores the result in an integer register.

$r0.d = (unsigned int)$r0.x <= (unsigned int)[$r0.y|imm];

cmpleu $b0.bd = $r0.x, $r0.y

cmpleu $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 1 0 bd x y S

0 1 0 0 1 1 0 1 1 bd x imm S

Determines whether the first operand is less than or equal to the second operand in
unsigned arithmetic and stores the result in a branch register.

$b0.bd = (unsigned int)$r0.x <= (unsigned int)[$r0.y|imm];

cmplt $r0.d = $r0.x, $r0.y

cmplt $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 d x y S

0 1 0 0 1 1 1 0 1 d x imm S

Determines whether the first operand is less than the second operand and stores the
result in an integer register.

$r0.d = $r0.x <= [$r0.y|imm];

cmplt $b0.bd = $r0.x, $r0.y

cmplt $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 1 0 bd x y S

0 1 0 0 1 1 1 1 1 bd x imm S

Determines whether the first operand is less than the second operand and stores the
result in a branch register.

$b0.bd = $r0.x <= [$r0.y|imm];

cmpltu $r0.d = $r0.x, $r0.y

cmpltu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 0 d x y S

0 1 0 1 0 0 0 0 1 d x imm S
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Determines whether the first operand is less than the second operand in unsigned arith-
metic and stores the result in an integer register.

$r0.d = (unsigned int)$r0.x <= (unsigned int)[$r0.y|imm];

cmpltu $b0.bd = $r0.x, $r0.y

cmpltu $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 1 0 bd x y S

0 1 0 1 0 0 0 1 1 bd x imm S

Determines whether the first operand is less than the second operand in unsigned arith-
metic and stores the result in a branch register.

$b0.bd = (unsigned int)$r0.x <= (unsigned int)[$r0.y|imm];

cmpne $r0.d = $r0.x, $r0.y

cmpne $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 0 0 d x y S

0 1 0 1 0 0 1 0 1 d x imm S

Determines whether the first operand is not equal to the second operand and stores the
result in an integer register.

$r0.d = $r0.x != [$r0.y|imm];

cmpne $b0.bd = $r0.x, $r0.y

cmpne $b0.bd = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 1 0 bd x y S

0 1 0 1 0 0 1 1 1 bd x imm S

Determines whether the first operand is not equal to the second operand and stores the
result in a branch register.

Notice that the immediate version of CMPNE reduces to a load immediate operation for
branch registers when x is zero.

$b0.bd = $r0.x != [$r0.y|imm];

3.7.7 ALU selection instructions

The ρ-VEX ALU has single-cycle instructions for conditional moves and computation of
the minimum and maximum of two integer values.
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slct $r0.d = $b0.bs, $r0.x, $r0.y

slct $r0.d = $b0.bs, $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 bs 0 d x y S

0 0 1 1 1 bs 1 d x imm S

Conditional move.

$r0.d = $b0.bs ? $r0.x : [$r0.y|imm];

slctf $r0.d = $b0.bs, $r0.x, $r0.y

slctf $r0.d = $b0.bs, $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 bs 0 d x y S

0 0 1 1 0 bs 1 d x imm S

Conditional move, with operands swapped with respect to SLCT.
Notice that the immediate version of SLCTF reduces to a move from a branch register

to an integer register when x is 0 and y is 1.

$r0.d = $b0.bs ? [$r0.y|imm] : $r0.x;

max $r0.d = $r0.x, $r0.y

max $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 1 0 d x y S

0 1 1 0 0 1 0 1 1 d x imm S

Computes maximum of the input operands using signed arithmetic.

$r0.d = ($r0.x >= [$r0.y|imm]) : $r0.x ? [$r0.y|imm];

maxu $r0.d = $r0.x, $r0.y

maxu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 0 0 d x y S

0 1 1 0 0 1 1 0 1 d x imm S

Computes maximum of the input operands using unsigned arithmetic.

$r0.d = ((unsigned int)$r0.x >= (unsigned int)[$r0.y|imm]) : $r0.x ? [$r0.y|imm];

min $r0.d = $r0.x, $r0.y

min $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 1 0 d x y S

0 1 1 0 0 1 1 1 1 d x imm S

Computes minimum of the input operands using signed arithmetic.
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$r0.d = ($r0.x <= [$r0.y|imm]) : $r0.x ? [$r0.y|imm];

minu $r0.d = $r0.x, $r0.y

minu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 0 0 d x y S

0 1 1 0 1 0 0 0 1 d x imm S

Computes minimum of the input operands using unsigned arithmetic.

$r0.d = ((unsigned int)$r0.x <= (unsigned int)[$r0.y|imm]) : $r0.x ? [$r0.y|imm];

3.7.8 ALU type conversion instructions

The ρ-VEX ALU is capable of supporting typecasts from 32-bit integers to 16-bit and
8-bit integers in a single cycle.

sxtb $r0.d = $r0.x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 1 0 d x S

Performs sign extension for an 8-bit value.

$r0.d = (char)$r0.x;

sxth $r0.d = $r0.x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 0 0 d x S

Performs sign extension for a 16-bit value.

$r0.d = (short)$r0.x;

zxtb $r0.d = $r0.x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 1 0 d x S

Performs zero extension for an 8-bit value.

$r0.d = (unsigned char)$r0.x;

zxth $r0.d = $r0.x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 0 d x S

Performs zero extension for a 16-bit value.

$r0.d = (unsigned short)$r0.x;
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3.7.9 ALU miscellaneous instructions

nop

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 S

Performs no operation.

clz $r0.d = $r0.x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 0 1 0 d x S

This operations counts the number of leading zeros in the operand. That is, the value
0x80000000 returns 0 and the value 0 returns 32.

unsigned int in = $r0.x;

int out = 32;

while (in) {

in >>= 1;

out--;

}

$r0.d = out;

movtl $l0.0 = $r0.y

movtl $l0.0 = imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 0 y S

0 0 0 0 1 0 1 1 1 imm S

Copies a general purpose register or immediate to the link register.

$l0.0 = [$r0.y|imm];

movfl $r0.d = $l0.0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 d S

Copies the link register to a general purpose register.

$r0.d = $l0.0;

trap $r0.x, $r0.y

trap $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 0 0 0 x y S

1 0 0 1 0 0 0 0 1 x imm S

Software trap. The first parameter is the trap argument, while the second parameter is
the trap cause byte.
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3.7.10 Multiply instructions

ρ-VEX pipelanes may be design-time configured to contain a multiplication unit. This
unit supports 16x16 and 16x32 multiplications.

In the default pipeline configuration, these instructions are pipelined by two cycles.
That is, the result of a multiply instruction is not available yet in the subsequent instruc-
tion.

mpyll $r0.d = $r0.x, $r0.y

mpyll $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 d x y S

0 0 0 0 0 0 0 0 1 d x imm S

Signed 16x16-bit to 32-bit multiplication.

$r0.d = (short)$r0.x * (short)[$r0.y|imm];

mpyllu $r0.d = $r0.x, $r0.y

mpyllu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 d x y S

0 0 0 0 0 0 0 1 1 d x imm S

Unsigned 16x16-bit to 32-bit multiplication.

$r0.d = (unsigned short)$r0.x * (unsigned short)[$r0.y|imm];

mpylh $r0.d = $r0.x, $r0.y

mpylh $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 d x y S

0 0 0 0 0 0 1 0 1 d x imm S

Signed 16x16-bit to 32-bit multiplication, using the high halfword of [$r0.y|imm].

$r0.d = (short)$r0.x * (short)([$r0.y|imm] >> 16);

mpylhu $r0.d = $r0.x, $r0.y

mpylhu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 1 0 d x y S

0 0 0 0 0 0 1 1 1 d x imm S

Unsigned 16x16-bit to 32-bit multiplication, using the high halfword of [$r0.y|imm].

$r0.d = (unsigned short)$r0.x * (unsigned short)([$r0.y|imm] >> 16);
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mpyhh $r0.d = $r0.x, $r0.y

mpyhh $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 0 d x y S

0 0 0 0 0 1 0 0 1 d x imm S

Signed 16x16-bit to 32-bit multiplication, using the high halfword of both operands.

$r0.d = (short)($r0.x >> 16) * (short)([$r0.y|imm] >> 16);

mpyhhu $r0.d = $r0.x, $r0.y

mpyhhu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 1 0 d x y S

0 0 0 0 0 1 0 1 1 d x imm S

Unsigned 16x16-bit to 32-bit multiplication, using the high halfword of both operands.

$r0.d = (unsigned short)($r0.x >> 16) * (unsigned short)([$r0.y|imm] >> 16);

mpyl $r0.d = $r0.x, $r0.y

mpyl $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 0 d x y S

0 0 0 0 0 1 1 0 1 d x imm S

Signed 16x32-bit to 32-bit multiplication. $r0.x is the 32-bit operand, [$r0.y|imm] is the
16-bit operand. The upper 16 bits of the multiplication result are discarded.

$r0.d = (int)$r0.x * (short)[$r0.y|imm];

mpylu $r0.d = $r0.x, $r0.y

mpylu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 1 0 d x y S

0 0 0 0 0 1 1 1 1 d x imm S

Unsigned 16x32-bit to 32-bit multiplication. $r0.x is the 32-bit operand, [$r0.y|imm] is
the 16-bit operand. The upper 16 bits of the multiplication result are discarded.

This operation may be used as a primitive for 32x32-bit to 32-bit multiplication,
computing the partial product of $r0.x and the lower half of [$r0.y|imm]. MPYHS is then
used to compute the other partial product. A final ADD instruction combines the partial
products.

$r0.d = (unsigned int)$r0.x * (unsigned short)[$r0.y|imm];
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mpyh $r0.d = $r0.x, $r0.y

mpyh $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 d x y S

0 0 0 0 1 0 0 0 1 d x imm S

Signed 16x32-bit to 32-bit multiplication. $r0.x is the 32-bit operand, the upper halfword
of [$r0.y|imm] is the 16-bit operand. The upper 16 bits of the multiplication result are
discarded.
$r0.d = (int)$r0.x * (short)([$r0.y|imm] >> 16);

mpyhu $r0.d = $r0.x, $r0.y

mpyhu $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 1 0 d x y S

0 0 0 0 1 0 0 1 1 d x imm S

Unsigned 16x32-bit to 32-bit multiplication. $r0.x is the 32-bit operand, the upper half-
word of [$r0.y|imm] is the 16-bit operand. The upper 16 bits of the multiplication result
are discarded.
$r0.d = (unsigned int)$r0.x * (unsigned short)([$r0.y|imm] >> 16);

mpyhs $r0.d = $r0.x, $r0.y

mpyhs $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 d x y S

0 0 0 0 1 0 1 0 1 d x imm S

Signed 16x32-bit to 32-bit multiplication. $r0.x is the 32-bit operand, the upper halfword
of [$r0.y|imm] is the 16-bit operand. The result is shifted left by 16, discarding the upper
32 bits of the 48-bit result.

This operation may be used as a primitive for 32x32-bit to 32-bit multiplication,
computing the partial product of $r0.x and the upper half of [$r0.y|imm]. MPYLU is then
used to compute the other partial product. A final ADD instruction combines the partial
products.
$r0.d = ((int)$r0.x * (short)[$r0.y|imm]) << 16;

mpylhus $r0.d = $r0.x, $r0.y

mpylhus $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 1 0 0 d x y S

1 0 0 1 0 0 1 0 1 d x imm S

Mixed 16x32-bit to 32-bit multiplication. $r0.x is the 32-bit operand, interpreted as a
signed number. [$r0.y|imm] is the 16-bit operand, interpreted as an unsigned number.
The 48-bit result is shifted right by 32 bits.
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Together with MPYHS, MPYLU, MPYHHS, ADD and ADDCG, a full signed 32x32-bit to 64-bit
multiplication may be realized as follows.

mpylu low1 = op1, op2

mpyhs low2 = op1, op2

;;

mpylhus high1 = op1, op2

mpyhhs high2 = op1, op2

;;

addcg low, carry = <zero>, low1, low2

;;

addcg high, carry = carry, high1, high2

;;

The first two multiply instructions and the first ADDCG compute the low word of the
multiplication and carry bit for the high word. The remaining instructions do the same
for the high part of the result.

$r0.d = ((long long)$r0.x * (short)[$r0.y|imm]) >> 32;

mpyhhs $r0.d = $r0.x, $r0.y

mpyhhs $r0.d = $r0.x, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 1 1 0 d x y S

1 0 0 1 0 0 1 1 1 d x imm S

Signed 16x32-bit to 32-bit multiplication. $r0.x is the 32-bit operand, the upper halfword
of [$r0.y|imm] is the 16-bit operand. The 48-bit result is shifted right by 16 bits.

This syllable is used in conjunction with other multiplication syllables for a 32x32-bit
to 64-bit signed multiplication. Refer to MPYLHUS for more information.

$r0.d = ((long long)$r0.x * (short)[$r0.y|imm]) >> 32;

3.7.11 Memory instructions

Some ρ-VEX pipelanes have a memory unit. The memory unit supports byte, half-
word and word operations. Sign or zero extension is part of the byte and halfword load
instructions.

The addressing mode is always register + immediate. Note that attempts to read
misaligned memory locations will fail with a TRAP_MISALIGNED_ACCESS trap.

In the default pipeline configuration, these instructions are pipelined by two cycles.
That is, the result of a memory load instruction is not available yet in the subsequent
instruction. However, the current cache and core guarantee that a memory write to
address x immediately followed by a memory read from address x returns the newly
written value.
ldw $r0.d = imm[$r0.x]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0 1 d x imm S
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Loads a 32-bit word from memory.
$r0.d = *(int*)($r0.x + imm);

ldh $r0.d = imm[$r0.x]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 1 1 d x imm S

Loads a 16-bit halfword from memory and sign-extends it.
$r0.d = *(short*)($r0.x + imm);

ldhu $r0.d = imm[$r0.x]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 0 1 d x imm S

Loads a 16-bit halfword from memory and zero-extends it.
$r0.d = *(unsigned short*)($r0.x + imm);

ldb $r0.d = imm[$r0.x]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 1 1 d x imm S

Loads a byte from memory and sign-extends it.
$r0.d = *(char*)($r0.x + imm);

ldbu $r0.d = imm[$r0.x]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0 1 d x imm S

Loads a byte from memory and zero-extends it.
$r0.d = *(unsigned char*)($r0.x + imm);

ldw $l0.0 = imm[$r0.x]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 1 x imm S

Loads a word from memory. The result is written to the link register.
$l0.0 = *(int*)($r0.x + imm);

ldbr imm[$r0.x]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 0 1 x imm S

Loads a byte from memory. The result is written to the entire branch register file at
once. This is intended to improve context switching performance somewhat.
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char tmp = *(char*)($r0.x + imm);

$b0.0 = tmp & 1;

$b0.1 = tmp & 2;

$b0.2 = tmp & 4;

$b0.3 = tmp & 8;

$b0.4 = tmp & 16;

$b0.5 = tmp & 32;

$b0.6 = tmp & 64;

$b0.7 = tmp & 128;

stw imm[$r0.x] = $r0.d

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 1 1 d x imm S

Stores a 32-bit word into memory.

*(int*)($r0.x + imm) = $r0.d;

sth imm[$r0.x] = $r0.d

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 0 1 d x imm S

Stores a 16-bit halfword into memory.

*(short*)($r0.x + imm) = $r0.d;

stb imm[$r0.x] = $r0.d

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 d x imm S

Stores a byte into memory.

*(char*)($r0.x + imm) = $r0.d;

stw imm[$r0.x] = $l0.0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 1 x imm S

Store word in memory, from link register.

*(int*)($r0.x + imm) = $l0.0;

stbr imm[$r0.x]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 1 1 x imm S

Store byte in memory, from branch register file.
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char tmp = $b0.0;

tmp |= $b0.1 << 1

tmp |= $b0.2 << 2

tmp |= $b0.3 << 3

tmp |= $b0.4 << 4

tmp |= $b0.5 << 5

tmp |= $b0.6 << 6

tmp |= $b0.7 << 7

*(char*)($r0.x + imm) = tmp

3.7.12 Branch instructions

The highest-indexed pipelane in every ρ-VEX system (i.e., the pipelane that the last
syllable in a bundle maps to) contains a branch unit. This unit supports the flow control
operations outlined below.

Branch offsets are signed immediates relative to the next program counter (PC+1).
Because there are certain alignment requirements to program counters, the lower two
or three bits of the offset are not actually included in the bitfield. Whether this
value is two or three depends on the value of the BRANCH_OFFS_SHIFT constant defined
in core_intIface_pkg.vhd; it is three by default. It must be set to two to support branch-
ing to the start of any bundle when stop bits are fully enabled. This must then also be
updated in the assembler.

Note that branch offsets and the stack adjust immediate are not eligible for long
immediate instructions.
goto offs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 offs S

Branches to PC+1 + offs unconditionally.

PCP1 += offs;

igoto $l0.0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 1 S

Branches to the address in $l0.0 unconditionally. This is used for branches to code that
cannot be reached using the branch offset immediate.

PCP1 = $l0.0;

call $l0.0 = offs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 1 0 offs S

Branches to PC+1 + offs unconditionally, while storing PC+1 in the link register. This is
used for function calls.
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$l0.0 = PCP1;

PCP1 += offs;

icall $l0.0 = $l0.0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 1 1 S

Branches to the address in $l0.0 unconditionally, while storing PC+1 in the link register.
In other words, it essentially swaps PC+1 and $l0.0. This is used for dynamic function calls
or calls to functions that cannot be reached using the branch offset immediate method.

unsigned int tmp = $l0.0;

$l0.0 = PCP1;

PCP1 = tmp;

br $b0.bs, offs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 0 offs bs S

Branches to PC+1 + offs only if $b0.bs is true. This instruction performs no operation if
$b0.bs is false.

PCP1 += $b0.bs ? offs : 0;

brf $b0.bs, offs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 1 offs bs S

Branches to PC+1 + offs only if $b0.bs is false. This instruction performs no operation if
$b0.bs is true.

PCP1 += $b0.bs ? 0 : offs;

return $r0.1 = $r0.1, stackadj, $l0.0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 0 stackadj S

Returns from a function by branching to $l0.0 unconditionally, while adding stackadj

to $r0.1. stackadj is interpreted as a signed immediate. This allows final stack pointer
adjustment and returning to be done with a single syllable.

Notice that this instruction is identical to IGOTO, except for the fact that IGOTO does
not access $r0.1.

$r0.1 += stackadj;

PCP1 = $l0.0;
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rfi $r0.1 = $r0.1, stackadj

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 1 stackadj S

Returns from a trap service routine by branching to CR_TP unconditionally and restoring
CR_SCCR to CR_CCR, while adding stackadj to $r0.1. stackadj is interpreted as a signed
immediate. This allows final stack pointer adjustment and returning to be done with a
single syllable.

$r0.1 += stackadj;

CR_CCR = CR_SCCR;

PCP1 = CR_TP;

stop

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 0 0 S

Causes a TRAP_STOP trap to occur during execution of the next instruction. The TRAP_STOP

trap will cause the B flag in CR_DCR to be set, which will stop execution. Thus, the
processor will be stopped after the bundle in which the STOP instruction resides is executed.

3.7.13 Long immediate instructions

limmh tgt, imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 tgt imm S

This special instruction forwards imm to lane tgt. Actually, only the least significant bit
of tgt is used by the processor, to distinguish between the two possible long immediate
forwarding paths. Refer to Section 3.4.5 for more information.
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Control registers 4
The ρ-VEX processor has two control register files. These are the global control register
file (gbreg) and the context control register file (cxreg).

The gbreg file contains mostly status information, such as a general purpose cy-
cle counter, the current configuration vector and design-time configuration information.
While the debug bus has read/write access to gbreg, the core can only read from it.

For more information, refer to Section 3.2.4.

4.1 Global control registers

The following table lists the global control registers of the ρ-VEX processor. The offsets
listed are with respect to the control register base address. If you are viewing this
manual digitally, you can click the register mnemonics on the right to jump to their
documentation.

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000 R E B RID CR_GSR
0x004 BCRR CR_BCRR
0x008 CC CR_CC
0x00C AF CR_AFF
0x010 CNT CR_CNT
0x014 CNTH CNT CR_CNTH
... Unused

0x0A0 BORROW15 BORROW14 CR_LIMC7
0x0A4 BORROW13 BORROW12 CR_LIMC6
0x0A8 BORROW11 BORROW10 CR_LIMC5
0x0AC BORROW9 BORROW8 CR_LIMC4
0x0B0 BORROW7 BORROW6 CR_LIMC3
0x0B4 BORROW5 BORROW4 CR_LIMC2
0x0B8 BORROW3 BORROW2 CR_LIMC1
0x0BC BORROW1 BORROW0 CR_LIMC0
0x0C0 SYL15CAP SYL14CAP SYL13CAP SYL12CAP CR_SIC3
0x0C4 SYL11CAP SYL10CAP SYL9CAP SYL8CAP CR_SIC2
0x0C8 SYL7CAP SYL6CAP SYL5CAP SYL4CAP CR_SIC1
0x0CC SYL3CAP SYL2CAP SYL1CAP SYL0CAP CR_SIC0
0x0D0 CR_GPS1
0x0D4 MEMAR MEMDC MEMDR MULC MULR ALUC ALUR CR_GPS0
0x0D8 CR_SPS1
0x0DC MEMMC MEMMR MEMDC MEMDR BRC BRR ALUC ALUR CR_SPS0
0x0E0 CR_EXT2
0x0E4 CR_EXT1
0x0E8 T BRK C P O L F CR_EXT0
0x0EC BA NC NG NL CR_DCFG
0x0F0 VER CTAG0 CTAG1 CTAG2 CR_CVER1
0x0F4 CTAG3 CTAG4 CTAG5 CTAG6 CR_CVER0
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Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0F8 COID PTAG0 PTAG1 PTAG2 CR_PVER1
0x0FC PTAG3 PTAG4 PTAG5 PTAG6 CR_PVER0

4.1.1 CR_GSR - Global status register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000 R E B RID CR_GSR
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug 3

This register contains miscellaneous status information.

R flag, bit 31

Reset flag. The entire ρ-VEX processor will be reset when the debug bus writes a one to
this flag. Writing a zero has no effect.

E flag, bit 13

Reconfiguration error flag. This flag is set by hardware when an invalid configuration
was requested. It is cleared once a valid configuration is requested.

B flag, bit 12

Reconfiguration busy flag. While high, reconfiguration requests are ignored.

RID field, bits 11..8

Reconfiguration requester ID. When a configuration is requested, this field is set to the
context ID of the context that requested the configuration, or to 0xF if the request was
from the debug bus. This may be used by the reconfiguration sources to see if they have
won arbitration. Refer to Section 6.2 for more information.

4.1.2 CR_BCRR - Bus reconfiguration request register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x004 BCRR CR_BCRR
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

This register may be written to by the debug bus only. When it is written, a reconfigu-
ration is requested. Refer to Sections 6.1 and 6.2 for more information.
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4.1.3 CR_CC - Current configuration register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x008 CC CR_CC
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug

This register is hardwired to the current configuration vector. Refer to Section 6.1 for
more information.

4.1.4 CR_AFF - Cache affinity register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00C AF CR_AFF
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug

This register stores the cache block index (akin to a lane group) that most recently
serviced an instruction fetch for a given context. This may be used for achieving the
maximum possible instruction cache locality when reconfiguring.

Each nibble represents a lane group. The nibble value is the context index.

4.1.5 CR_CNT - Cycle counter register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x010 CNT CR_CNT
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug

Cycle counter. This register is simply always incremented by one in hardware. Simply
overflows when it reaches 0xFFFFFFFF. Its intended use is to monitor real time. As an
indication, this register overflows approximately every 85 seconds at 50 MHz.

4.1.6 CR_CNTH - Cycle counter register high

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x014 CNTH CNT CR_CNTH
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug

This register extends the CR_CNT register by 24 bits. The low byte is equal to the high byte
of CR_CNT, similar to the performance counters, which allows the same algorithm to be
used in order to read the value. Refer to Section 4.3 for more information. Note however,
that unlike the other performance counters, this register always exists, regardless of the
design-time configured performance counter width.
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4.1.7 CR_LIMCn - Long immediate capability register n

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0A0 BORROW15 BORROW14 CR_LIMC7
0x0A4 BORROW13 BORROW12 CR_LIMC6
0x0A8 BORROW11 BORROW10 CR_LIMC5
0x0AC BORROW9 BORROW8 CR_LIMC4
0x0B0 BORROW7 BORROW6 CR_LIMC3
0x0B4 BORROW5 BORROW4 CR_LIMC2
0x0B8 BORROW3 BORROW2 CR_LIMC1
0x0BC BORROW1 BORROW0 CR_LIMC0

Reset * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Core
Debug

This group of hardwired values represent the supported LIMMH forwarding routes.

BORROW2n+ 1 field, bits 31..16, a.k.a. CR_BORROWi

BORROW2n field, bits 15..0, a.k.a. CR_BORROWi

Each bit in these fields represents a possible LIMMH forwarding route. The bit index within
the field specifies the source syllable index, i.e. the LIMMH syllable; i = (2n, 2n+ 1) is the
index of the syllable that uses the immediate.

As an example, if bit 2 in BORROW4 (CR_LIMC2) is set, it means that the third syllable
in a bundle (index 2) can be a LIMMH instruction that forwards to the fifth syllable in a
bundle (index 4).

For the purpose of generic binaries, the configuration is repeated beyond the number
of physically available lanes.

4.1.8 CR_SICn - Syllable index capability register n

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0C0 SYL15CAP SYL14CAP SYL13CAP SYL12CAP CR_SIC3
0x0C4 SYL11CAP SYL10CAP SYL9CAP SYL8CAP CR_SIC2
0x0C8 SYL7CAP SYL6CAP SYL5CAP SYL4CAP CR_SIC1
0x0CC SYL3CAP SYL2CAP SYL1CAP SYL0CAP CR_SIC0

Reset 0 0 0 0 * * * 1 0 0 0 0 * * * 1 0 0 0 0 * * * 1 0 0 0 0 * * * 1

Core
Debug

This group of hardwired values represent the capabilities of each syllable within a bundle.

SYL4n+ 3CAP field, bits 31..24, a.k.a. CR_SYLiCAP

SYL4n+ 2CAP field, bits 23..16, a.k.a. CR_SYLiCAP
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SYL4n+ 1CAP field, bits 15..8, a.k.a. CR_SYLiCAP

SYL4nCAP field, bits 7..0, a.k.a. CR_SYLiCAP

Each bit within the field represents a functional unit or resource that is available to
syllable index i within a bundle. The following encoding is used.

Bit index Function
0 Always set, indicated that ALU class syllables are supported.
1 If set, multiplier class syllables are supported.
2 If set, memory class syllables are supported.
3 If set, branch class syllables and syllables with stop bits are supported.
4..7 Always zero, reserved for future expansion.

For the purpose of generic binaries, the configuration is repeated beyond the number of
physically available lanes.

4.1.9 CR_GPS1 - General purpose register delay register B

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0D0 CR_GPS1
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug

This register is reserved for future expansion.

4.1.10 CR_GPS0 - General purpose register delay register A

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0D4 MEMAR MEMDC MEMDR MULC MULR ALUC ALUR CR_GPS0
Reset 0 0 0 0 * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Core
Debug

This register lists the key pipeline stages in which the core appears to read from and write
to the general purpose register file. Forwarding is taken into consideration, so the core
may not actually write to the register file in the listed stages, but from the perspective
of the software it seems to.

From these values, the required number of bundles between an instruction that writes
to a general purpose register and an instruction that reads from one can be determined,
being stagecommit − stageread − 1.

MEMAR field, bits 27..24

Hardwired to the stage in which the memory unit appears to read its address operands
from the general purpose registers.
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MEMDC field, bits 23..20

Hardwired to the stage in which the memory unit appears to commit the data loaded
from memory to the general purpose registers.

MEMDR field, bits 19..16

Hardwired to the stage in which the memory unit appears to read the data to be stored
to memory from the general purpose registers.

MULC field, bits 15..12

Hardwired to the stage in which the multiplier appears to commit its result to the general
purpose registers.

MULR field, bits 11..8

Hardwired to the stage in which the multiplier appears to read its operands from the
general purpose registers.

ALUC field, bits 7..4

Hardwired to the stage in which the ALU appears to commit its result to the general
purpose registers.

ALUR field, bits 3..0

Hardwired to the stage in which the ALU appears to read its operands from the general
purpose registers.

4.1.11 CR_SPS1 - Special delay register B

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0D8 CR_SPS1
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug

This register is reserved for future expansion.

4.1.12 CR_SPS0 - Special delay register A

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0DC MEMMC MEMMR MEMDC MEMDR BRC BRR ALUC ALUR CR_SPS0
Reset * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Core
Debug

This register serves a similar purpose as CR_GPS0, but instead of being only for the general
purpose registers, these values represents the delay for branch registers, the link register
and memory.
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MEMMC field, bits 31..28

Hardwired to the stage in which the memory unit actually commits the data from a store
instruction to memory.

MEMMR field, bits 27..24

Hardwired to the stage in which the memory unit actually reads the data for a load
operation from memory.

MEMDC field, bits 23..20

Hardwired to the stage in which the memory unit appears to commit the data loaded
from memory to the link and branch registers.

MEMDR field, bits 19..16

Hardwired to the stage in which the memory unit appears to read the data to be stored
to memory from the link and branch registers.

BRC field, bits 15..12

Hardwired to the stage in which the branch unit appears to commit the new program
counter. This thus represents the number of branch delay slots. The next instruction is
requested in stage 1 and its PC is forwarded combinatorially, thus the number of branch
delay slots is BRC − 2. Note that the ρ-VEX processor does not actually execute its
branch delay slots; it is invalidated when a branch is taken.

BRR field, bits 11..8

Hardwired to the stage in which the branch unit appears to read its operands from the
branch and link registers.

ALUC field, bits 7..4

Hardwired to the stage in which the ALU appears to commit its result to the branch and
link registers.

ALUR field, bits 3..0

Hardwired to the stage in which the ALU appears to read its operands from the branch
and link registers.

4.1.13 CR_EXT2 - Extension register 2

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0E0 CR_EXT2
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug
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This register is reserved for future expansion.

4.1.14 CR_EXT1 - Extension register 1

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0E4 CR_EXT1
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug

This register is reserved for future expansion.

4.1.15 CR_EXT0 - Extension register 0

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0E8 T BRK C P O L F CR_EXT0
Reset 0 0 0 0 * * * * 0 0 0 0 * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 * * *

Core
Debug

This register contains flags that specify the supported extensions and quirks of the pro-
cessor as per its design-time configuration.

T flag, bit 27

Defines whether the trace unit is available. The trace unit has its own capability flags in
CR_DCR2.

BRK field, bits 26..24

Defines the number of available hardware breakpoints.

C flag, bit 19

If set, cache-related performance counters exist.

P field, bits 18..16

This field represents the size in bytes of all performance counters except CR_CNT, which is
always 64-bit. Refer to Section 4.3 for more information.

O flag, bit 2

This flag determines the unit in which the branch offset field is encoded. When this flag
is cleared, the branch offset is encoded in 8-byte units. When it is set, the branch offset
is encoded in 4-byte units.

L flag, bit 1

This flag is set when register $r0.63 is mapped to $l0.0, to allow arithmetic to be
performed on the link register directly. If it is cleared, these registers are independent.
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F flag, bit 0

This flag is set when forwarding is enabled.

4.1.16 CR_DCFG - Design-time configuration register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0EC BA NC NG NL CR_DCFG
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * * * * * * * * * * * * * * *

Core
Debug

This register is hardwired to the key parameters that define the size of the processor,
such as the number of pipelanes and the number of contexts.

BA field, bits 15..12

Specifies the minimum bundle alignment necessary. Specified as the alignment size in 32-
bit words minus 1. For example, if this value is 7, each bundle must start on a 128-byte
boundary, as (7 + 1) · 32 = 128.

NC field, bits 11..8

Number of hardware contexts supported, minus one.

NG field, bits 7..4

Number of pipelane groups supported, minus one. This determines the degree of re-
configurability. Together with NC, it fully specifies the number of valid configuration
words.

NL field, bits 3..0

Number of pipelanes in the design, minus one.

4.1.17 CR_CVER1 - Core version register 1

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0F0 VER CTAG0 CTAG1 CTAG2 CR_CVER1
Reset 0 0 1 1 0 0 1 1 0 * * * * * * * 0 * * * * * * * 0 * * * * * * *

Core
Debug

This register specifies the major version of the processor and, together with CR_CVER0, a
7-byte ASCII core version identification tag.

VER field, bits 31..24, a.k.a. CR_CVER

Specifies the major version number of the ρ-VEX processor in ASCII. This will most
likely always be ’3’.
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CTAG0 field, bits 23..16, a.k.a. CR_CTAG

First ASCII character in a string of seven characters, which together identify the core
version, similar to how a license plate identifies a car. It is intended that a database will
be set up which maps each tag to an immutable archive containing the source code for
the core and a mutable errata/notes file.

4.1.18 CR_CVER0 - Core version register 0

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0F4 CTAG3 CTAG4 CTAG5 CTAG6 CR_CVER0
Reset 0 * * * * * * * 0 * * * * * * * 0 * * * * * * * 0 * * * * * * *

Core
Debug

Refer to CR_CVER1 for more information.

4.1.19 CR_PVER1 - Platform version register 1

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0F8 COID PTAG0 PTAG1 PTAG2 CR_PVER1
Reset * * * * * * * * 0 * * * * * * * 0 * * * * * * * 0 * * * * * * *

Core
Debug

This register specifies the processor index within a platform and, together with CR_PVER0,
uniquely identifies the platform using a 7-byte ASCII idenfitication tag.

COID field, bits 31..24, a.k.a. CR_COID

Unique processor identifier within a multicore platform.

PTAG0 field, bits 23..16, a.k.a. CR_PTAG

First ASCII character in a string of seven characters, which together identify the platform
and bit file, similar to how a license plate identifies a car. It is intended that a database
will be set up which maps each tag to an immutable archive containing the source code
for the platform, synthesis logs and a bit file, as well as mutable memory.map, rvex.h and
errata/notes files.

4.1.20 CR_PVER0 - Platform version register 0

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0FC PTAG3 PTAG4 PTAG5 PTAG6 CR_PVER0
Reset 0 * * * * * * * 0 * * * * * * * 0 * * * * * * * 0 * * * * * * *

Core
Debug

Refer to CR_PVER1 for more information.
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4.2 Context control registers

The following table lists the context control registers of the ρ-VEX processor. The offsets
listed are with respect to the control register base address. If you are viewing this
manual digitally, you can click the register mnemonics on the right to jump to their
documentation.

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x200 CAUSE BRANCH K C B R I CR_CCR
0x204 ID K C B R I CR_SCCR
0x208 LR CR_LR
0x20C PC CR_PC
0x210 TH CR_TH
0x214 PH CR_PH
0x218 TP CR_TP
0x21C TA CR_TA
0x220 BR0 CR_BR0
0x224 BR1 CR_BR1
0x228 BR2 CR_BR2
0x22C BR3 CR_BR3
0x230 D J I E R S B CAUSE BR3 BR2 BR1 BR0 CR_DCR
0x234 RESULT TRCAP T M R C I E CR_DCR2
... Unused

0x240 CRR CR_CRR
0x244 Unused

0x248 WCFG CR_WCFG
0x24C RUN S CR_SAWC
0x250 SCRP1 CR_SCRP1
0x254 SCRP2 CR_SCRP2
0x258 SCRP3 CR_SCRP3
0x25C SCRP4 CR_SCRP4
0x260 RSC CR_RSC
0x264 CSC CR_CSC
0x268 RSC1 CR_RSC1
0x26C CSC1 CR_CSC1
0x270 RSC2 CR_RSC2
0x274 CSC2 CR_CSC2
0x278 RSC3 CR_RSC3
0x27C CSC3 CR_CSC3
0x280 RSC4 CR_RSC4
0x284 CSC4 CR_CSC4
0x288 RSC5 CR_RSC5
0x28C CSC5 CR_CSC5
0x290 RSC6 CR_RSC6
0x294 CSC6 CR_CSC6
0x298 RSC7 CR_RSC7
0x29C CSC7 CR_CSC7
... Unused

0x300 CYC3 CYC2 CYC1 CYC0 CR_CYC
0x304 CYC6 CYC5 CYC4 CYC3 CR_CYCH
0x308 STALL3 STALL2 STALL1 STALL0 CR_STALL
0x30C STALL6 STALL5 STALL4 STALL3 CR_STALLH
0x310 BUN3 BUN2 BUN1 BUN0 CR_BUN
0x314 BUN6 BUN5 BUN4 BUN3 CR_BUNH
0x318 SYL3 SYL2 SYL1 SYL0 CR_SYL
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Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x31C SYL6 SYL5 SYL4 SYL3 CR_SYLH
0x320 NOP3 NOP2 NOP1 NOP0 CR_NOP
0x324 NOP6 NOP5 NOP4 NOP3 CR_NOPH
0x328 IACC3 IACC2 IACC1 IACC0 CR_IACC
0x32C IACC6 IACC5 IACC4 IACC3 CR_IACCH
0x330 IMISS3 IMISS2 IMISS1 IMISS0 CR_IMISS
0x334 IMISS6 IMISS5 IMISS4 IMISS3 CR_IMISSH
0x338 DRACC3 DRACC2 DRACC1 DRACC0 CR_DRACC
0x33C DRACC6 DRACC5 DRACC4 DRACC3 CR_DRACCH
0x340 DRMISS3 DRMISS2 DRMISS1 DRMISS0 CR_DRMISS
0x344 DRMISS6 DRMISS5 DRMISS4 DRMISS3 CR_DRMISSH
0x348 DWACC3 DWACC2 DWACC1 DWACC0 CR_DWACC
0x34C DWACC6 DWACC5 DWACC4 DWACC3 CR_DWACCH
0x350 DWMISS3 DWMISS2 DWMISS1 DWMISS0 CR_DWMISS
0x354 DWMISS6 DWMISS5 DWMISS4 DWMISS3 CR_DWMISSH
0x358 DBYPASS3 DBYPASS2 DBYPASS1 DBYPASS0 CR_DBYPASS
0x35C DBYPASS6 DBYPASS5 DBYPASS4 DBYPASS3 CR_DBYPASSH
0x360 DWBUF3 DWBUF2 DWBUF1 DWBUF0 CR_DWBUF
0x364 DWBUF6 DWBUF5 DWBUF4 DWBUF3 CR_DWBUFH

4.2.1 CR_CCR - Main context control register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x200 CAUSE BRANCH K C B R I CR_CCR
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

The primary purpose of the context control register is to store the primary control flags
of the processor, for example whether interrupts are enabled. In addition, it also stores
the trap cause and exposes the branch register file to the debug bus.

CAUSE field, bits 31..24, a.k.a. CR_TC

Trap cause. Set to the trap cause by hardware when the trap handler is called. Reset
to 0 by hardware when an RFI instruction is encountered. Read-write by the debug bus,
but the processor cannot write to this register.

BRANCH field, bits 23..16, a.k.a. CR_BR

Branch register file. Contains the current state of the branch registers. Only intended
for use by the debug bus to see and modify the state of the branch register file. While
the core is running, accessing this register is undefined due to it being dependent on the
pipeline and forwarding state.

K field, bits 9..8

This register selects between kernel mode and user mode. Kernel mode is activated when
the core is reset and when entering the trap or panic handlers. These must thus always
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point to code in hardware memory space. When RFI is executed, the state is restored
from CR_SCCR.

In kernel mode, the register reads as 01, while in user mode, it reads as 10. The only
way to enter user mode is by writing the user mode command to CR_SCCR and subsequently
executing RFI. Neither the core nor the debug bus can write to this field directly.

Currently, the status of the kernel mode flag has no effect on the ρ-VEX. However,
it is intended that this register will be used in the future for memory protection and/or
security features. In particular, the reason that this flag can only be set by entering a
trap and cleared by executing RFI, is that both of these mechanisms can be configured
to do a full pipeline flush, which allows this flag to control whether address translation
is enabled or disabled.

C field, bits 7..6

This register controls whether the context switch trap is enabled. It does not exist on
hardware context 0. When the core is reset or the trap service routine is entered, the
context switch trap is disabled. When RFI is executed, the state is restored from CR_SCCR.

When the context switch trap is enabled, this register reads as 01. When it is disabled,
it reads as 10. Both the core and the debug bus can write to this register. Writing 00 has
no effect, writing 01 enables the context switching trap, writing 10 disables it and writing
11 toggles the state. This prevents the need for read-modify-write operations.

Refer to CR_RSC for more information.

B field, bits 5..4

This register controls whether breakpoints are enabled in self-hosted debug mode. Its
value is ignored in external debug mode. When the core is reset or the trap service routine
is entered due to a debug trap in self-hosted debug mode, breakpoints are disabled. When
RFI is executed, the state is restored from CR_SCCR.

When breakpoints are enabled, this register reads as 01. When they are disabled, it
reads as 10. Both the core and the debug bus can write to this register. Writing 00 has
no effect, writing 01 enables debug traps, writing 10 disables them and writing 11 toggles
the state. This prevents the need for read-modify-write operations.

R field, bits 3..2

This register, named ready-for-trap, tentatively specifies if the processor is currently
capable of servicing traps. However, since traps cannot be masked, any trap that occurs
while ready-for-trap is cleared will cause a panic. Therefore, the only thing this register
does in hardware is switch between the trap handler and panic handler address. When
the core is reset or the trap service routine is entered, ready-for-trap is cleared. When
RFI is executed, the state is restored from CR_SCCR.

When ready-for-trap is set (trap handler selected), this register reads as 01. When it
is cleared (panic handler selected), it reads as 10. Both the core and the debug bus can
write to this register. Writing 00 has no effect, writing 01 sets ready-for-trap, writing 10

Rev. 5cd37f2, ctag z1KS3dj



C-62 APPENDIX C. ρ-VEX USER MANUAL

clears it and writing 11 toggles the state. This prevents the need for read-modify-write
operations.

I field, bits 1..0

This register selects whether external interrupts are enabled or not. When the core is
reset or the trap service routine is entered, external interrupts are disabled. When RFI is
executed, the state is restored from CR_SCCR.

When interrupts are enabled, this register reads as 01. When they are disabled, it
reads as 10. Both the core and the debug bus can write to this register. Writing 00 has
no effect, writing 01 enables external interrupts, writing 10 disables them and writing 11

toggles the state. This prevents the need for read-modify-write operations.

4.2.2 CR_SCCR - Saved context control register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x204 ID K C B R I CR_SCCR
Reset * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0

Core 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3

This register saves the state of the primary control flags of the processor when entering
the trap service routine. When RFI is executed, the state is restored from this register.
In addition, this register contains the context ID, which contexts may read to identify
themselves.

ID field, bits 31..24, a.k.a. CR_CID

This field is hardwired to the context index. Programs running on the ρ-VEX processor
may use this field to determine which hardware context they are running on.

Note that CR_CID is not unique in a multi-processor system. If a unique processor ID
is needed in such a case, CR_COID should be used as well.

K field, bits 9..8

When the trap service routine is entered, this register stores whether kernel the processor
was in kernel mode or user mode. When RFI is executed, the state is set to this value.

Unlike the kernal mode field in CR_CCR, this field can be written. Writing 00 has no
effect, writing 01 selects kernel mode, writing 10 selects user mode and writing 11 toggles
the state. This prevents the need for read-modify-write operations. Read behavior is
identical to the K field in CR_CCR.

C field, bits 7..6

When the trap service routine is entered, this register stores whether the context switching
trap was enabled. When RFI is executed, the state is set to this value.

Core and debug bus access behavior is identical to the C field in CR_CCR.
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B field, bits 5..4

When the trap service routine is entered, this register stores whether self-hosted debug
breakpoints were enabled. When RFI is executed, the state is set to this value.

Core and debug bus access behavior is identical to the B field in CR_CCR.

R field, bits 3..2

When the trap service routine is entered, this register stores whether ready-for-trap was
set. When RFI is executed, the state is set to this value.

Core and debug bus access behavior is identical to the R field in CR_CCR.

I field, bits 1..0

When the trap service routine is entered, this register stores whether interrupts were
enabled. When RFI is executed, the state is set to this value.

Core and debug bus access behavior is identical to the I field in CR_CCR.

4.2.3 CR_LR - Link register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x208 LR CR_LR
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Contains the current link register ($l0.0) value. Only intended for use by the debug bus.
While the core is running, accessing this register is undefined due to it being dependent
on the pipeline and forwarding state.

4.2.4 CR_PC - Program counter

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x20C PC CR_PC
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Contains the current program counter. Only intended for use by the debug bus. When
the register is written by the debug bus, the jump flag in CR_DCR is set, to ensure that the
branch unit properly jumps to the new PC. This works even if the processor is running.

4.2.5 CR_TH - Trap handler

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x210 TH CR_TH
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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Contains the address of the trap service routine. This is where the processor will jump
to if a trap occurs while ready-for-trap in CR_CCR is set. Even if the design contains an
MMU, this should be a hardware address, as the MMU is disabled when a trap occurs.

4.2.6 CR_PH - Panic handler

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x214 PH CR_PH
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Contains the address of the panic service routine. This is where the processor will jump
to if a trap occurs while ready-for-trap in CR_CCR is NOT set. Even if the design contains
an MMU, this should be a hardware address, as the MMU is disabled when a trap occurs.

The difference between the trap and panic service routines, is that the trap service
routine has all state information of the processor at its disposal. That is, if the trap
is recoverable, the program can continue after the trap service routine completes. The
panic service routine, however, should assume that the state information of the processor
is incomplete. Refer to Section 5 for more information.

4.2.7 CR_TP - Trap point

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x218 TP CR_TP
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

When a trap occurs, this register is set to the address of the start of the offending bundle.
The address is in user space if the MMU was enabled when the trap occured. In addition,
when RFI is executed, the processor will jump back to this address to resume execution.
This is the correct behavior for both external interrupts and traps that, after servicing,
should return to the previously offending instruction, such as a page fault.

To support software context switching, the processor may write to this register to
change the resumption address. RFI will then cause execution to be resumed in the new
software context, assuming the rest of the processor state has been swapped in as well.

4.2.8 CR_TA - Trap argument

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x21C TA CR_TA
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core
Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

When a trap occurs, this register is set to the trap argument. The significance of this
value depends on the trap, which can be identified from the trap cause field in CR_CCR.
Refer to Section 5 for more information.
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4.2.9 CR_BRn - Breakpoint n

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x220 BR0 CR_BR0
0x224 BR1 CR_BR1
0x228 BR2 CR_BR2
0x22C BR3 CR_BR3

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

These registers hold the addresses for the hardware breakpoints and/or watchpoints.
These registers only exist up to how many break-/watchpoints are design-time configured
to be supported by the processor. The functionality of the breakpoints is configured in
CR_DCR. These registers are always writable by the debug bus, but they are only writable
by the core when the E flag is cleared, i.e. when self-hosted debug mode is selected.

4.2.10 CR_DCR - Debug control register 1

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x230 D J I E R S B CAUSE BR3 BR2 BR1 BR0 CR_DCR
Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3

This register controls the debugging system of the ρ-VEX processor.

D flag, bit 31

Done/reset flag. This bit is set by hardware when a STOP instruction is encountered. It
is cleared when a one is written to the R or S flags.

In addition, when a one is written to this flag, the control register file for this context
is completely reset, as if the external context reset signal was asserted. Writing a zero
has no effect. When combined with writing a one to the external debug flag, the core
starts in external debug mode, and when combined with writing a one to B or the S
flag, the core will stop execution before any instruction is executed, allowing the user
to single-step from the start of the program. This works because I, E, S and B are not
affected by a context reset.

Note that breakpoint information will have to be reloaded when the context is reset
using this method.

J flag, bit 30

This bit is set by hardware when the debug bus writes to the PC register and is cleared
when the processor jumps to it. It can thus be used as an acknowledgement flag for
jumping. The flag is read only.

I flag, bit 28

Internal debug flag. Complement of the external debug flag. When the debug bus writes
a one to this flag, the external debug flag is cleared, giving the processor control over
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debugging. Writing a zero has no effect. This flag is not affected by a context reset; it is
only reset when the entire core is reset.

E flag, bit 27

External debug flag. Complement of the internal debug flag. When the debug bus writes
a one to this flag, the external debug flag is set, enabling external debug mode. Writing
a zero has no effect. This flag is not affected by a context reset; it is only reset when the
entire core is reset.

While in external debug mode, debug traps cause the B flag to be set and the trap
cause to be recorded in CR_DCR instead of the normal registers. This thus allows an external
debugger to handle the debug traps instead, even if the processor is in the middle of a
trap service routine and is not even ready for a trap. Writing a one to the R or the S
flag is the equivalent of RFI for the external debugging system.

R flag, bit 26

Resume flag. When the debug bus writes a one to this flag, the B flag is cleared, causing
the processor to resume execution if it was halted. Writing a zero has no effect; this flag
is cleared by hardware when the first instruction is successfully fetched. It can thus be
used as an acknowledgement flag for resuming execution.

In addition, debug traps are disabled for instructions that were fetched while this flag
was set. This behavior allows the processor to step beyond the breakpoint that caused
the processor to break, so there is no need to disable the triggered breakpoint in order
to resume. This behavior is also used for single stepping; see below.

S flag, bit 25

Step flag. This flag may be set by the debug bus by writing a one to it. Doing so will also
cause the R flag to be set and the B flag to be cleared, causing the processor to resume
execution if it was halted. Writing a zero has no effect. The processor can also set this
flag, but only if the E flag is cleared, i.e., if the processor is in self-hosted debug mode.
This flag is not affected by a context reset; it is only reset when the entire core is reset.

While set, any instruction will cause a step debug trap. However, as noted above, all
debug traps are disabled for the first instruction fetched after execution resumes. They
should also be disabled while in the trap service routine through the breakpoint enable
field in CR_CCR. This allows both an external debugger and the self-hosted debug system
to single-step.

B flag, bit 24

Break flag. When this flag is set, the context stops fetching instructions and flushes the
pipeline, as it would if the external run signal is low or if a reconfiguration is pending.
It effectively halts execution. This flag is not affected by a context reset; it is only reset
when the entire core is reset.
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This flag may be set by the debug bus by writing a one to it, in order to pause
execution. Writing a zero has no effect. In addition, the flag is set by hardware when a
debug trap occurs while the E flag is set and when a STOP instruction is executed.

CAUSE field, bits 23..16, a.k.a. CR_DCRC

Trap cause for debug traps that should be handled by the external debug system. This
is set to the debug trap cause by hardware when the B flag is set due to a debug trap.
It is cleared when a one is written to resume or step, and set to 0x01 if a one is written
to the B flag.

BR3 field, bits 13..12

Breakpoint 3 control field. This field only exists if the core is design-time configured to
support all four hardware breakpoints. See also BR0.

BR2 field, bits 9..8

Breakpoint 2 control field. This field only exists if the core is design-time configured to
support at least three hardware breakpoints. See also BR0.

BR1 field, bits 5..4

Breakpoint 1 control field. This field only exists if the core is design-time configured to
support at least two hardware breakpoints. See also BR0.

BR0 field, bits 1..0

Breakpoint 0 control field. This field only exists if the core is design-time configured to
support at least one hardware breakpoint.

The core can only write to BRn fields when the E flag is cleared, i.e. when self-hosted
debug mode is selected. The encoding for the fields is as follows.

BRn = 00: breakpoint/watchpoint disabled.
BRn = 01: breakpoint enabled.
BRn = 10: data write watchpoint enabled.
BRn = 11: data read/write watchpoint enabled.

4.2.11 CR_DCR2 - Debug control register 2

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x234 RESULT TRCAP T M R C I E CR_DCR2
Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 * * * * * 0 0 * 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3

This register controls the trace unit, if the core is design-time configured to support
tracing. It also contains an 8-bit scratchpad register for communicating an execution
result to the debug system.
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RESULT field, bits 31..24, a.k.a. CR_RET

This field does not have a hardwired function. It is intended to be used to communicate
the reason for executing a STOP instruction to the debug system. The default _start.s file
will write the main() return value to this register before stopping.

TRCAP field, bits 15..8

This field lists the tracing capabilities of the core. The bit indices in this byte correspond
to the bit indices in the control byte (the least significant byte of CR_DCR2). If a bit is
high, the feature is available.

T flag, bit 7

Setting this bit enables trap tracing if the E flag is set and the core is design-time
configured to support it.

M flag, bit 6

Setting this bit enables memory/control register tracing if the E flag is set and the core
is design-time configured to support it.

R flag, bit 5

Setting this bit enables register write tracing if the E flag is set and the core is design-time
configured to support it.

C flag, bit 4

Setting this bit enables cache performance tracing if the E flag is set and the core is
design-time configured to support it.

I flag, bit 3

Setting this bit causes all fetched instructions to be traced if the E flag is set and the
core is design-time configured to support it.

E flag, bit 0

Setting this bit enables tracing if the core is design-time configured to support it. If no
other bits are set, only branch origins and destinations are traced.

4.2.12 CR_CRR - Context reconfiguration request register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x240 CRR CR_CRR
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug
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This register may be written to by the core only. When it is written, a reconfiguration is
requested. Refer to Section 6 for more information.

4.2.13 CR_WCFG - Wakeup configuration

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x248 WCFG CR_WCFG
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug

This register only exists on context 0. This configuration register is used in conjunction
with the S flag in CR_SAWC. Refer to Section 6.3 for more information.

4.2.14 CR_SAWC - Sleep and wake-up control register

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x24C RUN S CR_SAWC
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3

This register only exists on context 0. This register contains special control features for
sleeping (reconfiguring to a configuration with all lane groups disabled) and waking up
other hardware contexts.

RUN field, bits 7..1

This field contains a bit for every other context, i.e., not all of these bits will be available
if the core is not configured to support all eight hardware contexts. When reading this
register, each bit represents the ones complement of the B flag in CR_DCR for each other
context. Writing a one to a bit is equivalent to writing a one to the R flag in CR_DCR for
each other context.

A scheduler running on context 0 may use this feature, combined with an interrupt
controller that triggers an interrupt when the done output for any other context has a
rising edge, to support task yielding for cooperative scheduling. A yield will then be
equivalent to a STOP instruction, which will thus trigger an interrupt for the scheduler.
The scheduler may then switch out the software context and subsequently restart the
hardware context using these flags.

S flag, bit 0

Sleep flag. This enables or disables the sleep and wake-up system. Refer to Section 6.3
for more information.
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4.2.15 CR_SCRPn - Scratchpad register n

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x250 SCRP1 CR_SCRP1
0x254 SCRP2 CR_SCRP2
0x258 SCRP3 CR_SCRP3
0x25C SCRP4 CR_SCRP4

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Scratch pad registers. May be used at the discretion of the application and/or debug
system.

4.2.16 CR_RSC - Requested software context

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x260 RSC CR_RSC
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

This register does not exist on context 0. It is hardwired to RSCn in hardware context 0,
and represents the software context that should be loaded into our hardware context, if
it is not already loaded. The encoding of the register is at the user’s discretion, but it is
intended that this points to a memory region that contains the to be loaded context.

The contents of this register may also be written by hardware context 0 through RSCn,
which is expected to run the scheduler. When this value does not equal the value in CSC

and context switching is enabled in CR_CCR, the TRAP_SOFT_CTXT_SWITCH trap is caused. Refer
to its documentation in Section 5 for more information.

4.2.17 CR_CSC - Current software context

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x264 CSC CR_CSC
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

This register does not exist on context 0. It is hardwired to CSCn in hardware context 0.
The value in this register should be set to the value in CR_RSC by the TRAP_SOFT_CTXT_SWITCH

trap.
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4.2.18 CR_RSCn - Requested swctxt on hwctxt n

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x268 RSC1 CR_RSC1
0x270 RSC2 CR_RSC2
0x278 RSC3 CR_RSC3
0x280 RSC4 CR_RSC4
0x288 RSC5 CR_RSC5
0x290 RSC6 CR_RSC6
0x298 RSC7 CR_RSC7

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Core 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

This register only exists on context 0, and only if the core is design-time configured to
support hardware context n. This register is hardwired to CR_RSC in hardware context n.
Refer to CR_RSC for more information.

4.2.19 CR_CSCn - Current swctxt on hwctxt n

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x26C CSC1 CR_CSC1
0x274 CSC2 CR_CSC2
0x27C CSC3 CR_CSC3
0x284 CSC4 CR_CSC4
0x28C CSC5 CR_CSC5
0x294 CSC6 CR_CSC6
0x29C CSC7 CR_CSC7

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Core
Debug

This register only exists on context 0, and only if the core is design-time configured to
support hardware context n. This register is hardwired to CR_CSC in hardware context n.
Refer to CR_CSC for more information.

4.2.20 CR_CYC - Cycle counter

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x300 CYC3 CYC2 CYC1 CYC0 CR_CYC
0x304 CYC6 CYC5 CYC4 CYC3 CR_CYCH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments every cycle while an instruction from this context
is in the pipeline, even when the context is stalled.

Refer to Section 4.3 for more information about the structure of performance counters.
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4.2.21 CR_STALL - Stall cycle counter

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x308 STALL3 STALL2 STALL1 STALL0 CR_STALL
0x30C STALL6 STALL5 STALL4 STALL3 CR_STALLH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments every cycle while an instruction from this context
is in the pipeline and the context is stalled. As long as neither CR_CYC nor CR_STALL have
overflowed, CR_CYC - CR_STALL represents the number of active cycles.

Refer to Section 4.3 for more information about the structure of performance counters.

4.2.22 CR_BUN - Committed bundle counter
Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x310 BUN3 BUN2 BUN1 BUN0 CR_BUN
0x314 BUN6 BUN5 BUN4 BUN3 CR_BUNH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments whenever the results of executing a bundle are
committed. As long as neither CR_CYC, CR_STALL nor CR_BUN have overflowed, CR_CYC -
CR_STALL - CR_BUN represents the number of cycles spent doing pipeline flushes, for example
due to traps or the branch delay slot.

Refer to Section 4.3 for more information about the structure of performance counters.

4.2.23 CR_SYL - Committed syllable counter

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x318 SYL3 SYL2 SYL1 SYL0 CR_SYL
0x31C SYL6 SYL5 SYL4 SYL3 CR_SYLH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments whenever the results of executing a non-NOP syllable
are committed. As long as neither CR_BUN nor CR_SYL have overflowed, CR_SYL / CR_BUN

represents average instruction-level parallelism since the registers were cleared.
Refer to Section 4.3 for more information about the structure of performance counters.

4.2.24 CR_NOP - Committed NOP counter
Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x320 NOP3 NOP2 NOP1 NOP0 CR_NOP
0x324 NOP6 NOP5 NOP4 NOP3 CR_NOPH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments whenever a NOP syllable is committed. As long as
neither CR_SYL nor CR_NOP have overflowed, CR_SYL / (CR_SYL + CR_NOP) represents average
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fraction of syllables that are NOP, i.e. the compression efficiency of the binary.
Refer to Section 4.3 for more information about the structure of performance counters.

4.2.25 CR_IACC - Instruction cache access counter

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x328 IACC3 IACC2 IACC1 IACC0 CR_IACC
0x32C IACC6 IACC5 IACC4 IACC3 CR_IACCH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments for every instruction cache access.
Refer to Section 4.3 for more information about the structure of performance counters.

4.2.26 CR_IMISS - Instruction cache miss counter

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x330 IMISS3 IMISS2 IMISS1 IMISS0 CR_IMISS
0x334 IMISS6 IMISS5 IMISS4 IMISS3 CR_IMISSH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments every time there is a miss in the instruction cache.
Refer to Section 4.3 for more information about the structure of performance counters.

4.2.27 CR_DRACC - Data cache read access counter

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x338 DRACC3 DRACC2 DRACC1 DRACC0 CR_DRACC
0x33C DRACC6 DRACC5 DRACC4 DRACC3 CR_DRACCH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments every time there is a read access to the data cache.
Refer to Section 4.3 for more information about the structure of performance counters.

4.2.28 CR_DRMISS - Data cache read miss counter

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x340 DRMISS3 DRMISS2 DRMISS1 DRMISS0 CR_DRMISS
0x344 DRMISS6 DRMISS5 DRMISS4 DRMISS3 CR_DRMISSH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments every time there is a read miss in the data cache.
Refer to Section 4.3 for more information about the structure of performance counters.
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4.2.29 CR_DWACC - Data cache write access counter
Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x348 DWACC3 DWACC2 DWACC1 DWACC0 CR_DWACC
0x34C DWACC6 DWACC5 DWACC4 DWACC3 CR_DWACCH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments every time there is a write access to the data cache.
Refer to Section 4.3 for more information about the structure of performance counters.

4.2.30 CR_DWMISS - Data cache write miss counter
Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x350 DWMISS3 DWMISS2 DWMISS1 DWMISS0 CR_DWMISS
0x354 DWMISS6 DWMISS5 DWMISS4 DWMISS3 CR_DWMISSH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments every time there is a write miss in the data cache.
Refer to Section 4.3 for more information about the structure of performance counters.

4.2.31 CR_DBYPASS - Data cache bypass counter

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x358 DBYPASS3 DBYPASS2 DBYPASS1 DBYPASS0 CR_DBYPASS
0x35C DBYPASS6 DBYPASS5 DBYPASS4 DBYPASS3 CR_DBYPASSH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments every time there is a bypassed access to the data
cache.

Refer to Section 4.3 for more information about the structure of performance counters.

4.2.32 CR_DWBUF - Data cache write buffer counter
Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x360 DWBUF3 DWBUF2 DWBUF1 DWBUF0 CR_DWBUF
0x364 DWBUF6 DWBUF5 DWBUF4 DWBUF3 CR_DWBUFH

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core 3 3 3 3 3 3 3 3

Debug 3 3 3 3 3 3 3 3

This performance counter increments every time the cache has to wait for the write buffer
to flush in order to process the current request.

Refer to Section 4.3 for more information about the structure of performance counters.

4.3 Performance counter registers

All performance counters share the same nontrivial 64-bit structure, representing up to
56 bits worth of counter data. The actual size is design-time configurable using the CFG
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vector, and may be read from field P in CR_EXT0.
Each performance counter may be reset independently by writing an even value to

the low register. Alternatively, all context-specific performance counters may be reset at
the same time by writing an odd number to one of the performance counter low registers.

64-bit reads cannot be performed atomically in the ρ-VEX. Therefore, reliably reading
the performance counters when they are configured to be larger than a 32-bit word is
impossible to do in general, without additional hardware.

Typically, a holding register is implemented for either the low or the high word, which
is loaded at the exact same time the other word is read. While this is fine in a single-
processor environment, a multiprocessor environment would need such a holding register
for each processor separately. To make matters worse, this holding register would also
need to be saved and restored when a software context is swapped out. This makes this
solution more trouble than it’s worth.

In the ρ-VEX, this problem is not avoided completely, but it is mitigated. Each
counter is limited to seven bytes, and the middle byte is mirrored by both the low and
high register if the counter is larger than a 32-bit word. This permits the following
algorithm for a semi-reliable performance counter read.

/**

* Loads a 40-bit, 48-bit or 56-bit performance counter value. Do not use this

* when the counter size is set to 32-bit!

*/

uint64_t read_counter(

volatile uint32_t *low,

volatile uint32_t *high

) {

// Perform the read.

uint32_t l = *low;

uint32_t h = *high;

// Check if the counters have overflowed.

if (l >> 24) != (h & 0xFF) {

// There was an overflow, so clear the low value.

l = 0;

}

// Combine the values and return.

return ((uint64_t)h << 24) | l;

}

Note that this algorithm will not work when the counters are configured to be 32 bits
wide. In this case the high word register is intentionally not implemented in order to
save hardware, which means that the overflow check will not work properly.

The algorithm assumes that the value is monotonously increasing. This is true for all
performance counters as long as it is impossible for them to be reset during the read. As
long as there was no 32-bit overflow during the read, the returned value will always be
a counter value between what is was when low was read and what it was when high was
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read. If there was such an overflow, there is a small chance (1/256 if the added value
during the read would be uniformly distributed) that the returned value is slightly higher
than what the counter value was when high was read.

As an example, the worst case scenario is that the counter is at 0xFFFFFF when
low is read (l = 0xFFFFFF), and at 0x100000000 when high is read (h = (l = 0x100).
This will result in 0x100FFFFFF being returned, or about 0.4% too much. This is,
however, completely insignificant compared to the jitter which may be expected in the
value when such a delay is possible between the two reads. It would require an extremely
long interrupt service routine or software context switch happening at exactly the wrong
time, and when such things are going on in the background.
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Traps and interrupts 5
There are many systems in a processor that need to be able to interrupt normal program
flow. For instance, an external interrupt may be requested, or a problem occured while
trying to load a word from memory, such as a page fault. The naming conventions for
such interruptions varies from processor to processor; in the ρ-VEX processor all such
interruptions are called traps. The word ‘interrupt’ is reserved for the special trap that
deals with external interrupts, i.e. asynchronous signals from outside the core. The word
‘fault’ is used to refer to traps that signal that an instruction could not be executed.

5.1 Trap sources

There are roughly six sources of traps in the ρ-VEX processor, which are handled in
slightly different ways.

• Faults. A fault signals that an instruction could not be executed for some reason.
They are always handled by the processor by jumping to the trap or panic handler.
With the exception of page faults, these traps are usually non-recoverable, leading
to abnormal termination of the executing task in an operating system environment,
or the STOP instruction to be called in a bare-metal environment.

• Interrupts. The ρ-VEX processor core has an interface for an interrupt controller.
When an interrupt is requested and interrupts are enabled through the I flag in
CR_CCR, a TRAP_EXT_INTERRUPT trap will be generated. This trap causes the processor
to jump to the trap or panic handler.

• Context switch request. When the values in CR_RSC and CR_CSC do not match and
the context switching system is enabled by means of the the C flag in CR_CCR, a
TRAP_SOFT_CTXT_SWITCH trap will be generated. This trap causes the processor to
jump to the trap or panic handler.

• Breakpoints/debug traps. When a hardware or software breakpoint is hit while
breakpoints are enabled through the B flag in CR_CCR, the processor will generate a
debug trap. Debug traps can be handled in two ways, depending on the E and I
flags in CR_DCR. When the I flag is set (this is the default), the traps will be handled
as any other trap, i.e. by jumping to the trap or panic handler. However, when
the E flag is set, the context will simply halt, and write the trap cause to the cause
field in CR_DCR. This allows an external debugging system to handle the breakpoints
instead of the processor itself. In addition, debug traps are disabled for every first
instruction executed after returning from a trap handler or restarting the context,
allowing either to jump over breakpoints.
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• TRAP instructions. The TRAP instruction can be used to emulate any trap. If the
cause maps to a debug trap, it is handled exactly as a debug trap, allowing it to
be used as a software breakpoint. Otherwise, it is handled like a fault.

• STOP instructions. A STOP instruction halts the core by generating a TRAP_STOP trap
during execution of the subsequent instruction. The TRAP_STOP trap is always han-
dled by stopping the hardware context. In addition, the D flag in CR_DCR is set and
the done output signal for the stopped hardware context is asserted.

5.2 Trap and panic handlers

As stated above, most traps are handled by jumping to the so-called trap or panic han-
dler. These handlers are simply subroutines that typically end with either a RFI or STOP

instruction. They should be pointed to by the CR_TH and CR_PH control registers; it is up
to the initialization code to set up these links.

The hardware switches between the trap and panic handlers based on the R flag in
CR_CCR. The only hardware difference between them is that this flag always switches to the
panic handler upon servicing a trap, such that a trap that immediately follows another
trap will always be handled by the panic handler.

The tentative difference between the two trap handlers is that one should attempt to
jump back to the application (or alternatively, in the case of an operating system, kill
the current process with the appropriate signal and context switch to another thread),
and the other should not. The necessity of such a difference can be best illustrated with
a simple example.

Consider a program that has just been trapped due to an interrupt. The first course
of action in handling a trap must always be to save the state of the running program, so
the trap cause and argument registers can be examined. Now consider that it is possible
for these context-saving memory accesses to cause, say, a misaligned memory access, due
to a programming error. A regular trap handler may in theory try to recover from the
fault by emulating the faulting instruction and then jumping over it. However, if it would
do so, the trap point, cause and argument control registers of the original interrupt trap
will have been overwritten with the misaligned memory access. This data was simply lost
when the second trap occured; there is no way around this. Thus, the program cannot
continue.

Through the dual handler system as implemented in the ρ-VEX processor, the first
trap will be handled by the regular trap handler. Upon jumping to this trap handler, the
processor will automatically clear the ready-for-trap flag, such that the second trap will
be handled by the panic handler.

What it comes down to, is that the trap handler may try to recover from a fault,
handle an interrupt or breakpoint, etc., while the panic handler should simply display or
log an error message if it can, and then stop execution or reset. The regular trap handler
may also want to jump to the panic handler if it is posed with a fault trap that it cannot
recover from.
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5.3 Trap identification

In the ρ-VEX processor, traps are identified not by the address that the processor
branches to (as there are only two of these addresses, as described in the previous sec-
tion), but by the trap cause (CR_TC) and trap argument (CR_TA) control registers. The
former stores an 8-bit value that identifies the cause of the trap. The latter is a 32-bit
register whose significance depends on the trap cause.

The list below documents the trap causes as currently defined in the processor, and
the significance of the trap argument. Note, however, that a TRAP instruction may emulate
any of these traps with any argument.

• TRAP_NONE = 0x00

Trap cause 0 is reserved to indicate normal operation. When an RFI instruction
is executed, the trap cause register (cause field in CR_CCR) will be reset to 0, so an
external debug system can always determine what a program is doing, unless nested
traps are utilized.

• TRAP_INVALID_OP = 0x01

This trap is generated by hardware in the following conditions.

– An unknown opcode is encountered.

– The stop bit was set such that the next bundle would start on an address
violating the minimum design-time configured bundle alignment.

– A branch opcode is encountered in a pipelane that does not have an active
branch unit.

– A memory opcode is encountered in a pipelane that is not design-time config-
ured to include a memory unit.

– A multiplier opcode is encountered in a pipelane that is not design-time con-
figured to include a multiplier.

The trap argument is set to the lane index that caused the trap.

• TRAP_MISALIGNED_BRANCH = 0x02

This trap is generated by hardware when a branch to a misaligned address is re-
quested. The trap argument is set to the branch target.

• TRAP_FETCH_FAULT = 0x03

This trap is generated by hardware when an instruction fetch resulted in a bus
fault. The trap argument is unused; the program counter can be determined from
the trap point.

• TRAP_MISALIGNED_ACCESS = 0x04

This trap is generated by hardware when a misaligned memory access was re-
quested. That is, a 32-bit word access was attempted with an address that is not
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divisible by four, or a 16-bit word access was attempted with an odd address. The
trap argument is set to the requested memory address.

• TRAP_DMEM_FAULT = 0x05

This trap is generated by hardware when a data memory access resulted in a bus
fault. The trap argument is set to the requested memory address.

• TRAP_LIMMH_FAULT = 0x06

This trap is generated by hardware under the following conditions.

– A LIMMH instruction is trying to forward to a lane for which no route is available
in the core. Note that only the least significant bit of the target lane is actually
checked, though. In this case, the trap argument is the index of the lane with
the LIMMH instruction.

– Two LIMMH instructions are trying to forward to the same lane. In this case,
the trap argument is the index of the target lane.

– A LIMMH instruction is attempting to forward to a syllable that is not using an
immediate. In this case, the trap argument is also the index of the target lane.

• TRAP_EXT_INTERRUPT = 0x07

This trap is generated by hardware when the external interrupt request line is
asserted while interrupts are enabled by means of the I flag in CR_CCR. When the
trap service routine is entered, the state of the external interrupt ID signal is saved
as the trap argument in CR_TA, and in the same cycle, the interrupt is acknowledged.
This ensures that the interrupt ID presented to the trap service routine always
matches the acknowledged interrupt.

There is a delay between the core registering that the external interrupt request
line is asserted and generating the trap, and the actual entering of the trap service
routine. This delay is due to the pipeline flush required to do this, and is in
the order of a couple cycles; compared to actually servicing a trap this delay is
negligible. However, if it is ever possible that an active interrupt is disabled before
it is acknowledged by the core, it is possible that the core will enter the trap service
routine due to an interrupt that was disabled before it could be handled. In this
case, the interrupt controller should provide the core with an otherwise reserved
interrupt ID indicating that there was no interrupt. The trap service routine should
handle this special interrupt ID as no-operation.

• TRAP_STOP = 0x08

This trap is generated by hardware in the instruction immediately following a STOP

instruction. It is handled in a completely different way than the other traps are;
the hardware will not jump to CR_TH or CR_PH. Instead, the D and B flags in CR_DCR

are set, thus stopping execution, and the program counter is set to the trap point.
This allows an external debugging or control system to resume processing after the
stop trap by simply writing a one to the R flag in CR_DCR.
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• TRAP_SOFT_CTXT_SWITCH = 0x09

This trap is generated by hardware when the contents of CR_RSC differ from CR_CSC

while this trap is enabled using the C flag in CR_CCR. The intended use of this trap
is to allow hardware context 0 to control software context switching on the other
hardware contexts. When used in this way, the trap service routine for this trap
should perform the following tasks.

– If CR_CSC 6= -1, save the current context to the memory identified by CR_CSC.

– Set CR_CSC to CR_RSC.

– Restore the software context identified by CR_RSC from memory.

The way in which CR_RSC and CR_CSC identify the software context to be exchanged
is up to the operating system code.

• TRAP_SOFT_DEBUG_0 = 0xF8

• TRAP_SOFT_DEBUG_1 = 0xF9

• TRAP_SOFT_DEBUG_2 = 0xFA

These traps are never generated by hardware, but are intended to be used as soft
breakpoints using the TRAP instruction. That is, the debug system may override one
of the syllables in a any bundle where a breakpoint is desired with a TRAP syllable.
It may return control to the application by reverting the TRAP syllable back into the
original syllable. If it is not the intention of the debugger to disable the breakpoint,
it may single step over the instruction at the breakpoint, and then replace the TRAP

syllable.

Unlike the other undefined traps (which may be used as arbitrary software traps),
these traps behave like hardware debug traps. That is, they will be handled by
halting the core if the core is in external debug mode (i.e. the E flag in CR_DCR is
set). This means that an external debugger can also use this system to support an
arbitrary number of breakpoints.

Likewise, disabling breakpoints using the B flag in CR_CCR will prevent even the TRAP

instruction from actually generating a trap.

• TRAP_STEP_COMPLETE = 0xFB

This trap is generated by hardware whenever the S flag in CR_DCR is set while de-
bug traps are enabled. This allows the debug system to single-step. Refer to the
documentation of CR_DCR for more information.

• TRAP_HW_BREAKPOINT_0 = 0xFC

• TRAP_HW_BREAKPOINT_1 = 0xFD

• TRAP_HW_BREAKPOINT_2 = 0xFE
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• TRAP_HW_BREAKPOINT_3 = 0xFF

These traps are generated by hardware when the corresponding hardware break-
point or watchpoint is hit while debug traps are enabled.

5.4 State saving and restoration

Upon entering a trap, it is mostly up to the software to save and restore the processor
state. Specifically, the software must ensure that the state of the general purpose registers,
branch registers and the link register is as it was when the trap handler was entered when
the RFI instruction is executed. The hardware will handle saving and restoration of the
context control flags in CR_CCR and the program counter, as both of these are modified
immediately when entering the trap handler. CR_CCR is saved in and restored from CR_SCCR,
the program counter is saved in and restored from CR_TP.

Aside from restoring the state of the currently running task, an operating system
environment may also wish to restore the state of a different task. In this case, the
complete state of a task is defined by the contents of the general purpose register file, the
branch register file, the link register, the program counter (to be accessed using CR_TP)
and the context control register (to be accessed using CR_SCCR).
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The process in which the ρ-VEX processor switches between one large core and more
smaller cores is called reconfiguration. Reconfigurations may be requested by the software
running on the processor or the debugging interface by writing the requested configuration
to a control register. The reconfiguration controller will then temporarily stop all contexts
that will be affected by the reconfiguration, commit the new configuration, and (re)start
any contexts that are part of the new configuration but are currently stopped.

6.1 Configuration word encoding

A configuration is described by means of a single register at most 32-bits in size. The
actual size depends on the design-time configuration of the core; in particular, the number
of lane groups and the number of contexts.

In the configuration word, each nibble (group of 4 bits, represented by a single hex-
adecimal digit) maps to a lane group. The nibble signifies the context that is to be run
on that lane group. Disabling a lane group to save power is also possible, by selecting
‘context’ eight. This will never map to an actual context, as the maximum amount of
hardware contexts supported by the design-time configuration system is also eight, and
numbering starts at zero.

Obviously, not all 4.2 billion 32-bit values represent valid configurations. Configura-
tion words must adhere to the following rules.

• The nibbles for existing pipelane groups may be set to either zero through the
number of hardware contexts minus one to select a context, or eight to disable the
pipelane group. For instance, the configuration word 0x7777 is illegal on an ρ-VEX
processor that does not support eight hardware contexts. Configuration words like
0x9999 are reserved for future configurations, such as fault tolerant duplicate and
triplicate modes.

• The nibbles for non-existant pipelane groups must be set to zero. For instance, the
configuration word 0x88880000 is illegal for an ρ-VEX processor that is design-time
configured to only support 4 lane groups, even though it may make more sense than
the configuration word that was probably the intention here, which is simply zero.

• Any context may only be mapped to a power-of-two of contiguous pipelane groups.
For instance, configuration words 0x1118 and 0x1231 are illegal, because the map-
ping for context 1 violates these rules.

• A set of pipelane groups mapped to a single context must be aligned. Mathe-
matically, the index of the first pipelane group in the set must be divisible by the
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cardinality of the set. For instance, the configuration word 0x0112 is illegal, because
the mapping for context 1 is improperly aligned.

The reconfiguration controller will ensure that a configuration word is valid before com-
mitting it to the processor. If an invalid configuration is requested, the E flag in CR_GSR

is set and the request is otherwise ignored.

6.2 Requesting a reconfiguration

There are three ways in which a reconfiguration can be requested.

• Writing to the CR_CRR context control register from a program running on the core.
This section primarily deals with this mechanism.

• Writing to the CR_BCRR global control register from the debug bus. This mechanism
is equivalent to the first, except it is triggered from outside the core.

• Using the sleep and wake-up system, as described in Section sec:core-ug-reconf-saw.

Usually, when a reconfiguration is requested, the new configuration will be committed
within something in the order of tens of cycles, depending on how long it takes the
reconfiguration controller to pause the affected contexts. However, a reconfiguration may
also be rejected, either another context or the bus is requesting a new configuration
simultaneously and arbitration is lost, or because the requested configuration is invalid.
The following C function correctly deals with arbitration, and performs a best-effort
attempt at detecting errors without using locks implemented in software.

/**

* Requests a reconfiguration. Returns 1 if reconfiguration was successful,

* -1 if the requested configuration is invalid or 0 if it is not known

* whether the configuration was valid or not.

*/

int reconfigure(unsigned int newConfiguration) {

// Extract our own context ID from the register file, which we will use

// to check if we won arbitration or not.

int ourselves = CR_CID;

// Used to store the ID of the winning context after the request.

int winner;

// Retry requesting the new configuration until we win arbitration.

do {

// Request the new configuration.

CR_CRR = newConfiguration.

// Load the GSR register for state information.

gsr = CR_GSR;

// Extract the reconfiguration requester ID field from GSR.
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int winner = (gsr & CR_GSR_RID_MASK) >> CR_GSR_RID_BIT;

} while (winner != ourselves);

// Busy-wait for reconfiguration to complete.

while (gsr & CR_GSR_B_MASK) {

gsr = CR_GSR;

}

// If our context is still the one that was the last to request a

// reconfiguration, the error flag in GSR is also meant for us. If not,

// there is no way to tell if the configuration we requested was valid

// or not.

if (((gsr & CR_GSR_RID_MASK) >> CR_GSR_RID_BIT) != ourselves) {

return 0;

}

// If the error flag is set, return -1.

if (gsr & CR_GSR_E_MASK) {

return -1;

}

// Reconfiguration was successful.

return 1;

}

6.3 Sleep and wake-up system

The sleep and wake-up system refers to two context control registers that only exist
on context zero, through which the processor can be set up to automatically request
a reconfiguration when the interrupt request input of context zero is asserted. More
specifically, the wakeup system will activate when all of the following conditions are met.

• The S flag in CR_SAWC is set.

• An interrupt is pending on context 0.

• Context 0 is not already active in the current configuration.

• There is no reconfiguration in progress.

When activated, the following actions are performed.

• A reconfiguration to the configuration stored in CR_WCFG is requested.

• CR_WCFG is set to the old configuration.

• The S flag in CR_SAWC is cleared.

This system may be used to save power that is otherwise wasted in an idle loop, or to im-
prove interrupt latency by dedicating hardware context zero to only handling interrupts.
These use cases are described below.
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6.3.1 Power saving

To conserve power, the user may want to switch to a configuration where all pipelane
groups are idle until an interrupt occurs. This is called sleeping. On an FPGA this is
merely a proof of concept, but in an ASIC the amount of power that might be saved by
clock gating or powering down the computational resources may be very significant. To
go to sleep, the program should take the following steps.

1. If other hardware contexts were running other tasks in parallel to context zero,
which may be in a state in which the processor should not sleep, first request these
tasks to pause gracefully. If necessary, request a reconfiguration to configuration
zero, as described in Section 6.2. to disable all contexts except for context zero.

2. Disable interrupts using the I field in CR_CCR.

3. If necessary, ensure that no interrupt occured before interrupts were disabled that
should cause the processor to stay awake. If this did happen, take the appropriate
actions, such as re-enabling interrupts, before attempting to sleep again.

4. Copy CR_CC, the current configuration, to CR_WCFG, the wake-up configuration. This
is an easy way to ensure that CR_WCFG will not contain an invalid configuration.
Writing to CR_WCFG also sets the S flag in CR_SAWC to enable the wake-up system.

5. Request a reconfiguration to the configuration where all pipelane groups are dis-
abled, for instance 0x8888 on a core that is design-time configured to have four
pipelane groups, as described in Section 6.2.

6. Busy-loop until the S flag in CR_SAWC is cleared. This ensures that the program will
not continue until after the processor has finished sleeping.

7. Enable interrupts using the I field in CR_CCR to service the interrupt. The fact that
this is not done automatically also allows the interrupt request input to simply be
used as a wake-up input in a simple system where no interrupts exist.

6.3.2 Decreasing interrupt latency

To decrease interrupt latency, context zero may be used as a dedicated context for ser-
vicing interrupts. This prevents the context zero trap handler from having to save and
restore the state of the processor as it was before the interrupt trap, as this information
is not relevant. The other hardware contexts may be used to run the main program; the
reconfiguration system is then used for hardware context switching.

To initialize this system, the program should do the following in context zero.

1. Set up links to the trap and panic handlers for context 0 in CR_TH and CR_PH.

2. Copy CR_CC, the current configuration, to CR_WCFG, the wake-up configuration. This
is an easy way to ensure that CR_WCFG will not contain an invalid configuration.
Writing to CR_WCFG also sets the S flag in CR_SAWC to enable the wake-up system.
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3. Request a reconfiguration as described in Section 6.2, to, for instance, 0x1111, if
the main program is to run in hardware context 1.

4. Busy-loop until the S flag in CR_SAWC is cleared. This ensures that the program will
not continue until after the first interrupt is requested.

5. Set ready-for-trap and enable interrupts using the R and I fields in CR_CCR to service
the interrupt.

6. Busy-loop forever to wait for the interrupt to be serviced.

The other contexts can initialize in the usual manner. The context 0 trap handler should
do the following.

1. Perform body of the regular trap handling tasks, i.e., everything except for saving
and restoring the context and executing RFI.

2. Set ready-for-trap and enable interrupts using the R and I fields in CR_CCR to quickly
service the next interrupt if one is already pending. Clear ready-for-trap and disable
interrupts in the next cycle again; one cycle is enough for an interrupt to be handled.

3. Store the contents of CR_WCFG in a temporary register.

4. Copy CR_CC, the current configuration, to CR_WCFG, the wake-up configuration. This
is an easy way to ensure that CR_WCFG will not contain an invalid configuration.
Writing to CR_WCFG also sets the S flag in CR_SAWC to enable the wake-up system.

5. Request a reconfiguration to the configuration as stored in the temporary register,
as described in Section 6.2.

6. Busy-loop until the S flag in CR_SAWC is cleared. This ensures that the program will
not continue until after the first interrupt is requested.

7. Set ready-for-trap and enable interrupts using the R and I fields in CR_CCR to service
the interrupt.

8. Busy-loop forever to wait for the interrupt to be serviced.
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Debugging ρ-VEX software 7
There are two main approaches to debugging the ρ-VEX processor. This chapter doc-
uments the external debugger approach. In this approach, a computer is connected to
the ρ-VEX is used to debug the processor and the software running on it. The computer
is connected to the ρ-VEX using some interface, usually a serial port in the case of the
ρ-VEX. The alternative approach is called self-hosted debug, where the debugger runs
on the ρ-VEX itself in order to debug another thread. However, this approach requires
a sophisticated multithreading operating system, such as a Linux kernel with the ptrace

system call implemented for the ρ-VEX. Although the hardware should be ready for such
a system, the software for it has not yet been implemented.

7.1 Setting up

The connection between the computer and the ρ-VEX is called the debug link. Currently,
the following options exist.

• A serial port, through the ρ-VEX debug support peripheral.

• PCI express, developed in [8].

• Memory mapped on a Zynq FPGA, running Linaro Linux with rvsrv on the em-
bedded ARM processor. The debug commands may be given in Linaro, or rvd can
connect to the Zynq development board using ethernet.

Which connections are supported depends on the platform. The serial port option is
available in all hardware platforms except for zed-almarvi. The PCI express connection is
supported in addition to the the serial link by ml605-grlib to allow faster memory access.
zed-almarvi only supports the memory-mapped option.

Whichever platform you use, you need to execute the following commands in a console
from the root directory of the platform you are using to set up the debugging environment.

make debug

source debug

The first command generates a script called ‘debug’ that sets up environment variables
to allow you to use rvd. The second command runs that script. The next step depends
on whether the FPGA board is connected to your machine (Section 7.3) or to another
machine (Section 7.2). In the latter case, you need to be able to ssh to that machine.
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7.2 Connecting to a remote machine

To connect to the remote machine, we will use ssh to forward two TCP/IP ports. You
can do this by running the following command in a second terminal (you will need to
keep it running), obviously replacing <user@host> with the computer you are connecting
to and your account name on that computer.

ssh -N -L 21078:localhost:21078 -L 21079:localhost:21079 <user@host>

Note that you will not drop to a terminal on the remote computer as ssh normally does. It
will appear like it is not doing anything after requesting your password (if required). You
can test the connection by running rvd ? in the original terminal. If that does not crash
with the message Failed to connect to rvsrv, you are ready to move on to Section 7.4.
Otherwise, ssh is not working, or more likely, rvsrv is not running on the remote machine.
In the latter case, you can try to start it yourself by ssh’ing to the machine normally and
following the steps in 7.3. If that does not work, you will have to ask the owner of the
machine for help.

7.3 Connecting to the FPGA

This section assumes that you are using a serial port debug link. The PCI express
connection is more complicated to set up due to the drivers required. If you are using
the Zedboard, refer to the separate documentation in the zed-almarvi platform.

If this is the first time you are connecting to the FPGA, open the following file in a
text editor.

<rvex-rewrite>/tools/debug-interface/configuration.cfg

If this file does not exist, create it by copying default-configuration.cfg from the src

directory. This file describes the interfaces that the debug server (rvsrv) will connect to
or expose. The relevant configuration key is SERIAL_PORT, which needs to be set to the tty

corresponding to the serial port.
When that has been configured, the debug server can be started in the terminal in

which we have sourced the debug script using the following command.

make server

You can now test the connection to the ρ-VEX by running rvd ?.

7.4 Running programs

The procedure for uploading and running a program differs from platform to platform,
but usually, the following three commands will work.

make upload-<program>

make start-<program>

make run-<program>
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The difference between them is that upload only uploads the program to the ρ-VEX
without starting it, start uploads and then starts the program, and run also waits for
completion and prints the performance counter values. Usually, running make without
parameters will (among other things) print a list of the available programs.

7.5 Debugging programs

The standard and recommended way to send debug commands to the ρ-VEX is to use
rvd. All documentation for using rvd is embedded inside the program: just run rvd help.
To get command specific documentation, use rvd help <command>.

rvd has builtin commands for halting, resuming, single stepping, resetting execution
and printing the current state of the processor, in addition to the raw memory access
commands. More complicated things, such as breakpoints, need to be set manually by
accessing the control registers of the ρ-VEX. You do not have to remember the control
register addresses by heart though; you can use the control register names without CR_

prefix directly.
rvd has a concept of contexts. By default, the debug interface for context 0 is used.

To select a different context, you can either specify the context using the -c command
line parameter (for example, rvd -c3 resume) or you can set it for future commands using
the rvd select command. In addition to specifying a single context, you can also specify
a range of contexts (<from>..<to> or all contexts (all). When more than one context is
selected, rvd will simply execute the given command for all selected contexts sequentially.

An alternative to rvd’s interface, the gdb port can be used. In this case, the following
command should be used.

rvd gdb -- <path_to_gdb> [parameters passed to gdb]

This runs gdb as a child process to rvd. The appropriate parameters are passed to gdb

to have it connect to rvd using the remote serial protocol, in addition to the parameters
specified on the command line. A description of how to use the ρ-VEX gdb port is beyond
the scope of this manual.

7.6 Tracing execution

The ρ-VEX can be configured at design time to include a trace unit. This allows the
hardware to output a stream of data describing everything that the processor is doing at
various levels of detail. rvd supports tracing using the following command.

rvd trace <output_file> [level_of_detail] [condition]

When executed, rvd writes the specified level of detail or 1 by default to the trace control
byte in CR_DCR2. It then resumes execution on the selected contexts and reads data from
the trace buffer. Tracing stops when the specified condition evaluates to 0, or when no
more data is available if no condition is specified.

Terminating a trace with ctrl+c is not recommended, because it prevents rvd from
resetting the trace control byte and emptying the trace buffer. To terminate a trace
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gracefully when no condition is specified and the program is stuck in a loop, run rvd

break in a separate terminal. This will make rvd trace assume that the program has
finished executing.

rvd trace dumps the raw trace data to a file. This file can be converted to a human
readable format using the rvtrace tool. If a disassembly file generated using objdump -d is
specified in addition to the binary trace file, the disassembled instructions will be included
in the trace output file.

Please note that the human readable trace files are much larger than the binary data
format. It may thus take some time and a lot of disk space to generated the human
readable file. You may want to pipe the output of rvtrace to less instead, so the output
will only be saved in memory.
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The ρ-VEX core is design-time configured by means of two different systems: the VHDL
generics passed to the toplevel core entity and the configuration scripts.

VHDL generics

VHDL generics are used to configure the most important metrics of the core, such as
the issue width, the degree of reconfigurability, the functional unit distribution, and
complexity of the debug support system. Refer to Section 9.2.2.1 for more information
about what exactly the generics control.

Because the generics are specified per instantiation of the core, it is possible to have
differently configured ρ-VEX cores in a single design. This allows for heterogeneous
multicore systems.

The values of the generics are represented as read-only registers in the global control
register file in a generic way. The registers are designed such that future additions to
the core are unlikely to require restructuring the existing registers, making them forward
compatible. In addition, they are structured such that it is easy to extract information
from the data, usually even by visually inspecting the hexadecimal values. The global
control registers are described in detail in Section 4.1.

Configuration scripts

The ‘configuration scripts’ refer to a set of Python scripts residing in the config directory
in the root of the ρ-VEX repository. When run by calling make in the root of the config

directory, these scripts read a set of configuration and template files, to generate various
sources in the repository. These sources vary from key VHDL sources for the ρ-VEX
core, to memory map headers for rvd and the build system, to the LaTeX source files
for this very document. The philosophy is that this not only makes it easier to change
key components of the core, but that it should also stimulate developers to keep the
documentation up-to-date, without the primary source for documentation needing to be
comments in the VHDL sources.

The configuration scripts control the following processor features.

• Global and context control register file functionality, memory map and documen-
tation (Section 8.1).

• Instruction set encoding and documentation, as well as assembly syntax (Sec-
tion 8.2).

• Pipeline configuration of the ρ-VEX core (Section 8.3).
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• Trap decoding and documentation (Section 8.4).

Each feature is controlled by a set of LaTeX-like files and/or key-value configuration
files. These LaTeX-like files are not intended to be processed by anything other than the
scripts — they cannot be processed by LaTeX directly. The only reason for their syntax
to be derived from LaTeX is because it allows the documentation sections to be properly
syntax-highlighted.

Each class of configuration files supports a set of non-standard commands that define
the configuration. These commands are described in the following sections, as referenced
in the list.

As stated, the configuration needs to be manually committed to the repository by
calling make in the config directory. Changing the configuration files without doing this
has no effect. This command also regenerates this PDF file, but it does not rebuild or test
anything else. It is highly advised to run the conformance test suite in platform/core-tests

after changing the configuration.

8.1 Control register files

The control register file configuration files reside in the config/cregs directory of the ρ-
VEX repository. The configuration consists of a set of LaTeX-styled files, interpreted
ordered alphabetically by their filenames. The configuration controls roughly the follow-
ing things.

• The address of each control register, within hardcoded limits. The global register
file is mapped from 0x000 to 0x100, whereas the context control register file is mapped
from 0x200 to 0x400.

• The documentation for each control register, as it appears in Sections 4.1 and 4.2
of this manual.

• The functionality of each register, described using a special C-like language, which
may be compiled to VHDL and C. The latter is intended for a cycle-accurate
simulator, but this does not exist yet.

• The VHDL entity interface of the cxreg and gbreg, such that the implementations
of the registers can communicate with the rest of the processor. If the interface is
changed, the instantiation of cxreg and gbreg in core.vhd must be changed accord-
ingly to make the connections.

The first of the following sections describes the LaTeX-style commands that are rec-
ognized by the configuration scripts. Any other commands are interpreted as being
part of the LaTeX documentation sections. The remaining sections document the
‘language-agnostic’ mini-language used to describe the register logic implementations.
This language-agnostic code can be transformed by the configuration scripts into both
VHDL for the hardware and C for a simulator, although the latter is not yet utilized.
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8.1.1 .tex command reference

The following LaTeX-like commands are interpreted by the Python scripts to define the
control registers. They must be the only thing on a certain line aside from optional
LaTeX-style comments at the end of the line, otherwise they are interpreted as part of a
documentation section.

- \contextInterface{}, \globalInterface{}

’- \ifaceGroup{title}

’- \ifaceSubGroup{}

|- \ifaceIn{unit}{name}{type}

|- \ifaceOut{unit}{name}{type}{expr}

|- \ifaceInCtxt{unit}{name}{type}

’- \ifaceOutCtxt{unit}{name}{type}{expr}

- \defineTemplate{name}{parameter list}

- \register{mnemonic}{name}{offset},

\registergen{python range}{mnemonic}{name}{offset}{stride}

’- \field{range}{mnemonic}

|- \reset{bit vector}

|- \signed{}

|- \id{identifier}

|- \declaration{}

| |- \declRegister{name}{type}{expr}

| |- \declVariable{name}{type}{expr}

| ’- \declConstant{name}{type}{expr}

|

|- \implementation{}

|- \resetImplementation{}

|- \finally{}

’- \connect{output}{expr}

- \perfCounter{mnemonic}{name}{offset}

|- \declaration{}

| |- \declRegister{name}{type}{expr}

| |- \declVariable{name}{type}{expr}

| ’- \declConstant{name}{type}{expr}

|

’- \implementation{}

\contextInterface {}

\globalInterface {}

These commands describe the port map of the context register logic and the global
register logic respectively. They may appear more than once in the configuration; their
contents will simply be appended.

\ifaceGroup {<title>}

\ifaceSubGroup {}

These commands define port groups for code readability. The toplevel group has a title.
Both group commands will interpret the text following the command as comments for
the code.

\ifaceIn {<unit>}{<name>}{<type>}
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\ifaceOut {<unit>}{<name>}{<type>}{<expr>}

\ifaceInCtxt {<unit>}{<name>}{<type>}

\ifaceOutCtxt {<unit>}{<name>}{<type>}{<expr>}

These commands define ports. For inputs, the signal name will be <unit>2cxreg_<name>

or <unit>2gbreg_<name>. For outputs it will be cxreg2<unit>_<name> or gbreg2<unit>_<name>.
<type> is a type specification as defined later. <expr> is an expression using only predefined
constants (Section 8.1.4), input signals and literals. The command name determines
whether the port is per-context or global and whether it is an input or output.

\register {<mnemonic>}{<name>}{<offset>}

This command starts a new register description. <name> is the title of the section.
<mnemonic> is the mnemonic of the register, excluding the CR_ prefix. The mnemonic
must be mix of up to eight uppercase, number or underscore characters, and must be
unique. The register may be referenced in LaTeX as \creg {<mnemonic>}; this will generate
a hyperlink in the PDF to the register documentation. <offset> should be a hex number
starting with 0x divisible by 4, representing the byte offset from the control registers
base. Global registers should be within the 0x000..0x0FF range, context registers should
be within 0x200..0x3FF. 0x100..0x1FF is reserved for the general purpose register file.

\registergen {<python range>}{<mnemonic>}{<name>}{<offset>}{<stride>}

Same as \register , but specifies a list of registers. <python range> is executed as a Python
expression, expected to generate an iterable of integers. A register is generated for each of
these iterations. The offset for each register is computed as <offset> +iter∗ <stride>. \n

{} expands to the number when used inline in <mnemonic> and <name>. In the documentation
it expands to $n$.

\field {<range>}{<mnemonic>}

This command defines a field in the current register. A range specification is either a
single bit index for a single-bit field, or of the form <from>..<to>, where <from> is the higher
bit index, and both the <from> and <to> bits are included in the range. For example, 3..1
includes bits 1, 2 and 3. <mnemonic> should be a short, uppercase identifier for the field,
which must be unique within the register. It should be as short as possible, in particular
for single-bit fields, as it needs to fit in the layout of the documentation. It also needs to
be a valid C and VHDL identifier, so for instance spaces and hyphens are not allowed.

\reset {<bit vector>}

This command sets the reset state of the previously defined field. If not specified, the
reset state is assumed to be zero. The number of characters in <bit vector> must equal
the number of bits in the field.

\signed {}

This command marks a field as being a signed number. The default is unsigned.

\id {<identifier>}

This command gives a field an alternative name for the C/VHDL/rvd definitions. This
only works for 8-bit and 16-bit fields that are properly aligned.

\declaration {}
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This command specifies the local register, variable and constant declaration section for
this field implementation.

\declRegister {<name>}{<type>}{<expr>}

\declVariable {<name>}{<type>}{<expr>}

\declConstant {<name>}{<type>}{<expr>}

These commands specify registers, variables or constants respectively. These may be used
by the implementation code. <name> must start with an underscore, and will expand to
cr_<register-mnemonic>_<field-mnemonic><name>. It must be a valid C and VHDL identifier.
<type> is a type name, as defined in Section 8.1.3. <expr> is an expression which defines
the constant, initial value or reset value, using only predefined constants (Section 8.1.4)
for a constant value, and only inputs or predefined constants for variables and registers.

\implementation {}

This command starts a language-agnostic code section as defined in Section 8.1.2, exe-
cuted every rising clock edge with clkEn high and reset inactive. The following variables
are predefined to interface with the core and debug busses for regular register fields.

• _write: the value being written if the corresponding _wmask bits are set.

• _wmask: write mask for each bit in the field, honoring both writes from the core
directly and writes from the debug bus.

• _wmask_dbg: same as _wmask, but only honors debug bus accesses.

• _wmask_core: same as _wmask, but only honors accesses made by the core directly.

• _read: this must be written to in the \implementation {} section to specify the read
value for the field.

The types of these variables are bitvecs with the same width as the field. As an example
of how to use these, a simple register may be created as follows. This requires _reg to be
declared using \declRegister as a bitvec of the field size.
_reg = (_reg & ~_wmask) | (_write & _wmask);
_read = _reg;

Performance counter implementations do not have these variables. They have _add in-
stead. This is a byte-typed variable which specifies how much should be added to the
performance counter in this cycle. The bus interfacing logic is generated to conform to
Section 4.3.

\resetImplementation {}

This command starts a language-agnostic code section as defined in Section 8.1.2, ex-
ecuted every rising clock edge with clkEn high, while the global reset signal is inactive
but the context-specific reset signal is active. This allows register implementations to
override a soft context reset, for instance to make register values persistent in this case.
This is necessary for, for instance, the B flag in CR_DCR, to allow the debugger to re-
set the core without immediately starting execution. This command is only allowed for
context-specific registers.
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\finally {}

This command starts a language-agnostic code section as defined in Section 8.1.2, exe-
cuted every rising clock edge with clkEn high and reset inactive, after all \implementation
{} sections have been processed. Variables from other fields and registers may be read in
this section, in addition to all the objects which are accessible from \implementation {}.
This allows registers to be written combinatorially from multiple field implementations,
by having the regular field implementations prepare variables that describe the new value,
and subsequently combining the variable values in a \finally {} section.

\connect {<output>}{<expr>}

This command combinatorially connects the specified output port with the specified
expression. This expression may use registers and predefined constants (Section 8.1.4).
This may be used to easily connect an output port to an internal register. Note however,
that since inputs cannot be used in the expression, it still cannot make a combinatorial
path from an input to an output. This is illegal specifically because such combinatorial
paths would be needlessly difficult to model with a simulator.

\perfCounter {<mnemonic>}{<name>}{<offset>}

This command generates a performance counter register conforming to Section 4.3. The
counter will occupy two 32-bit register slots from <offset> onwards, holding up to 7 bytes
worth of counter data. The implementation expects _add to be set to the value which is
to be added to the counter; all the bus interfacing logic is generated. The counter value
register is accessible from other implementations as CR_<mnemonic>_<mnemonic>0_r.

8.1.2 Language-agnostic code (LAC) sections

The ‘language-agnostic code’ sections define the behavior of control registers. Language-
agnostic code, or LAC, is a C-like domain-specific language developed specifically for
describing registers in the ρ-VEX. The configuration scripts are capable of transforming
LAC into both VHDL and C with relative ease. The latter is intended for a cycle-accurate
simulator, but at the time of writing this simulator does not exist yet.

As LAC is C-like, LaTeX-style comments cannot coexist with it, due to the C %

operator for modulo. Because of this, C-styled comments are used within the LAC
sections. In order to prevent confusion with syntax-highlighting editors and ambiguity
about where the section ends, LAC sections may be enclosed by \begin {lstlisting} and
\end {lstlisting} tags. LaTeX syntax highlighters should disable highlighting in these
blocks.

8.1.3 LAC type system

The primitive types supported by LAC and their VHDL equivalents are shown in Ta-
ble 8.1. The C equivalents of the types range from uint8_t to uint64_t. The smallest
available C type that the LAC/VHDL type fits in is used. Note that this means that
bitvec and unsigned types of more than 64 bits are not supported.

In addition to the scalar primitives in the table, LAC also supports hardcoded ag-
gregate types, i.e. the equivalent of a VHDL record or C struct. Rudimentary support
is provided for array-typed aggregate members to be compatible with existing VHDL
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Table 8.1: LAC primitive types.

LAC type name Supported values VHDL type name
boolean true or false boolean

natural 0..2147483647 (31 bit) natural

bit ’0’ or ’1’ std_logic

bitvec<n> n bits of ’0’ or ’1’ std_logic_vector(n-1 downto 0)

unsigned<n> n bits of ’0’ or ’1’ unsigned(n-1 downto 0)

data structures at the time it was developed, though these arrays can only be indexed
by integer literals.

In addition, objects can be instantiated per hardware context, which also results in
an array. If per-context objects are used in a context control register implementation,
they are implicitely indexed by the context which the register belongs to. Otherwise, a
context may only be explicitely specified as an integer literal.

Arrays present a problem in VHDL code output. Of the primitive types, only bit

actually has a VHDL array type. To get around this, and also to have the generated
code be consistent with the human-written VHDL sources, a number of derived types are
available. These are listed along with the supported aggregate types in Table 8.2.

Table 8.2: LAC derived types.

LAC VHDL C
byte rvex_byte_type uint8_t

(bitvec8) rvex_byte_array

data rvex_data_type uint32_t

(bitvec32) rvex_data_array

address rvex_address_type uint32_t

(bitvec32) rvex_address_array

sylstatus rvex_sylStatus_type uint16_t

(bitvec16) rvex_sylStatus_array

brregdata rvex_brRegData_type uint8_t

(bitvec8) rvex_brRegData_array

trapcause rvex_trap_type uint8_t

(bitvec8) rvex_trap_array

twobit rvex_2bit_type uint8_t

(bitvec2) rvex_2bit_array

threebit rvex_3bit_type uint8_t

(bitvec3) rvex_3bit_array

fourbit rvex_4bit_type uint8_t

(bitvec4) rvex_4bit_array

sevenByte rvex_7byte_type uint64_t

(bitvec56) rvex_7byte_array

trapinfo trap_info_type trapInfo_t

(aggregate) trap_info_array

breakpointinfo cxreg2pl_breakpoint_info_type breakpointInfo_t

(aggregate) cxreg2pl_breakpoint_info_array

cachestatus rvex_cacheStatus_type cacheStatus_t

(aggregate) rvex_cacheStatus_array

cfgvect rvex_generic_config_type cfgVect_t

(aggregate) -
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Coercion and typecasts

Typically, LAC will take care of typing for you by coercing one type into another on the
fly. If LAC does not know how to do it or a cast would be ambiguous, you can cast
manually using C-style typecasts. The following rules apply.

• Conversions between boolean and natural works as they do in C. That is, false

converts to zero and vice versa, true converts to one, and nonzero converts to true.

• Conversions between boolean and bit use positive logic. That is, ’1’ equals true and
’0’ equals false.

• bit and bitvec1 are interchangeable.

• bitvec<n> and unsigned<n> are interchangeable.

• When a bitvec<n> is cast to a bitvec of different size, the vector is zero-extended or
truncated.

• When a bitvec<n> is cast to a natural or vice versa, the value is zero-extended or
truncated, with the natural behaving as a 31-bit value.

Access types

Aside from having a type that describes what kind of values are allowed for an object,
LAC objects also have an ‘access type’. This describes the access priviliges, scoping rules
and general behavior of an object. The following access types are available.

• Input : represents an input port of the VHDL entity. They are available everywhere
but in constant object initializers. They are read only.

• Register output : represents an output port of the VHDL entity, driven from the
clocked process. They are write only.

• Combinatorial output : represents an output port of the VHDL entity, driven com-
binatorially using a \connect command. These objects may not be used in LAC
sections.

• Register : represents a user defined register, declared using a \declRegister com-
mand. These may be read and written in any LAC section, regardless of where
they are declared. They behave like VHDL signals; that is, when they are written
to, the read value of a register is not affected until the next clock cycle.

• Variable: represents a user defined variable, declared using a \declVariable com-
mand. These may be read and written in the \implementation section of only the
field to which they belong. Furthermore, they may be read in any \finally section.

• Constant : represents a user defined constant, declared using a \declConstant com-
mand. They are read only and globally scoped.
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• Predefined constant : represents a predefined constant, such as a package constant
or the CFG generic. They are read only and globally scoped. Section 8.1.4 lists the
available predefined constants.

8.1.4 LAC predefined constants

The following predefined constants are available. These are hardcoded into the Python
scripts.

• In context control register code only: natural ctxt. Represents the context to which
the current register belongs.

• cfgvect CFG maps to the CFG generic.

• bitvec65 RVEX_CORE_TAG maps to the core version tag, to be stored in CR_CTAG.

• natural BRANCH_OFFS_SHIFT maps to the package constant of the same name, repre-
senting the way in which the branch offset field of instructions is encoded.

• natural S_* and natural L_* map to the pipeline stage and latency definitions defined
in core_pipeline_pkg.vhd.

8.1.5 LAC literals

LAC supports the following literal syntaxes for literals for each primitive type.

• boolean: the literals for a boolean are true and false.

• natural: natural numbers can be represented in decimal, hexadecimal by prefixing
0x, octal by prefixing 0 and binary by prefixing 0b.

• bit: the literals for a bit are ’1’ and ’0’.

• bitvec: bitvec literals can be represented as a binary string enclosed in double
quotes, for instance "0101". In addition, hexadecimal notation is supported by
prefixing an X, for instance X"DEADBEEF".

• unsigned: unsigned literals can be represented in the same way as bitvec literals by
simply prefixing the literal with a U. For instance, U"0101" and UX"DEADBEEF".

Aggregate types can be assigned and initialized using an compound literal. The syntax
is similar to VHDL aggregates.

some_aggregate = {

<name> => <expression>,

<name>{<array index literal>} => <expression>,

<name>{others} => <expression>,

others => <expression>

};
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Unlike in VHDL, ’others’ can assign any kind of combination of types, as long as the
expression can be coerced to each member type. For instance, the aggregate others => 0
will initialize any aggregate which does not itself contain another aggregate to all zeros.

Aggregate literals can not be used anywhere in an expression like the other kinds
of literals. They can only be assigned directly to an object or used as an initialization
expression.

8.1.6 LAC object objects and references

All objects except for predefined constants (Section 8.1.4) need to be declared using the
\iface * and \decl * commands. These objects can then be referenced as follows, for
both reads and writes.

• The most basic way to reference an object is to use its full name. For inputs, this
takes the form <unit>2cxreg_<name> or <unit>2gbreg_<name>, depending on whether it
is part of the context or global register file interface. Likewise, outputs take the form
cxreg2<unit>_<name> or gbreg2<unit>_<name>. Finally, objects declared using the \decl

* commands take the form cr_<register-mnemonic>_<field-mnemonic>_<name>. The reg-
ister and field mnemonics are included to make them unique within global scope.

• In the LAC sections for a certain field, objects that are declared in
the same field can be referenced using just _<name>. That is, the
cr_<register-mnemonic>_<field-mnemonic> part of the object name is implicit in the
reference.

• To explicitly specify a context for context-specific objects, an @ symbol and a natural
literal determining the context may be appended. For instance, _pc@2 references the
value of _pc for context 2. Note that the context must be a literal, not even constant
objects are permitted. The only thing that is permitted is \n {} in generated
registers, as this expands to a natural literal before parsing, similar to how a C
macro would behave. If the context is not explicitly specified, the current context
is used. If there is no current context, the context must be explicitly specified.

• Member access for aggregate types is done by appending a . (decimal point) fol-
lowed by the member name. Rudimentary support is provided for array members
using {<index>}. As with explicitly specified contexts, only natural literals and \n

{} (in a \registergen environment) are allowed for specifying the index.

• VHDL-like bit indexes and slices are supported for unsigned and bitvec types. In-
dexing a single bit is done by appending [<position>] to the end of the reference,
where <position> may be any natural-typed expression. The result of the indexing
operation is a bit. Slicing is done using [<position>, <length>], where <position>

still accepts any natural-typed expression, but <length> only supports natural lit-
erals. This is necessary to determine the resulting type at compile time, which is
an unsigned or bitvec of size <length>. <position> specifies the lower bit index of the
slice range.
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8.1.7 LAC operators

Table 8.3 lists all the operators that are available in LAC. Note that member access,
member array indexing, the explicit context @ symbol and slices are not considered to be
operators, but parts of a reference.

LAC operator precedence is identical to C operator precedence. As can be expected,
parentheses can be used to explicitly specify evaluation order.

Table 8.3: LAC operators.

Prec. Op. Description Assoc.
1 ! Logical complement Right-to-left

~ One’s complement
(type) Type cast

2 * Multiplication Left-to-right
/ Division
% Modulo

3 + Addition Left-to-right
- Subtraction
$ bitvec/unsigned concatenation

4 « Left shift Left-to-right
» Right shift

5 < Less than Left-to-right
<= Less than or equal to
> Greater than
>= Greater than or equal to

6 == Equality Left-to-right
!= Inequality

7 & Bitwise and Left-to-right
8 ˆ Bitwise xor Left-to-right
9 | Bitwise or Left-to-right
10 && Boolean and Left-to-right
11 ˆˆ Boolean xor Left-to-right
12 || Boolean or Left-to-right

8.1.8 LAC statements

LAC only supports the following statements.

<reference> = <expression>;

Assignment statement.

if (<expression>) <statement>

Conditional statement without else.

if (<expression>) <statement> else <statement>

Conditional statement with else.

{ <statement*> }

C-style block statement.

<?vhdl ... ?>
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<?c ... ?>

Verbatim block statements. Anything written in place of the ellipsis is in principle out-
putted straight to the VHDL or C output. This allows the usage of constructs unknown
to LAC. Even in these sections however, it is possible to have the code generator convert
LAC-style references to the target language. This is particularly useful for C output,
where the LAC objects are part of special data structures. The syntaxes for such con-
verted references are as follows.

@read <name>

@read <name>@<context>

@lvalue <name>

@lvalue <name>@<context>

In addition to being convenient syntactic sugar, the LAC generator keeps track of which
objects are read from and written to. Not using this syntax may result in incorrect
optimizations.

8.2 Instruction set

The instruction set configuration files reside in the config/opcodes directory of the ρ-VEX
repository. The configuration consists of a set of LaTeX-styled files, interpreted ordered
alphabetically by their filenames, and a single key-value configuration file (encoding.ini),
containing miscellaneous information for the instruction decoder. The complete configu-
ration controls roughly the following things.

• The opcode for each syllable.

• The functionality of each syllable, by means of specifying the control signals. The
functional units themselves are not controlled by this configuration.

• The assembly syntax for each syllable.

• Documentation for each syllable, as it appears in Section 3.7.

• The encoding of the branch offset field.

The next section describes the structure of the LaTeX-style configuration files, and the
subsequent section provides a command reference. The last section describes the key-
value configuration file.

8.2.1 .tex file structure

Every description of a syllable/opcode starts with a \syllable command. Any unrec-
ognized commands or textual lines following a \syllable command are considered to
be LaTeX documentation for the syllable. To provide structure among the many in-
structions, \section commands are used to group syllables. There is only one level of
hierarchy this way (i.e. there is no \subsection etc.), and it must be used. That is,
\syllable commands before the first \section command are illegal. Any unrecognized
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command or text between a \section and \syllable command is considered to be LaTeX
documentation for the syllable group.

All commands other than \section and \syllable specify attributes for the syllables.
These are used to describe the characteristics and functionality of the instructions. These
may be placed anywhere in the configuration files; their position relative to the \section

and \syllable commands determine to which syllables they apply.

• Attribute commands placed before the first \section commands apply to all sylla-
bles. They can be thought of as being the default attributes. All syllable attributes
must have a default value.

• Attribute commands placed between a \section and \syllable command apply to
all syllables in the group, overriding the global defaults.

• Attribute commands placed after a \syllable command apply to that syllable,
overriding the global and group defaults.

8.2.2 .tex command reference

The following LaTeX-like commands are interpreted by the Python scripts to define
the instruction set. They must be the only thing on a certain line aside from optional
LaTeX-style comments at the end of the line, otherwise they are interpreted as part of a
documentation section.

\section {<name>}

This command starts a group of syllable definitions. <name> will appear as a section header
in the documentation. Any unrecognized command or text between \section and the
first \syllable command is interpreted as LaTeX documentation for the group.

\syllable {<opcode>}{<mnemonic>}{<syntax>}

This command starts the definition of a syllable.

• <opcode> should be a 9-bit binary string, used by the hardware to identify the
syllable. Dashes may be used for don’t cares. The 9 bits map to syllable bit 31..23.
The value of the LSB is not really part of the opcode (the opcode field is only 8
bits wide), but defines whether the instruction can be used with only a register for
the second operand (0), only an immediate for the second operand (1), or both (-).
This bit is referred to as the imm_sw (immediate switch) bit.

• <mnemonic> is the name of the syllable. It will be made lowercase for the assembler
syntax and uppercase for the documentation.

• <syntax> describes the assembler syntax of the syllable. In this, the LaTeX-like
commands from Table 8.4 may be used inline. The {} may be omitted here.

Any textual lines between \syllable and \section or the next \syllable is interpreted
as LaTeX documentation for the syllable. These text sections may also use the inline
commands from Table 8.4, but here the {} may not be omitted.
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Table 8.4: Mapping commands from assembly syntax to instruction encoding.

Command In docs. Description Encoding Condition
\rd {} $r0.d Integer destination register Bit 22..17 –
\rx {} $r0.x Integer operand 1 register Bit 16..11 –
\ry {} $r0.y Integer operand 2 register Bit 10..5 imm_sw = 0

imm Integer immediate Bit 10..2 imm_sw = 1
\rs {} $r0.1 Stack pointer – –
\bd {} $r0.bd Branch destination register Bit 19..17 brFmt = 0

Bit 4..2 brFmt = 1
\bs {} $r0.bs Branch operand register Bit 4..2 brFmt = 0

Bit 26..24 brFmt = 1
\lr {} $l0.0 Link register – –
\of {} offs Branch offset immediate Bit 23..5 –
\sa {} stackadj Stack adjustment immediate Bit 23..5 –
\lt {} tgt Long immediate lane target Bit 27..25 –
\li {} imm Long immediate Bit 24..2 –

\class {<name>}

This command specifies the resource class. <name> must be ALU, MEM, MUL, BR or LIMMH.

\datapath {<key>}{<value>}

\alu {<key>}{<value>}

\branch {<key>}{<value>}

\memory {<key>}{<value>}

\multiplier {<key>}{<value>}

These commands specify the control signals for the syllable. Which keys and values are
recognized depend on the VHDL code in core_opcode*_pkg.vhd. They are documented
in the comments of the code. Note that the configuration scripts do not perform error
checking. Instruction set configuration errors thus will not appear until the VHDL code
is compiled. Of course, if you are making changes here, you should test the core anyway.

\noasm {}

This attribute specifies that this syllable cannot appear in user-written assembly code.
This is the case for LIMMH instructions, which are inferred by the assembler.

8.2.3 encoding.ini reference

This file currently defines only a single value. It determines which encoding is used for
the relative branch offset, and may be set to 2 or 3. When set to 3, the LSB of the branch
offset has a weight of to 64 bits. When set to 2, the branch offset is shifted right by one
bit, to allow branching to 32 bit boundaries. The syntax of the file is shown below.

[encoding]

branch_offset_shift = 3
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8.3 Pipeline

The pipeline configuration consists of a single key-value file in the config/pipeline direc-
tory of the ρ-VEX repository. The configuration describes how the ρ-VEX pipeline is
organized by specifying the first stage and latencies of a multitude of configurable blocks,
such as register read and writeback, branch unit determination, PC+1 computation, etc.
The file is self-documenting by means of its comments.

8.4 Traps

The trap configuration files reside in the config/traps directory of the ρ-VEX repository.
The configuration consists of a set of LaTeX-styled files, interpreted ordered alphabeti-
cally by their filenames. The configuration controls roughly the following things.

• The trap names and numeric identifiers.

• Decoding signals for each trap; debug and interrupt traps are handled differently
by the processor.

• A pretty-printing macro for each trap.

• Documentation for each trap, as it appears in Section 5.3.

The next section describes the structure of the LaTeX-style configuration files. The
subsequent section provides a command reference.

8.4.1 .tex file structure

The \trap and \trapgen commands start the definition of a trap or a number of similar
traps respectively. Any unrecognized command or text following such a command is
interpreted as being LaTeX documentation for the trap. The obligatory \description

command defines the formatting string used to pretty-print the trap information. The
remaining commands are optional decoding attributes for the traps.

8.4.2 .tex command reference

The following LaTeX-like commands are interpreted by the Python scripts to define the
traps. They must be the only thing on a certain line aside from optional LaTeX-style
comments at the end of the line, otherwise they are interpreted as part of a documentation
section.

\trap {<index>}{<mnemonic>}{<name>}

The command starts a trap description. <index> is the trap index, which may range
from 1 to 255. <mnemonic> is the trap identifier, which must be a valid C and VHDL
identifier and should be uppercase. It is prefixed with RVEX_TRAP_ in the header files.
<name> is the LaTeX-formatted friendly name of the trap, used as the section title in the
documentation.
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\trapgen {<python range>}{<start index>}{<mnemonic>}{<name>}

This command works the same as \trap , but specifies a list of traps. <python range> is
executed as a Python expression, expected to generate an iterable of integers. A trap
specification is generated for each of these iterations. The index for each trap is computed
as <offset>+iter. \n {} expands to the iterator value when used inline in <mnemonic> and
<name>, as well as in \description {<desc>} below. In the documentation it expands to $n$.

\description {<desc>}

This command defines a formatting string used to pretty-print the trap information. It
is used by the debug systems to allow the user to quickly identify the trap. In this
description, the following commands may be used inline.

• \at {} expands to “ at <trap point>” if the trap point is known, or to nothing if the
trap point is not known. The trap point is expressed in hexadecimal notation.

• \arg {u} expands to the trap argument in unsigned decimal notation.

• \arg {s} expands to the trap argument in signed decimal notation.

• \arg {x} expands to the trap argument in hexadecimal notation.

\debug {}

Marks that this trap is a debug trap. The {} is required.

\interrupt {}

Marks that this trap is an interrupt trap. The {} is required.
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Instantiation 9
This section describes how the ρ-VEX core and processing systems should be instantiated,
what the functions of all the external signals are, and what generics are available. The
first section lists the basic signal data types that will be used throughout the interfaces.
The remaining sections document instantiation of the bare ρ-VEX processor core and
two processing systems that incorporate the processor and local memories or cache, one
that does not depend on GRLIB and one which does.

9.1 Data types

The following basic VHDL data types are used for the ports and generics. They are
defined in common_pkg.

subtype rvex_address_type is std_logic_vector(31 downto 0);

subtype rvex_data_type is std_logic_vector(31 downto 0);

subtype rvex_mask_type is std_logic_vector( 3 downto 0);

subtype rvex_syllable_type is std_logic_vector(31 downto 0);

subtype rvex_byte_type is std_logic_vector( 7 downto 0);

type rvex_address_array is array (natural range <>) of rvex_address_type;

type rvex_data_array is array (natural range <>) of rvex_data_type;

type rvex_mask_array is array (natural range <>) of rvex_mask_type;

type rvex_syllable_array is array (natural range <>) of rvex_syllable_type;

type rvex_byte_array is array (natural range <>) of rvex_byte_type;

The address, data and syllable types all represent 32-bit words. The distinction is made
only for clarity; one can not simply give the ρ-VEX processor 64-bit address map by
widening the address type.

The mask type is used for byte-masking the data vectors for bus operations. As all
memory operations operate on 32-bit words, the mask type has four bits to mask each
byte. The most significant bit of the these masks maps to the most significant byte of
the 32-bit word, and thus to the lowest byte address, as the ρ-VEX system is big endian.

The byte type should be self-explanatory.

9.2 Bare ρ-VEX processor

This section describes how the bare ρ-VEX core should be instantiated. It is intended
for HDL designers who wish to design their own processing system.
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9.2.1 Instantiation template

The following listing serves as an instantiation template for the core. The code is docu-
mented in the following sections.

If you get errors when instantiating the core with this template, the documenta-
tion might be out of date. Fear not, for the signals are also documented in the entity
description in core.vhdl.

library rvex;

use rvex.common_pkg.all;

use rvex.core_pkg.all;

-- ...

rvex_inst: entity rvex.core

generic map (

-- Core configuration.

CFG => rvex_cfg(

numLanesLog2 => 3,

numLaneGroupsLog2 => 2,

numContextsLog2 => 2

-- ...

),

CORE_ID => CORE_ID,

PLATFORM_TAG => PLATFORM_TAG

)

port map (

-- System control.

reset => reset,

resetOut => resetOut,

clk => clk,

clkEn => clkEn,

-- Run control interface.

rctrl2rv_irq => rctrl2rv_irq,

rctrl2rv_irqID => rctrl2rv_irqID,

rv2rctrl_irqAck => rv2rctrl_irqAck,

rctrl2rv_run => rctrl2rv_run,

rv2rctrl_idle => rv2rctrl_idle,

rctrl2rv_reset => rctrl2rv_reset,

rctrl2rv_resetVect => rctrl2rv_resetVect,

rv2rctrl_done => rv2rctrl_done,

-- Common memory interface.

rv2mem_decouple => rv2mem_decouple,

mem2rv_blockReconfig => mem2rv_blockReconfig,

mem2rv_stallIn => mem2rv_stallIn,

rv2mem_stallOut => rv2mem_stallOut,

mem2rv_cacheStatus => mem2rv_cacheStatus,

-- Instruction memory interface.

rv2imem_PCs => rv2imem_PCs,
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rv2imem_fetch => rv2imem_fetch,

rv2imem_cancel => rv2imem_cancel,

imem2rv_instr => imem2rv_instr,

imem2rv_affinity => imem2rv_affinity,

imem2rv_busFault => imem2rv_busFault,

-- Data memory interface.

rv2dmem_addr => rv2dmem_addr,

rv2dmem_readEnable => rv2dmem_readEnable,

rv2dmem_writeData => rv2dmem_writeData,

rv2dmem_writeMask => rv2dmem_writeMask,

rv2dmem_writeEnable => rv2dmem_writeEnable,

dmem2rv_readData => dmem2rv_readData,

dmem2rv_ifaceFault => dmem2rv_ifaceFault,

dmem2rv_busFault => dmem2rv_busFault,

-- Control/debug bus interface.

dbg2rv_addr => dbg2rv_addr,

dbg2rv_readEnable => dbg2rv_readEnable,

dbg2rv_writeEnable => dbg2rv_writeEnable,

dbg2rv_writeMask => dbg2rv_writeMask,

dbg2rv_writeData => dbg2rv_writeData,

rv2dbg_readData => rv2dbg_readData,

-- Trace interface.

rv2trsink_push => rv2trsink_push,

rv2trsink_data => rv2trsink_data,

rv2trsink_end => rv2trsink_end,

trsink2rv_busy => trsink2rv_busy

);

9.2.2 Interface description

As you can see in the template, the generics and signals are grouped by their function.
The following subsections will document each group.

9.2.2.1 Core configuration

These generics parameterize the core.

• CFG : rvex_generic_config_type

This generic contains the configuration parameters for the core.
rvex_generic_config_type is a record type with the following members.

– numLanesLog2 : natural

This parameter specifies the binary logarithm of the number of lanes to in-
stantiate. The range of acceptable values is 0 through 4, although only 1, 2
and 3 are tested. The default is 3, which specifies an 8-way ρ-VEX processor.

– numLaneGroupsLog2 : natural
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This parameter specifies the binary logarithm of the number of lane groups to
instantiate. Each lane group can be disabled individually to save power, oper-
ate on its own, or work together on a single thread with other lane groups. May
not be greater than 3 (due to configuration register size limits) or numLanesLog2.
It is only tested up to numLanesLog2-1. The default is 2, specifying 4 lane groups.

– numContextsLog2 : natural

This parameter specifies the binary logarithm of the number of hardware con-
texts in the core. May not be greater than 3 due to configuration register size
limits. The default is 2, specifying 4 hardware contexts.

– genBundleSizeLog2 : natural

This parameter specifies the binary logarithm of the number of syllables in
a generic binary bundle. When a branch address is not aligned to this and
limmhFromPreviousPair is set, then special actions will be taken to ensure that
the relevant syllables preceding the trap point are fetched before operation
resumes. The default is 3, specifying 8-way generic binary bundles.

– bundleAlignLog2 : natural

The ρ-VEX processor will assume (and enforce) that the start addresses of
bundles are aligned to the specified amount of syllables. When this is less
than numLanesLog2, the stop bit system is enabled. The value may not be
greater than numLanesLog2. The default is 3, disabling the stop bit system.

– multiplierLanes : natural

This parameter defines what lanes have a multiplier. Bit 0 of this number
maps to the first lane, bit 1 to the second lane, etc. The default is 0xFF,
specifying that each lane has a multiplier.

– memLaneRevIndex : natural

This parameter specifies the lane index for the memory unit, counting down
from the last lane in each lane group. So memLaneRevIndex = 0 results in the
memory unit being in the last lane in each group, memLaneRevIndex = 1 results
in it being in the second to last lane, etc. The default is 1.

– numBreakpoints : natural

This parameter specifies how many hardware breakpoints are instantiated.
The maximum is 4 due to the register map only having space for 4. The
default is also 4.

– forwarding : boolean

This parameter specifies whether or not register forwarding logic should be
instantiated. With forwarding disabled, the core will use less area and might
run at higher frequencies, but much more NOPs are necessary between data-
dependent instructions. The forwarding logic is enabled by default.

– limmhFromNeighbor : boolean

When this parameter is true, syllables can borrow long immediates from the
neighboring syllable in a syllable pair. This is enabled by default.
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– limmhFromPreviousPair : boolean

When this parameter is true, syllables can borrow long immediates from the
previous syllable pair. This is enabled by default. This is not supported when
stop bits are enabled, i.e. when bundleAlignLog2 < numLanesLog2. Therefore,
when stop bits are enabled, this should be disabled.

– reg63isLink : boolean

When this parameter is true, general purpose register 63 maps directly to the
link register. When false, MOVTL, MOVFL, STW and LDW must be used to access
the link register, but an additional general purpose register is available. This
exists for compatibility with the ST200 series processors. It is disabled by
default.

– cregStartAddress : rvex_address_type

This paramater specifies the start address of the 1kiB control register file as
seen from the processor. It must be aligned to a 1kiB boundary. The core is
not able to access data memory in the specified region. The default value is
0xFFFFFC00, i.e. the block from 0xFFFFFC00 to 0xFFFFFFFF.

– resetVectors : rvex_address_array(7 downto 0)

This parameter specifies the reset address for each context, if not overruled at
runtime by connecting the optional rctrl2rv_resetVect signal. When less than
eight contexts are instantiated, the higher indexed values are unused. The
default is 0 for all contexts.

– unifiedStall : boolean

When this parameter is true, the stall signals for each group will be connected
to the same signal. That is, if one lane group has to stall, all lane groups
necessarily have to stall. This may be a requirement of the memory subsystem
connected to the core; when this is enabled, the memory architecture can be
made simpler, but cannot make use of the possible performance gain due to
being able to stall only part of the core. This parameter is disabled by default,
meaning that the stall signals are independent.

– gpRegImpl : natural

This parameter specifies the general purpose register implementation to use.
The following values are accepted.

∗ RVEX_GPREG_IMPL_MEM (default): block RAM + LVT implementation for FP-
GAs.
∗ RVEX_GPREG_IMPL_SIMPLE: behavioral implementation for Synopsis.

– traceEnable : boolean

This parameter specifies whether the trace unit should be instantiated. It is
disabled by default.

– perfCountSize : natural

This parameter specifies the size of the performance counters in bytes. Up to
7 bytes are supported. The default is 4 bytes.
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– cachePerfCountEnable : boolean

This parameter enables or disables the cache performance counters. When
enabled, the number of lane groups must equal the number of contexts, because
the signals from the cache blocks are mapped to the contexts directly. In the
future, the cache performance counters are to be placed in the cache instead
of the core. This parameter is off by default.

Typically, one will want to use the rvex_cfg function to specify this value. This
function takes as its arguments values for all the record members as specified above,
but has default values for each of them, meaning that not all of them have to be
specified. In addition, a base argument of type rvex_generic_config_type may be
specified, which will be used as the default value for unspecified parameters. This
permits mutation of the CFG record as it passes from entity to subentity, which is
otherwise impossible to do with record generics.

• CORE_ID : natural

This value is used to uniquely identify this core within a multicore platform. It is
made available to the programs running on the core and the debug system through
CR_COID.

• PLATFORM_TAG : std_logic_vector(55 downto 0)

This value is to uniquely identify the platform as a whole. It is intended that
this value be generated by the toolchain by hashing the source files and synthesis
options. It is made available to the programs running on the core and the debug
system through CR_PTAG.

9.2.2.2 System control

The system control signals include the clock source for the core, a synchronous reset
signal and a global clock enable signal. clk and reset are required std_logic input signals.
clkEn is an optional std_logic input signal.

The core is clocked on the rising edge of clk while clkEn is high. When a rising edge
on clk occurs while reset is high, most components of the core will be reset, regardless of
the state of clkEn. The only component of the core that is not reset by this is the general
purpose register file. This is because this register file is implemented using block RAMs,
which have no physical reset input in Xilinx FPGAs.

The resetOut signal is asserted high for one cycle when the debug bus writes a one to
the reset bit in CR_GSR. This signal may be used to reset support systems as well as the
core, or it may be ignored.

9.2.2.3 Run control

The run control signals provide an interface between the core and an interrupt controller
or a master processor if the ρ-VEX is used as a coprocessor. All signals are optional. All
signals are arrays of some sort, indexed by hardware context IDs in descending order.
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• rctrl2rv_irq : in std_logic_vector(number of contexts - 1 downto 0)

• rctrl2rv_irqID : in rvex_address_array(number of contexts - 1 downto 0)

• rv2rctrl_irqAck : out std_logic_vector(number of contexts - 1 downto 0)

When rctrl2rv_irq is high, an interrupt trap will be generated within the indexed
context as soon as possible, if the interrupt enable flag in the context control reg-
ister is set. Interrupt entry is acknowledged by rv2rctrl_irqAck being asserted high
for one clkEnabled cycle. rctrl2rv_irqID is sampled in exactly that cycle and is
made available to the trap handler through the trap argument register. When not
specified, rctrl2rv_irq is tied to ’0’ and rctrl2rv_irqID is tied to X"00000000".

When rv2rctrl_irqAck is high, an interrupt controller would typically release
rctrl2rv_irq and set rctrl2rv_irqID to a value signalling that no interrupt is ac-
tive on the subsequent clock edge. Alternatively, if more interrupts are pending,
rctrl2rv_irq may remain high and rctrl2rv_irqID may be set to the code identifying
the next interrupt.

Releasing rctrl2rv_irq before an interrupt is acknowledged may still cause an in-
terrupt trap to be caused. This is due to the fact that traps take time to propagate
through the pipeline. The core will still assert rv2rctrl_irqAck upon entry of the
trap service routine in this case. In order to properly account for this behavior, in-
terrupt controllers should ignore rv2rctrl_irqAck if no interrupt is active, and there
should be a special rctrl2rv_irqID value that signals ‘no interrupt’. The trap service
routine should return to application code as soon as possible in this case.

• rctrl2rv_run : in std_logic_vector(number of contexts - 1 downto 0)

• rv2rctrl_idle : out std_logic_vector(number of contexts - 1 downto 0)

When rctrl2rv_run is asserted low, the indexed context will stop executing instruc-
tions as soon as possible. It will finish instructions that were already in the pipeline
and have already committed data, and set the program counter to point to the next
instruction that should be issued for the program to resume correctly later. As soon
as rctrl2rv_run is asserted high again, the context will resume, assuming there is
nothing else preventing it from running. When rctrl2rv_run is not specified, it is
tied to ’1’.

Only when the context has completely stopped, i.e., there are no instructions in
the pipeline, will rv2rctrl_idle be asserted high. This may also happen while
rctrl2rv_run is high, when the core is being halted for a different reason. Such
reasons include preparing for reconfiguration, the context not having lane groups
assigned to it, and the B flag in CR_DCR. rv2rctrl_idle remains high until the next
instruction is fetched.

• rctrl2rv_reset : in std_logic_vector(number of contexts - 1 downto 0)

• rctrl2rv_resetVect : in rvex_address_array(number of contexts - 1 downto 0)
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• rv2rctrl_done : out std_logic_vector(number of contexts - 1 downto 0)

When rctrl2rv_reset is asserted high, the context control registers for the indexed
context are synchronously reset in the next clkEnabled cycle. Note that this behavior
is different from the master reset signal, which ignores clkEn. When it is not
specified, it is tied to ’0’.

rctrl2rv_resetVect determines the reset vector for each context, i.e. the initial
program counter. When it is not specified, it is tied to the reset vector specified by
the CFG generic.

rv2rctrl_done is connected to the D flag in CR_DCR, which is set when the processor
executes a STOP instruction. The only way to clear this signal without debug bus
accesses is to assert reset or rctrl2rv_reset.

When the ρ-VEX is running as a co-processor, rctrl2rv_reset could be used as an
active low flag indicating that the currently loaded kernel needs to be executed,
in which case rv2rctrl_done signals completion. rctrl2rv_resetVect marks the entry
point for the kernel.

9.2.2.4 Common memory interface

These control signals are common to both the data and instruction memory interface.

• rv2mem_decouple : out std_logic_vector(number of lane groups - 1 downto 0)

This vector represents the current runtime configuration of the core. In particular,
it specifies which lane groups are working together to execute code within a single
context. When a bit in this vector is high, the indexed lane group is ‘decoupled’
from the next lane group, i.e., is operating within a different context. When a bit
is low, the indexed lane group is working as a slave to the next higher indexed lane
group for which the bit is set.

Due to constraints in the core, the indices of pipelane groups working together are
always aligned to the number of pipelane groups in the group. As an example, if
pipelane groups 0 and 1 are working together, group 2 cannot join them without
group 3 also joining them. This allows binary tree structures to be used in the
coupling logic. This means that, in the default core configuration, only the following
decouple vectors are legal: "1111", "1110", "1011", "1010" and "1000".

The state of the rv2mem_decouple signal has several implications on the behavior of
the memory ports on the ρ-VEX.

– The PCs presented by the instruction memory ports will always be contiguous
and aligned for groups that are working together. The fetch and cancel signals
will always be equal.

– The ρ-VEX assumes that the mem2rv_blockReconfig and mem2rv_stallIn signals
are equal for coupled pipelane groups. Behavior is completely undefined if
these assumptions are violated.
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• mem2rv_blockReconfig : in std_logic_vector(number of lane groups - 1 downto 0)

This signal can be used by the memories to block reconfiguration due to ongoing op-
erations. When a bit in this vector is high, the context associated with the indexed
group is guaranteed to not reconfigure. The ρ-VEX will assume that the associ-
ated bits in the mem2rv_blockReconfig signal will always be released eventually when
no operations are requested by those pipelane groups, otherwise the system may
deadlock. When pipelane groups are coupled, their respective mem2rv_blockReconfig

signals must be equal. When this signal is not specified, it is tied to all zeros.

• mem2rv_stallIn : in std_logic_vector(number of lane groups - 1 downto 0)

Stall input signals for each pipelane group. When the stall signal for a pipelane
group is high, the next rising edge of the clock signal will be ignored. When pipelane
groups are coupled, their respective mem2rv_stallIn signals must be equal. When
this signal is not specified, it is tied to all zeros.

• rv2mem_stallOut : out std_logic_vector(number of lane groups - 1 downto 0)

Stall output signals for each pipelane group. This serves as a combined stall signal
from all stall sources, indicating whether a pipelane group is actually stalled or
not. When rv2mem_stallOut is high, all memory request signals from the associated
pipelane group should be considered to be undefined. Memory access requests
should thus be initiated (and registered) only at the rising edge of the clk signal
when clkEn is high and the associated rv2mem_stallOut signal is low. In addition, the
result of a previously requested memory operation should remain valid until the
next clkEnabled cycle where the rv2mem_stallOut signal is low, as this is when the
core will sample the signal.

When pipelane groups are coupled, their respective rv2mem_stallOut signals will be
equal. In addition, the unifiedStall configuration parameter in the CFG record may
be set to true to enforce equal stall signals for all pipelane groups at all times,
should this be desirable for the memory implementation.

• mem2rv_cacheStatus : in rvex_cacheStatus_array(number of lane groups - 1 downto

0)

This signal may be driven with cache status information. This is used by the trace
unit only. The data type is a record defined in core_pkg as follows.

type rvex_cacheStatus_type is record

instr_access : std_logic;

instr_miss : std_logic;

data_accessType : std_logic_vector(1 downto 0);

data_bypass : std_logic;

data_miss : std_logic;

data_writePending : std_logic;

end record;
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All signals must be externally gated by the stall signals of the core for compatibility
with performance counters in the future. Otherwise, the instr_ prefixed signals
share the timing of the instruction fetch result, and data_ prefixed signals share the
timing of the data memory access result.

instr_access should be high when an instruction fetch was performed. In this case,
instr_miss may also be high to signal that the fetch caused a cache miss.

data_access should be set to 01 if a read access was performed, to 10 if a 32-bit write
access was performed and to 11 if a partial write was performed. 00 logically means
no operation. If an access was performed that bypassed the cache, data_bypass

should be set. If an access was performed that caused a cache miss, data_miss

should be set. If an access was performed by a cache block that had a nonempty
write buffer when the request was made, data_writePending should be set.

9.2.2.5 Instruction memory interface

These signals interface between the ρ-VEX and the instruction memory or cache. All
signals in this section are clock gated by not only clkEn, but also by the respective
signal in rv2mem_stallOut. They should be considered to be invalid when the respective
rv2mem_stallOut signal is high. The number of enabled clock cycles without stalls after
which the reply for a request is assumed to be valid is defined by L_IF, which is defined
in core_pipeline_pkg. L_IF defaults to 1.

• rv2imem_PCs : out rvex_address_array(number of lane groups - 1 downto 0)

Program counter outputs for each lane group. These will always be aligned to the
size of an instruction for a full lane group. When lane groups are coupled, the
PC for the first lane group will always be aligned to the size of the instruction to
be executed on the set of lane groups, and the PCs for those lane groups will be
contiguous.

• rv2imem_fetch : out std_logic_vector(number of lane groups - 1 downto 0)

Read enable output. When high, the instruction memory should supply the in-
structions pointed to by rv2imem_PCs on imem2rv_instr after L_IF processor cycles.

• rv2imem_cancel : out std_logic_vector(number of lane groups - 1 downto 0)

Cancel signal. This signal will go high combinatorially (regardless of the stall input
from the memory) when it has been determined that the result of the most recently
requested instruction fetch will not be used. In this case, the memory may cancel
the request in order to be able to release the stall signal earlier. This signal can
safely be ignored for correct operation.

• imem2rv_instr : in rvex_syllable_array(number of lanes - 1 downto 0)

Syllable input for each lane. Expected to be valid L_IF processor cycles after
rv2imem_fetch is asserted if rv2imem_cancel and imem2rv_fault are low.
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• imem2rv_affinity : in std_logic_vector(n log(n) - 1 downto 0)

Where n = number of lane groups

Optional block affinity input signal for reconfigurable caches. If used, it is expected
to have the same timing as the imem2rv_instr signal. Each lane group has log(number
of lane groups) bits in this signal, forming an unsigned integer that indexes the lane
group that serviced the instruction read. When the processor wants to reconfigure,
it may use this signal as a hint to determine which program should be placed
on which lane group next, assuming that there will be fewer cache misses if the
currently running application is mapped to the lane group indexed by the affinity
signal. Its value is made available to the program using the CR_AFF register.

• imem2rv_busFault : in std_logic_vector(number of lane groups - 1 downto 0)

Instruction fetch bus fault input signal. Expected to have the same timing as
the imem2rv_instr signal. When high, a TRAP_FETCH_FAULT trap is generated and the
instruction defined by imem2rv_instr will not be executed.

9.2.2.6 Data memory interface

These signals interface between the ρ-VEX and the data memory or cache. All sig-
nals in this section are clock gated by not only clkEn, but also by the respective sig-
nal in rv2mem_stallOut. They should be considered to be invalid when the respective
rv2mem_stallOut signal is high. The number of enabled clock cycles after which the reply for
a request is assumed to be valid is defined by L_MEM, which is defined in core_pipeline_pkg.
L_MEM defaults to 1.

• rv2dmem_addr : out rvex_address_array(number of lane groups - 1 downto 0)

Memory address that is to be accessed if rv2dmem_readEnable or rv2dmem_writeEnable

is high. The two least significant bits of the address will always be "00" and may be
ignored. Note that a configurable 1 kiB block within this 4 GiB memory space is
inaccessible, because it is replaced by the core control registers. This is configurable
through the cregStartAddress entry in CFG, which defaults to 0xFFFFFC00, meaning
that addresses 0xFFFFFC00 through 0xFFFFFFFF are inaccessible.

• rv2dmem_readEnable : out std_logic_vector(number of lane groups - 1 downto 0)

Active high read enable signal from the core for each memory unit. When high
during an enabled rising clock edge, the ρ-VEX expects the access result to be
valid L_MEM enabled cycles later.

• rv2dmem_writeData : out rvex_data_array(number of lane groups - 1 downto 0)

• rv2dmem_writeMask : out rvex_mask_array(number of lane groups - 1 downto 0)

These signals define the write operation to be performed when rv2dmem_writeEnable

is high. rv2dmem_writeMask contains a bit for each byte in rv2dmem_writeData, which
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determines whether the byte should be written or not: when high, the respective
byte should be written; when low, the byte should not be affected. Mask bit i
governs data bits i ∗ 8+ 7 downto i ∗ 8. This corresponds to byte address a+3− i,
where a is the word address specified by rv2dmem_addr, because the ρ-VEX is big
endian.

• rv2dmem_writeEnable : out std_logic_vector(number of lane groups - 1 downto 0)

Active high write enable signal from the core for each memory unit. When high
during an enabled rising clock edge, the ρ-VEX expects either that the write request
defined by rv2dmem_addr, rv2dmem_writeData and rv2dmem_writeMask will be performed,
or that dmem2rv_ifaceFault or dmem2rv_busFault is asserted high L_MEM cycles later.

• dmem2rv_readData : in rvex_data_array(number of lane groups - 1 downto 0)

This is expected to contain the read data for read requested by rv2dmem_readEnable

and rv2dmem_addr L_MEM enabled cycles earlier, unless dmem2rv_ifaceFault or
dmem2rv_busFault are high.

• dmem2rv_ifaceFault : in std_logic_vector(number of lane groups - 1 downto 0)

These signals are expected to be valid L_MEM enabled cycles after a read or write
request. dmem2rv_ifaceFault being high indicates that the read or write could not be
performed because the memory system is incapable of servicing the specific type of
memory access. For instance, the reconfigurable cache asserts this signal if more
than one request is made at a time by coupled lane groups. dmem2rv_busFault being
high indicates that some kind of bus fault occured, for example if a memory access
was made to unmapped memory.

In either case, a DMEM_FAULT trap will be issued. The trap argument will be set to
the address that was requested.

9.2.2.7 Debug bus interface

The debug bus provides an optional slave bus interface capable of accessing most of the
registers within the core.

• dbg2rv_addr : in rvex_address_type

• dbg2rv_readEnable : in std_logic

• dbg2rv_writeEnable : in std_logic

• dbg2rv_writeMask : in rvex_mask_type

• dbg2rv_writeData : in rvex_data_type
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• rv2dbg_readData : out rvex_data_type

Debug interface bus. dbg2rv_readEnable and dbg2rv_writeEnable are active high and
should not be active at the same time. rv2dbg_readData is valid one clkEnabled cycle
after dbg2rv_readEnable is asserted and contains the data read from dbg2rv_addr as
it was while dbg2rv_readEnable was asserted. dbg2rv_writeMask, dbg2rv_writeData and
dbg2rv_addr define the write request when dbg2rv_writeEnable is asserted. All input
signals are tied to ’0’ when not specified.

The debug bus can read from and write to all ρ-VEX registers. 1024 bytes are
used per context, thus the size of the debug bus control register block is 1024 ·
numContexts bytes. As the upper address bits are simply ignored, this block is
mirrored across the full 32-bit address space.

The memory map of an ρ-VEX with two contexts is shown in Table 9.1. Note that
the mappings per context equal those of direct accesses to the control registers from
the ρ-VEX memory units (Section 3.2.4), with the addition of the general purpose
registers. Additional contexts specified at design time simply appear after the first
two.

Table 9.1: Debug bus memory map for 2 contexts.

Address Mapping
0x000-0x0FF Global control registers
0x100-0x1FF Context 0 general purpose registers
0x200-0x3FF Context 0 control registers
0x400-0x4FF Mirror of global control registers
0x500-0x5FF Context 1 general purpose registers
0x600-0x7FF Context 1 control registers

9.2.2.8 Trace interface

The trace interface provides an optional write-only bus to some memory system or pe-
ripheral, which the core may send trace information to. The trace system is disabled by
default and must be enabled in the CR_DCR2 control register. In addition, the trace unit
hardware is only instantiated when traceEnable is set in the CFG vector.

• rv2trsink_push : out std_logic

When high, rv2trsink_data and rv2trsink_end are valid and should be registered in
the next cycle where clkEn is high.

• rv2trsink_data : out rvex_byte_type

Trace data signal. Valid when rv2trsink_push is high.

• rv2trsink_end : out std_logic
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When high, this is the last byte of this trace packet. May be used to flush buffers
downstream, or may be ignored.

• trsink2rv_busy : in std_logic

When high while rv2trsink_push is high, the trace unit is stalled. While stalled,
rv2trsink_push will stay high and rv2trsink_data and rv2trsink_end will remain stable.

9.3 Standalone processing system

The ρ-VEX standalone processing system has the following features.

• Single cycle local instruction memory implemented in block RAMs.

• Local data memory implemented in block RAMs that is single cycle for up to two
accesses at a time.

• The initial contents of the local memories can be set.

• Optionally, the cache can be instantiated. In this case, a unified instruction/data
memory is instantiated in block RAMs. The access latency of this memory is
configurable at runtime to mimic a more realistic memory access latency for cache
tests.

• An external bus for peripherals or other memories may be connected through a bus
master interface. Without the cache, the ρ-VEX cannot read instructions from this
bus, but it can access it using memory operations.

• A slave bus interface allows access to the ρ-VEX debug port, a trace buffer, and
the local memories, as well as the cache control register if the cache is instantiated.

• The cache, if instantiated, is coherent only for accesses made by the ρ-VEX itself.
A cache flush is required using the cache control register if the debug bus is used
to write to the local memories.

9.3.1 Instantiation template

The following listing serves as an instantiation template for the system. The code is
documented in the following sections.

If you get errors when instantiating the core with this template, the documenta-
tion might be out of date. Fear not, for the signals are also documented in the entity
description in rvsys_standalone.vhd.

library rvex;

use rvex.common_pkg.all;

use rvex.bus_pkg.all;

use rvex.bus_addrConv_pkg.all;

use rvex.core_pkg.all;

use rvex.cache_pkg.all;
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use rvex.rvsys_standalone_pkg.all;

-- ...

rvex_standalone_inst: entity rvex.rvsys_standalone

generic map (

-- System configuration.

CFG => rvex_sa_cfg(

core => rvex_cfg(

numLanesLog2 => 3,

numLaneGroupsLog2 => 2,

numContextsLog2 => 2

-- ...

),

core_valid => true

-- ...

),

CORE_ID => CORE_ID,

PLATFORM_TAG => PLATFORM_TAG,

MEM_INIT => MEM_INIT

)

port map (

-- System control.

reset => reset,

clk => clk,

clkEn => clkEn,

-- Run control interface.

rctrl2rv_irq => rctrl2rv_irq,

rctrl2rv_irqID => rctrl2rv_irqID,

rv2rctrl_irqAck => rv2rctrl_irqAck,

rctrl2rv_run => rctrl2rv_run,

rv2rctrl_idle => rv2rctrl_idle,

rctrl2rv_reset => rctrl2rv_reset,

rctrl2rv_resetVect => rctrl2rv_resetVect,

rv2rctrl_done => rv2rctrl_done,

-- Peripheral interface.

rvsa2bus => rvsa2bus,

bus2rvsa => bus2rvsa,

-- Debug interface.

debug2rvsa => debug2rvsa,

rvsa2debug => rvsa2debug

);

9.3.2 Interface description

As you can see in the template, the generics and signals are grouped by their function.
The following subsections will document each group.
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9.3.2.1 System configuration

These generics parameterize the system.

• CFG : rvex_sa_generic_config_type

This generic contains the configuration parameters for the core.
rvex_sa_generic_config_type is a record type with the following members.

– core : rvex_generic_config_type

This parameter specifies the ρ-VEX core configuration as passed to the bare
ρ-VEX processor core. Refer to Section 9.2.2.1 for more information.

– cache_enable : boolean

This parameter selects whether or not the cache should be instantiated. This
is false by default.

– cache_config : cache_generic_config_type

This parameter specifies the size of the cache blocks. cache_generic_config_type

is a record type with two natural-typed members: instrCacheLinesLog2 and
dataCacheLinesLog2. The sizes are determined as follows.

Instr. cache size = 4 ·Nlanes · 2instrCacheLinesLog2 ·NlaneGroups

Data cache size = 4 · 2dataCacheLinesLog2 ·NlaneGroups

The number of lane groups is part of the equation because the number of
lines are specified per block, and a different block is instantiated for each lane
group.

– cache_bypassRange : addrRange_type

This parameter specifies the range of addresses for which the cache (if
instantiated) is bypassed. This range is 0x80000000..0xFFFFFFFF by de-
fault.addrRange_type is a record containing four rvex_address_typemembers: low,
high, mask, and match. An address is considered to be part of the range if the
following VHDL expression is true.
unsigned(addr and mask) >= unsigned(low) and

unsigned(addr and mask) <= unsigned(high) and

std_match(addr, match)

This record may be set using the addrRange function, which allows parameters
to be omitted. The defaults for each parameter specify the complete 32-bit
address range, so it is usually sufficient to only set one or two of the parameters.

– imemDepthLog2B : natural

– dmemDepthLog2B : natural

These parameters specify the sizes of the local instruction and data memories
respectively if the cache is not used. Otherwise, dmemDepthLog2B specifies the
size of the unified memory and imemDepthLog2B is ignored. The size is specified
as the logarithm of the number of bytes. The default value is 16 for both of
these, resulting in 64 kiB memories.
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– traceDepthLog2B : natural

This parameter specifies the size of the trace buffer in the same way that the
memory sizes are specified. The default value is 13, resulting in a trace buffer
8 kiB in size. This size is required if the serial debug interface is to be used,
due to the way in which bulk data transfers are implemented in the serial
protocol.

– debugBusMap_imem : addrRangeAndMapping_type

– debugBusMap_dmem : addrRangeAndMapping_type

– debugBusMap_rvex : addrRangeAndMapping_type

– debugBusMap_trace : addrRangeAndMapping_type

These parameters specify which addresses on the debug bus are mapped to
which device. These parameters may be specified with the addrRangeAndMap

function, which takes the same parameters as the addrRange function discussed
for cache_bypassRange. In addition, it also allows the designer to change how
the address bits are mapped from source to peripheral address. Refer to the
comments in bus_addrConv_pkg.vhd for more information.
By default, the instruction memory is mapped to 0x10000000..0x1FFFFFFF and to
0x30000000..0x3FFFFFFF, the data memory is mapped to 0x20000000..0x3FFFFFFF,
the ρ-VEX debug port is mapped to 0xF0000000..0xFFFFFFFF and the
trace buffer is mapped to 0xE0000000..0xEFFFFFFF. Note that the range
0x30000000..0x3FFFFFFF maps to both the instruction and data memories. This
range allows the instruction and data memory to be written simultaneously,
limiting the upload time using the debug unit.

– debugBusMap_mutex : boolean

This parameter specifies whether logic needed to handle overlaps in the debug
bus address map is to be instantiated. If it is set to false, this logic is instan-
tiated, allowing bus write commands to access multiple memories at the same
time. This is the default. If it is set to true, overlaps are not supported, but
a some area may be saved.

– rvexDataMap_dmem : addrRangeAndMapping_type

– rvexDataMap_bus : addrRangeAndMapping_type

These parameters specify where data accesses from the ρ-VEX are to be
routed. They work the same way as the debugBusMap parameters. By de-
fault, the lower half of the address space, 0x00000000..0x7FFFFFFF, is mapped to
the data memory, and the remainder is mapped to the bus. Overlaps are not
allowed. Accesses made to unmapped addresses cause a bus fault.

Typically, one will want to use the rvex_sa_cfg function to specify this value. This
function takes as its arguments values for all the record members as specified above,
but has default values for each of them, meaning that not all of them have to be
specified. In addition, a base argument of type rvex_generic_config_type may be
specified, which will be used as the default value for unspecified parameters. This
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permits mutation of the CFG record as it passes from entity to subentity, which is
otherwise impossible to do with record generics.

Important note: in order to allow the function to detect whether the core and
cache_config fields are specified, the core_valid and cache_config_valid parameters
must be set to true, or the defaults will be substituted!

• CORE_ID : natural

This value is used to uniquely identify this core within a multicore platform. It is
made available to the programs running on the core and the debug system through
CR_COID.

• PLATFORM_TAG : std_logic_vector(55 downto 0)

This value is to uniquely identify the platform as a whole. It is intended that
this value be generated by the toolchain by hashing the source files and synthesis
options. It is made available to the programs running on the core and the debug
system through CR_PTAG.

• MEM_INIT : rvex_data_array

This value is used to initialize the instruction and data memories. If left unspecified,
the memories are initialized to zero.

9.3.2.2 System and run control interfaces

These interfaces are identical to those specified for the bare ρ-VEX core in Sections 9.2.2.2
and 9.2.2.3.

9.3.2.3 Peripheral and debug interfaces

• rvsa2bus : out bus_mst2slv_type

• bus2rvsa : in bus_slv2mst_type

These signals form a master ρ-VEX bus device, allowing the ρ-VEX to access mem-
ory or peripherals outside the processing system. A number of bus interconnection
primitives are available in rvex_rewrite/lib/rvex/bus. Instantiation of these primi-
tives is beyond the scope of this manual.

• debug2rvsa : in bus_mst2slv_type

• rvsa2debug : out bus_slv2mst_type

These signals form a slave ρ-VEX bus device, allowing devices outside the processing
system, such as the debug serial port peripheral, to access the local memories, trace
buffer and the ρ-VEX control registers.

The memory map of the debug interface is specified using generics. If the cache is
instantiated, The cache control register is mapped to the same address as CR_AFF.
Because CR_AFF is read-only and the cache control register is write only, this does
not cause conflicts. The cache control register has the following layout.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LAT DFL IFL

LAT field, bits 31..24

Must be written to a value between 1 and 254 inclusive for correct operation. That
amount of cycles plus one are added to the bus access delay in case of a cache
bypass, write or miss.

DFL field, bits 15..8

Each of these bits corresponds to an ρ-VEX lane group. Writing a one to a bit
causes the data cache block corresponding to the indexed lane group to be flushed.
Writing a zero has no effect.

IFL field, bits 7..0

Each of these bits corresponds to an ρ-VEX lane group. Writing a one to a bit
causes the instruction cache block corresponding to the indexed lane group to be
flushed. Writing a zero has no effect.

9.4 GRLIB processing system

The ρ-VEX GRLIB-based processing system has the following features.

• One AHB master interface per ρ-VEX lane group.

• Cache snooping on the AHB bus guarantees cache coherency with other processors
and the debug interface sharing the same bus.

• A LEON3 interrupt controller compatible interface is exposed. This allows the
ρ-VEX to use the interrupt controller that comes with GRLIB.

• For simulation, an S-record file specifying the expected memory contents can be
specified. Every instruction fetch and data access made by the ρ-VEX is snooped
and checked against this memory. The memory automatically updates when the
ρ-VEX writes a value. Whenever the cache returns an unexpected or inconsistent
value, a VHDL warning is printed.

9.4.1 Instantiation template

The following listing serves as an instantiation template for the system. The code is
documented in the following sections.

If you get errors when instantiating the core with this template, the documenta-
tion might be out of date. Fear not, for the signals are also documented in the entity
description in rvsys_standalone.vhd.

library rvex;

use rvex.common_pkg.all;

use rvex.bus_pkg.all;

use rvex.bus_addrConv_pkg.all;
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use rvex.core_pkg.all;

use rvex.cache_pkg.all;

use rvex.rvsys_grlib_pkg.all;

library grlib;

use grlib.amba.all;

use grlib.devices.all;

library gaisler;

use gaisler.leon3.all;

-- ...

rvex_grlib_inst: entity rvex.rvsys_grlib

generic map (

-- System configuration.

CFG => rvex_grlib_cfg(

core => rvex_cfg(

numLanesLog2 => 3,

numLaneGroupsLog2 => 2,

numContextsLog2 => 2

-- ...

),

core_valid => true,

cache => cache_cfg(

instrCacheLinesLog2 => 18,

dataCacheLinesLog2 => 18

),

cache_valid => true

),

PLATFORM_TAG => PLATFORM_TAG,

AHB_MASTER_INDEX_START => RVEX_MST_INDEX,

CHECK_MEM => false,

CHECK_MEM_FILE => ""

)

port map (

-- System control.

clki => clki,

rstn => rstn,

-- AHB interface.

ahbmi => ahbmi,

ahbmo => ahbmo_rvex,

ahbsi => ahbsi,

-- Debug interface.

bus2dgb => bus2dgb,

dbg2bus => dbg2bus,

-- LEON3 compatible interrupt controller interface.

irqi => irqi,

irqo => irqo
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);

9.4.2 Interface description

As you can see in the template, the generics and signals are grouped by their function.
The following subsections will document each group.

9.4.2.1 System configuration

These generics parameterize the system.

• CFG : rvex_grlib_generic_config_type

This generic contains the configuration parameters for the core.
rvex_grlib_generic_config_type is a record type with the following members.

– core : rvex_generic_config_type

This parameter specifies the ρ-VEX core configuration as passed to the bare
ρ-VEX processor core. Refer to Section 9.2.2.1 for more information.

– cache : cache_generic_config_type

This parameter specifies the size of the cache blocks. cache_generic_config_type

is a record type with two natural-typed members: instrCacheLinesLog2 and
dataCacheLinesLog2. The sizes are determined as follows.

Instr. cache size = 4 ·Nlanes · 2instrCacheLinesLog2 ·NlaneGroups

Data cache size = 4 · 2dataCacheLinesLog2 ·NlaneGroups

The number of lane groups is part of the equation because the number of
lines are specified per block, and a different block is instantiated for each lane
group.

Similar to the bare ρ-VEX and the standalone platform, the rvex_grlib_cfg function
is available to set this record.

Important note: in order to allow the function to detect whether the core and cache

fields are specified, the core_valid and cache_valid parameters must be set to true,
or the defaults will be substituted!

• PLATFORM_TAG : std_logic_vector(55 downto 0)

This value is to uniquely identify the platform as a whole. It is intended that
this value be generated by the toolchain by hashing the source files and synthesis
options. It is made available to the programs running on the core and the debug
system through CR_PTAG.
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• AHB_MASTER_INDEX_START : natural

This value must be set to the AHB master index of the first lane group. The
remaining lane groups are mapped to subsequent master indices. In addition, this
value is made available to the programs running on the core and the debug system
through CR_COID, to allow a program to uniquely identify which ρ-VEX it is running
on in a multicore system.

• CHECK_MEM : boolean

• CHECK_MEM_FILE : string

These parameters configure the simulation-only memory consistency checking
system. CHECK_MEM enables or disables the system. If the system is enabled,
CHECK_MEM_FILE must specify the filename of an S-record file holding the initial mem-
ory contents. The filename must be relative to the simulator search path.

9.4.2.2 System control interface

The system control signals include the clock source and the reset signal. All registers are
rising-edge triggered. The reset signal is active-low to comply with the AHB standard.
It is inverted in the system before it is passed to the ρ-VEX logic blocks, which assume
an active-high reset signal.

9.4.2.3 AHB interface

• ahbmi : in ahb_mst_in_type

• ahbmo : out ahb_mst_out_vector_type(number of lane groups - 1 downto 0)

These signals represent the AHB master interfaces that the cache blocks use as
their data source. One master interface is required for each ρ-VEX lane group.
The master indices must be a contiguous range, starting at the index specified by
the AHB_MASTER_INDEX_START generic.

• ahbsi : in ahb_slv_in_type

This signal must be tied to the signal that the AHB interconnect logic broadcasts
to all AHB slaves. It is used by the cache to monitor the bus for cache coherence
purposes.

9.4.2.4 Debug interface

• bus2dgb : in bus_mst2slv_type

• dbg2bus : out bus_slv2mst_type

The debug interface is a slave ρ-VEX bus device. It allows access to all control
registers in the system and the trace buffer. It should be connected to the AHB
bus using the ahb2bus bridge, possibly through additional ρ-VEX bus interconnect
primitives. This allows a single AHB to ρ-VEX bus bridge to be used for multiple
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ρ-VEX devices, similar to how an APB bridge allows multiple APB peripherals to
share a single AHB slave interface.

The ρ-VEX bus primitives are available in rvex_rewrite/lib/rvex/bus. Instantiation
of these primitives is beyond the scope of this manual.

The debug interface port has a fixed memory map, shown below.

Trace buffer 0x3FFF

0x2000

ρ-VEX context 7 registers 0x1FFF

0x1D00

Unused ...

ρ-VEX context 6 registers 0x1BFF

0x1900

Unused ...

ρ-VEX context 5 registers 0x17FF

0x1500

Unused ...

ρ-VEX context 4 registers 0x13FF

0x1100

Unused ...

ρ-VEX context 3 registers 0x0FFF

0x0D00

Unused ...

ρ-VEX context 2 registers 0x0BFF

0x0900

Unused ...

Cache control register 0x0803

0x0800

ρ-VEX context 1 registers 0x07FF

0x0500

Unused ...
Reset register 0x0400

ρ-VEX context 0 registers 0x03FF

0x0100

ρ-VEX global control registers 0x00FF

0x0000

The reset register resets the entire processing system when written. The only thing
that is not reset is the AHB bus bridge to prevent deadlocks due to the AHB bus
interconnect not being reset.

The cache control register has the following layout. Note that it is different from
the standalone system cache control register.

Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0800 IFL DFL B

Rev. 5cd37f2, ctag z1KS3dj



C-132 APPENDIX C. ρ-VEX USER MANUAL

IFL field, bits 7..0

Each of these bits corresponds to an ρ-VEX lane group. Writing a one to a bit
causes the instruction cache block corresponding to the indexed lane group to be
flushed. Writing a zero has no effect. The register always reads as 0.

DFL field, bits 15..8

Each of these bits corresponds to an ρ-VEX lane group. Writing a one to a bit
causes the data cache block corresponding to the indexed lane group to be flushed.
Writing a zero has no effect. The register always reads as 0.

B flag, bit 0

When this bit is set, the data cache is always bypassed. When it is cleared, the
cache is only bypassed for memory accesses to the upper half of the address space,
i.e. 0x80000000..0xFFFFFFFF. The flag resets to 0.

9.4.2.5 Interrupt controller interface

• irqi : in irq_in_vector(0 to number of contexts - 1 )

• irqo : out irq_out_vector(0 to number of contexts - 1 )

These signals should be tied to a GRLIB irqmp interrupt controller, with the number
of processors set to the number of ρ-VEX contexts.
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