
Calculation of Worst-Case Execution Time for
Multicore Processors using Deterministic Execution

Hamid Mushtaq, Zaid AI-Ars, Koen Bertels
Computer Engineering Laboratory

Delft University of Technology
Delft, the Netherlands

{H.Mushtaq, Z.Al-Ars, K.L.M.Bertels}@tudelft.nl

Abstract-Safety critical real time systems need to meet strict

timing deadlines. We use a model checking based approach to
calculate the WCET, where we apply optimizations to reduce
the number of states stored by the model checker. Furthermore,
we used deterministic shared memory accesses to further reduce
calculation time, memory and number of states needed for
calculating WCET. By optimizing the model checking code, we
were able to complete benchmarks which otherwise were having
state explosion problems. Furthermore, by using deterministic
execution, we significantly reduced the calculation time (up to
158x), memory (up to 89x) and states needed (up to 188x) for
calculating WCET with a negligible increase (up to 4%) in the
calculated WCET for a multicore system with 4 cores. Lastly,
unlike other state-of-the-art approaches, that perform binary
search to search the WCET by running several iterations, our
method calculates WCET in just one iteration. Taking all these
optimizations into consideration, the gain in speed was from
1775x to 2471x for 4 threads.

I. INTRODUCTION

Adapting multicore systems to real time embedded systems
is a challenging task, as a real time process, besides being error
free, must also meet timing deadlines. The real time scheduler
needs to know the worst-case execution time (WCET) of each
task. Finding a good WCET estimate (less pessimistic) of a
task is much simpler if it runs on a single core processor than
if it runs on a multicore processor concurrently with other
tasks. This is because those tasks can share resources, such as
shared cache or shared bus, and/or may need to concurrently
read and/or write shared data.

Recently, there has been an increase in interest to solve the
problem of finding WCET for tasks running on multicore pro­
cessors, from on-chip hardware support to software solutions
for commodity off the shelf (COTS) processors. But most of
those do not take into account the shared memory accesses. In
[6], the authors do take into account shared memory accesses,
but the state explosion problem of the model checking based
approach they use limits the effectiveness of that approach.

In this paper, we investigate, whether deterministic shared
memory accesses [7] [8] would reduce the possible number
of states used by the model checker and therefore reduce the
WCET calculation time. The contributions of this paper are as
follows.

• Limiting the state space explosion problem by uti­
lizing deterministic execution when calculating the
WCET of a multithreaded program running on multi­
cores using model checking.

• Implementing optimizations to further reduce the size

9781467394192/15/$31.00 ©2015 IEEE 33

Figure I. Methods used for WCET calculation

Figure 2. Measurement based vs static methods

of the state space as well as to get a tighter WCET
estimation.

• Using only one iteration to calculate the WCET rather
than performing binary search as used by the current
state-of-the-art approaches (which requires several it­
erations).

In Section II, we discuss the background, while in Sec­
tion III, we discuss the implementation. This is followed by
the Section IV, which discusses the performance evaluation.
We finally conclude the paper with Section V.

II. BACKGROUND

Safety critical real time embedded systems need not only
be functionally correct but also meet strict timing deadlines.
For this purpose, it is necessary to calculate the WCET of
these tasks. However, calculation of WCET is not straight
forward for modern processors due to features such as multi­
level caches and out of order execution.

There are two methods of calculating WCET, measurement
based and static methods as shown in Figure 1. In measurement
based methods, we test the execution time by giving different

Execution
time

Normalized
distribution

Exact WCET

Measured WCET

Static WCET

inputs. However, it is often very difficult to test a program
with all different inputs. Not checking the program with every
possible input might give an underestimated WCET, as shown
in Figure 2. A more appropriate approach is to use static meth­
ods, which can be classified into static-analysis and model­
checking based. In static analysis, rather than running the
program with different inputs, all possible paths are statically
checked for calculating WCET. In static analysis, often abstract
interpretation [l3] is used to model the architectural features of
a processor using an approximated model. On the other hand,
with model checking, one can write code for a precise model
of the processor. The result is a tighter WCET, but using more
computational overhead.

In this section, we first describe the problem of WCET
calculation (Section II-A), and then the description of deter­
ministic execution that can be used to reduce the number of
states during model checking (Section II-B).

A. WCET calculation

Modern processors have features such as cache hierarchies
and out of order execution, which are meant to improve the
average-case execution time of programs running on them.
However, these features make it much more difficult to deter­
mine a tight WCET. In addition, more complex architectures
mean more states for a model checker to keep track of, making
it more prone to state explosion problems. Despite these
problems, there exist sophisticated tools, such as Chronos [14],
that can guess a good WCET for programs running on single
core processors. Multicore systems on the other hand have
an additional complexity, due to shared resources, such as
shared memories. With shared memory, tasks running on
different cores also need to synchronize to access the shared
data, for example by using locks. This makes it difficult to
deduce tight WCET bounds for such systems. Synchronization
of shared memory accesses also means that many different
possible interleavings of the threads are possible, which further
aggravates the problem of calculating the WCET. They can
have timing anomalies due to shared resources and shared
memory accesses. For example, assume that a path ABD is the
worst-case path if seen separately, where A, B and D are basic
blocks. In the presence of shared L2 cache however, another
path, say ACD might become the worst-case path if a thread
running on another core evicts more instructions from C than
B in the L2 cache. Therefore, whenever analyzing WCET for
a multicore, we always need to consider all the tasks running
on different cores together, which can significantly increase
the complexity of timing analysis.

Recently, there have been several papers published which
deal with calculating WCET on multicore processors. A survey
of those techniques is given in [12]. Some of those assume that
there are no shared memory accesses by the tasks running on
the different cores. In other words, they assume that tasks are
running embarrassingly parallel to each other. They only cater
for the problem of shared L2 cache accesses [10] [1 1] and the
shared bus [5]. Papers like [15] and [16] do consider shared
memory synchronization, but they assume simpler processor
architectures which do not have any cache, but only scratchpad
memories. Such kind of processors are not mainstream and
require special programming techniques, since the scratchpad
memories have to be manually managed by the programmer.

34

Table l. COMPARISON OF DIFFERENT TOOLS

Tool Method Used L2 cache Shared data L1 CC

[10][11] Static analysis + - -

[5] Static analysis & + - -

Model checking
[15][16] Static analysis - + -

[9] Model checking + - -

[6]. This Model checking + + +

[6] considers both cache coherence as well as synchroniza­
tion operations such as spin locks for shared memory accesses.
The authors use UPAAL [3] based model checking for that
purpose. They do take into account shared memory accesses,
but their solution suffers from state explosion problem even for
very simple programs. [9] also uses model checking but do not
support synchronization operations. [17] recently proposed a
mathematical model to determine WCET of multicore systems
with caches and cache coherence using abstract interpretation.
However, they still do not consider cache coherence that is
generated due to accessing the shared synchronizing objects.
Moreover, they do not perform any evaluation.

All the tools described above are shown in Table I, along
with the methods they use and the platforms they are made
for. There is only one tool [6] which considers shared data
on systems with Ll cache coherence (Ll CC). However,
as explained before, it is too slow as it suffers from state
explosion problems even for very small programs. Our tool
improves upon that.

In this paper, we investigate whether model checking
overhead used for calculating WCET can be reduced using
deterministic shared memory accesses [7] [8]. We use the SPIN
model checker [1] with its associated language PROMELA
for model checking. Moreover, unlike [6], which uses a very
simple example, we use real benchmark programs written
in C. We use Chronos [14] to compile those programs into
assembly and also to construct the control flow graph (CFG).
The assembly code and CFG are then used to generate the
PROMELA code for model checking to calculate WCET.

B. Deterministic execution

Multithreaded programs have a frequent source of non­
determinism in the form of shared memory accesses. Due to
this, multithreaded programs can have many possible thread
interleavings for shared memory accesses, which makes it
difficult to find WCET of such programs. We can remove
interleavings for shared memory accesses altogether if we
know the input of the program and perform deterministic
execution, as deterministic execution would make sure that
the threads perform the shared memory accesses always in the
same sequence. Even for multiple inputs, we can still reduce
the possibilities as explained by [4].

One such algorithm for deterministic execution is
Kendo [7], which uses logical clocks for each thread to
determine when a thread will acquire a lock. The thread with
the least logical clock value gets the lock. For example, Thread
1 will be unable to acquire a lock when its logical clock (1029)
is higher than that of Thread 2 (329). But, as soon as Thread
2's clock get past 1029, Thread 1 may acquire the lock. With
DetLock [8], we showed that updating clocks ahead of time

Figure 3. Architecture of the processor used

Figure 4. Steps for WCET calculation

improves the performance as compared to Kendo. Therefore,
in this paper we also update the clocks ahead of time.

III. IMPLEMENTATION

In this section, we discuss the implementation of our
tool. Firstly, in Section III-A, we discuss the architecture of
the processor used. Next, in Section III-B, we discuss our
method of finding WCET using deterministic execution, while
in Section III-C, we discuss an optimization applied to reduce
the calculated WCET with deterministic execution. Finally
in section III-D, we describe our method of model checking
which avoids performing binary search to calculate WCET, as
done by other state of the art approaches.

A. Processor architecture

Since, the focus of this paper is to see how much reduction
in analysis time we get by using deterministic execution,

CiockBus2Core

Core
Core2ClockBus, Cycles

Clock and
Bus

Figure 5. Block diagram of communication between a core's process and
the Clock and Bus process

process. Similarly, for the non-shared data, we assume it has
already been brought to the Ll caches of the cores, since the
benchmarks we used are small enough to accOlmnodate the
local data in the Ll caches of the cores.

B. WCET calculation

As shown in Figure 4, we used the Chronos tool to extract
the CFG and assembly code. This CFG and assembly code is
then used to generate part of the code for our PROMELA code
used to calculate the WCET.

We have two kinds of processes in our model checker.
There is a core process for each of the cores while there
is a Clock and Bus process that represents the processor's
clock and the shared bus which manages cache coherency.
Figure 5 shows the communication channels between the
Clock and Bus process and a core's process. Through the
CiockBus2Core channel, the Clock and Bus process tells a
core to either go ahead or wait. A core's process on the other
hand sends the number of clock cycles it needs to advance to
the Clock and Bus process along with other information on
the Core2ClockBus channel, such as the address of a shared
memory access. Note that the only types of shared memory
accesses we allow in our model are the shared mutexes and
shared variables within locks.

I atomic {
min_clock = get_minimuffi_clock();

fori pid � 0; pid < NUM_OF_PROC; i++) {
if(clock[pid] �� min_clock)

advance (pid);

6)}

Listing 1. Pseudo-code to advance clock cycles

1 atomic {
line � get_cache_line_of_addr(addr);

if (!in_12_cache[line]) {
in_12_cache = true;

st[line] � clock[pid] + l2_mt;

wait_for_cycles(pid, l2_mt + ll_mt);
we assume a simple processor model, which is that every 7)
instruction takes one cycle and an Ll cache miss takes 10
cycles, while an L2 cache miss takes 80 cycles. Moreover, a

8 else if (clock[pid] <� st[line]) {

10
to_wait � st[line] - clock[pid] + ll_mt;

wait_for_cycles(pid, to_wait)i
taken branch causes extra 3 cycles. The architecture of the 11)
processor is shown in Figure 3. There are separate Ll caches 12 else

for instruction and data, while the L2 cache is shared. We 13 wait_foccycles (pid,

14)
also assume that there are as many read ports for instruction
cache as the number of cores. For cache coherence, we use
the MESI cache coherence protocol. We also assume that
every shared memory access takes place within a spinlock.
For checking whether a certain memory access can cause a
cache miss, we check the memory addresses. We check for
shared L2 cache misses only for instructions, while assuming
all the data is already there in the L2 cache. This assumption
is not unreasonable since a typical L2 cache can be large
enough to accommodate data for one loop cycle of a real time

35

Listing 2. Pseudo-code to access L2 cache for instructions

Since a model in which we explicitly synchronize each
thread at each clock cycle is quite costly, we have devised
a method to significantly reduce the overhead without in­
troducing errors. The C-style pseudo-code for that purpose,
which is part of the Clock and Bus process, is shown in
Listing 1. Only the cores with the minimum clocks are allowed
to progress, while those which have advanced ahead have

Thread 0

Ahead!O} = 40 - - -�
kl

�1 I
I
I
I

20 Jnstnuctions
I
I

2

20 Instructions

Thread 1

1 Ahead!l} = 45

[

k

l ---

r­
I
I
I

25 Jnsttuctions
I
I
I

r-�
Figure 6. Optimization to improve deterministic execution, WCET and
WCET calculation time

to wait. In this way, we make sure that the clocks of the
cores are synchronized and yet avoid the overhead of explicit
synchronization. In case of accessing instructions from the L2
cache, the C-style pseudo-code to make sure the cores progress
properly, is shown in Listing 2. This code is part of a core's
process. For example, if a core A experiences L2 cache miss
for a cache line, the next core B reading the same cache line
would read it from the L2 cache, as the core A would have
already brought it into the L2 cache. However, since core B
would access that cache line in a later time, to make sure this
is properly modeled, we save that value in st (line 5), and the
clock of core B is advanced using that value if its clock was
less than that of core A (line 8). Here ll_mt is the Ll cache
miss penalty while 12_mt is the L2 cache miss penalty. We
also use a simplified cache coherence model for shared data
which is read/modified only within locks, since only one core
would be reading/modifying that data.

We check the WCET, both with and without detenninistic
execution. For deterministic execution, we used a hardware
based comparator, as a totally software based detenninistic
execution would cause substantial cache coherence activity due
to reading the shared clocks for detenninistic execution. Each
core writes to one of the input registers of the comparator. The
comparator writes 1 to the output register whose corresponding
input register contains the smallest clock value, while writing
o to all the other output registers. In this way, a thread can
know, whether to acquire a lock by just reading the value
of its corresponding output register. In case of two or more
input registers having the smallest value, 1 is written to the
corresponding output register of the one with the least index.
Through this hardware, there is no need for threads to read
other cores' clocks and also no overhead is incurred due to
cache invalidations that occur for maintaining cache coherence.

Since for detenninistic execution, we assume a hardware
based mechanism, to have a fairer comparison between the
deterministic and non-detenninistic methods, we also compare
the deterministic execution with a method where we assume
a hardware based synchronization mechanism, that is, where
a lock could be acquired irmnediately, that is without the
overhead of cache coherency for compare and swap operation
on a shared variable.

36

C. Optimization of deterministic execution

We use the DetLock mechanism of updating clock for
deterministic execution. One limitation of that method is that a
thread cannot update its clock ahead of time if its waiting for
a lock, even when the lock it is waiting for is different from
the locks other threads are trying to acquire. For a program
with two threads, Thread 0 can acquire a lock only when its
clock is less than or equal to that of Thread 1 as shown by the
condition below, where dt[O J and dt[1} are logical clocks for
Thread 0 and Thread 1 respectively.

dt[O] ::; dt[l]

To overcome the above mentioned limitation, besides the
logical clock, we introduce two more variables for each thread.
These two variables are ahead and nl, where ahead is used by
a thread waiting for a lock to tell other threads, that its not
going to acquire a subsequent lock, which is different from
the one it is waiting for, at least for the amount of instructions
assigned to ahead. On the other hand, nl is the number of the
lock, or more precisely the address of the mutex in question.
The formula for lock acquisition for Thread 0, now changes
to the following.

dt[O] ::; (dt[l] + ahead[l] x (ni[l] =I- ni[O]))

This mechanism can be more easily understood by Fig­
ure 6. Here if Thread 0 has reached the place where it is trying
to acquire Lk2. With the DetLock only approach, it would
not be able to acquire that lock, until Thread 1 has unlocked
Lkl. However, with this new optimization, it would be able to
acquire Lk2 even if Thread 1 has not acquired lock Lkl yet.
Basically, when Thread 1 would reach the point where it is
about to acquire Lkl, Thread 0 would know that Thread 1 is
not going to acquire Lk2 until it would have executed more
instructions than what Thread 0 has executed up till now. With
this optimization, we can reduce the calculated WCET, albeit
at the cost of slightly increased WCET calculation time.

D. Avoiding binary search

Approaches using model checking to calculate the WCET,
such as [9] and [6] use assertions to find the WCET. So,
they have to run the model checker several times in a binary
mode fashion to reach the right WCET value. Although [6]
talks about using the sup operator of UPPAAL to avoid binary
search, the current stable release of UPPAAL, which is version
4.0. 13, does not support the sup operator. Only versions 4. 1
and greater of UPPAAL support the sup operator. That is why,
the authors of [6] discuss the sup operator only in the future
work section of their paper. On the other hand, our technique
of avoiding binary search works perfectly on the stable release
version of SPIN.

We avoid perfonning binary search by logging the value of
the elapsed time instead. We make use of the VAR_RANGES
flag in SPIN to log the ranges of the variables. However,
VAR_RANGES only give ranges from 0-255. Since, SPIN
generates C files which are further compiled to make the
executable model checking file, it is possible to modify the
C code to log the full integer value of the elapsed time. We
have written a script that does exactly that by inserting code
in the logval function to log the value of the elapsed time,
the maximum value of which is taken as the WCET. Running

Table II. BENCHMARK CHARACTERISTICS

Benchmark Basic Cond Locks Max L2
blocks branches cache

misses
Fluidanimate (ComputeForcesMT) " 2 2 12
Network (thread_ippktcheck) 20 " 2 16
Radiosity (radiosity averaging) 6 3 3 12

1000

Slowdown without deterministic execution (Software based lock) c:::::::J
Slowdown without deterministic execution (Hardware based lock) c::::::::J

100 I-::-

10 t- r-- - -

II
0;-�('�05>;- 0;-�('�05>;-

Fluidanimate (2T) Fluidanimate (4T)

0;-�('�05>;­
Network (2T)

r-- -----,

- 1- -----,

�I
0;-�('�05>;­

Radiosity (2T)

0;-�('�05>;­
Radiosity (4T)

Figure 7. Slowdown with non-deterministic execution w.r.t deterministic
execution (Panels 2 & 3 in Table III)

the model checker with VAR_RANGES flag increases the
calculation time, but is still a much faster method than running
several iterations to reach the WCET value through binary
search.

IV. PERFORMANCE EVALUATION

In this section, we will discuss the results that we achieved
by applying optimizations and using deterministic execution.
Section IV-A discuss the results, while Section IV-B shows
further improvement achieved by avoiding binary search to
reach the WCET value.

A. Results

We selected three benchmarks. One is Fluidanimate from
the PARSEC [18] benchmarks suite, another one is a Network
protocol benchmark from EEMBC [2] and lastly we have
Radiosity from SPLASH [19]. We only used a portion of these
applications. Those portions included shared memory accesses.
The characteristics of those parts of the code are shown in
Table II. The names of the functions from which the code is
taken are also shown. To run these benchmarks, we used a
computer with 96GB RAM. We used the DCOLLAPSE flag
of PROMELA for compressing memory. The results are shown
in Table III.

Using only the approach of [6] and without applying the
optimizations discussed in Section III-B, none of the bench­
marks could complete, due to the state explosion problem.
With our optimizations, most of the configurations could finish.
Those configurations that still could not finish are indicated
with a 00 mark in Table III.

37

25.12

r-
15.85

10.00 1
I--

6.31 1

3.98 1

2.51 1

1.58 1

1.00
0;- �('� 05>;- 0;- �('� 05>;-

Fluidanimate (2T) Fluidanimate (4T)

r-

I--r-

........

........

0;- �('� 05>;-

�eeW2h��2rP

-

-

........

0;- �('� 05>;­
Radiosity (2T)

nn
0;- �('� 05>;­

Radiosity (4T)

Figure 8. Slowdown of updating clocks after execution (Panel 4 in Table III)

The first panel in the Table III shows the results with deter­
ministic execution with clocks updated ahead of time. The sec­
ond panel shows the results with non-deterministic execution
with hardware based lock acquisition, which do not require
cache coherence for the shared mutexes. Adding hardware­
based lock acquisition is done to have a fair comparison
with the deterministic case, because we used hardware based
deterministic execution to avoid excessive cache coherency that
comes with software based deterministic execution. The third
panel shows non-deterministic execution with normal software
based lock acquisition that does involve cache coherence for
the shared mutexes. Lastly, the fourth panel shows the results
with deterministic execution that does not update the clock
ahead of time but after execution, like Kendo.

From the Table III, we can see that deterministic execution
with optimized clock updates (clocks updated ahead of time)
gives the best results in terms of calculation time, memory
consumed and number of states stored. Introducing determin­
istic execution does however increase the WCET slightly due
to the extra code included in the programs. The increase
in WCET however is not more than 4% for the selected
benchmarks. The improvement in calculation time, memory
consumed and number of states stored scales with the number
of threads used. For example, for the F1uidanimate benchmark,
the calculation time, memory consumed and number of states
were reduced by as much as 158x, 89x and 188x respectively
for 4 threads. From Panel 3 of Table III, we can see that the
lack of hardware support causes cache coherency for shared
mutexes to significantly increase calculation time, memory
and states. The comparison of non-deterministic execution
with respect to the deterministic version is also illustrated in
Figure 7, where the bars on the left (in white color) show
the overhead for non-deterministic execution with hardware
support while the colored bars on the right show the overhead
without hardware support. In cases where the later could not
complete, we leave that column empty, that is, no bar is drawn.
In that figure, CT represents calculation time, MEM represents
memory consumed and ST represents the number of states used
by the model checker.

Our method of updating clocks ahead of time also shows to
significantly improve both the WCET and calculation time, as

Table III. PERFORMANCE RESULTS

Configuration ParamlBM Fluidanimate (ComputeForcesMT) Network (thread ippktcheck) Radiosity (radiosity averaging)

Number of cores 2

1. Deterministic with optimized clock up-
WCET(cycles) 1209

dates and hardware support Calculation lime (secs) 0.11
MemOlY consumed (MB) 179.8

Stales (millions) 0.031
WCET(cycles) 1200 (0.99x)

2. Non4deterministic with hardware support Calculation lime (sees) 0.74 (6.7x)

MemOlY consumed (MB) 194.2 (1.08x)

Stales (millions) 0.21 (6.�x)

3. Non-deterministic without hardware sup-
WCET(cycles) 1254 (1.04x)

port Calculation lime (secs) 7.78 (71x)

MemOlY consumed (MB) 289.5 (1.61x)

Stales (millions) 2.03 (65x)

4. Deterministic without optimized clock up·
WCET(cycles) 1224 (1.01x)

dates and with hardware support Calculation time (sees) 0.46 (O.I�X)

MemOlY consumed (MB) 187.8 (l.04x)

States (millions) 0.13 (O.I'X)

compared to updating clocks after execution. The improvement
in WCET happens due to the fact that by updating clocks ahead
of time, we reduce the waiting time of a thread waiting for a
lock. That waiting also increases the possible number of states,
thus increasing the calculation time and memory consumed.
The slowdown caused by updating clocks after execution is
illustrated in Figure 8.

In Table IV, we discuss the improvement in WCET that we
observed by applying the optimization that we discussed in
Section III-C, that is, by using the ahead and nl variables to
allow a thread to proceed with lock acquisition even when
another thread is waiting for a lock but has a lesser value
of logical clock. We show the numbers for the Radiosity
benchmark for both 2 and 4 threads. The other two benchmarks
do not have different mutexes, so we could not apply this
optimization to them. In the Wlo opt column, we use the
basic DetLock mechanism of updating the clock ahead of time,
while in With opt, we also use ahead and nl variables. In
the With opt column, we also show improvement (> Ix) or
degradation « Ix) for all the parameters as compared to the
Wlo opt column. From the table, for 4 threads, we can see
improvement in WCET at the cost of increased number of
states, memory consumption and calculation time. However,
these numbers are still much better than the non-deterministic
case (see Table III).

B. Improvement by avoiding binary search

In Section III-D, we discussed how we can avoid binary
search by modifying the C code generated by SPIN to include
the code to log the elapsed time value. This method avoids
performing binary search as done by the state of the art
approaches that use model checking to calculate WCET, such
as [9] and [6]. Table V shows the overall speedup for 4 threads,
including that which comes from avoiding the binary search.
The column titled Wlo VR shows the calculation time without
using VAR_RANGES (See Section III-D to see discussion
about the VAR_RANGES flag), while the With VR column
shows the calculation time by using it. Next we show the
speedup that we achieved with deterministic execution (DE)
with clocks updated ahead of time, followed by the number of
iterations used to reach WCET if binary search (BS) is used.

38

4 2 2 4

1209 1276 1378 1506
25.1 1050 0.1 3.42
410.6 11414 178.8 201.3
2.9 218.7 0.019 0.34

1200 (0.99x) 1257 (0.99x) 1346 (0.98x) 1442 (O.96x)

3980 (15�x) 7300 (7x) 0.36 (3.6x) 428 (IZ5x)

36595.4 (89x) 81919.9 (7.2x) 182.3 (1.02x) 3445.1 (l7x)

544.4 (1�x) 1576.6 (7 .• x) 0.053 (•• 7 ..) 46.96 (I.mx)

00 00 1444 (1.05x) 00

00 00 7.6 (76x) 00

00 00 337.8 (1.�9x) 00

00 00 1.63 (�6x) 00

1364 (l.13x) 1297 (1.02x) 1509 (1.1x) 1889 (1.25x)

414 (16x) 9450 (,x) 0.32 (.5.") 4.49 (_IIX)

3653.3 (�.9x) 81919.9 (7.2x) 180.8 (I.OIx) 208.9 (1.04x)

57.8 «ux) 1645.37 (7.5x) 0.041 (•• IOX) 0.47 (_,�x)

Table IV. IMPROVEMENT BY UPDATING CLOCK AHEAD OF A LOCK

ACQUISITION FOR RADI0SITY BENCHMARK

Parameters 2 threads 4 threads

Configuration Wlo opt With opt Wlo opt With opt
WCET (cycles) 1440 1378 (1.04x) 1728 1516 (1.l5x)

Calc time (secs) 0.17 0.1 (1.7x) 3.33 3.42 (O.97x)

Mem consumed (MB) 179.0 178.8 (Ix) 192.28 201.3 (O.96x)

Slales (millions) 0.021 0.019 (1.Ux) 0.21 0.34 (O.62x)

Table V. IMPROVEMENT BY AVOIDING BINARY SEARCH (FOR 4
THREADS)

Benchmark W/o VR With VR DE BS itera- Overall
(sees) (sees) speedup lions speedup

F1uidanimate 18.7 25.1 158x 21 2471 x

Radiosity 2.70 3.42 125x 18 1775x

The overall speedup is then calculated by using the following
formula.

(WithouCV R/With_V R) x DE_speedup x BS_iters

From the table, we can see that for the Fluidanimate
benchmark, the overall speedup is as high as 247Ix.

V. CONCLUSIONS

In this paper, we used model checking for estimating the
WCET for portions of the applications where shared memory
accesses occurred. We showed that by using deterministic
execution, we can reduce calculation time and memory us­
age significantly at the cost of negligible increase of the
calculated WCET. We significantly reduced the time (up to
I58x), memory (up to 89x) and states (up to I88x) for
calculating WCET with a negligible increase (up to 4%) in the
calculated WCET for a multicore system with 4 threads. We
also showed an improvement in all the parameters, if we update
the deterministic execution clock ahead of time, as in the case
of DetLock. Moreover, we avoid performing binary search to
calculate the WCET, which involves running several iterations
of the model checker, by modifying the C code generated by
SPIN to log the value of the elapsed time instead. The total
combined gain in speed was found to be as high as 247Ix. The
state explosion problem still poses a challenge to this solution

for practical purposes though. Future work will focus on an
approach which combines static analysis with model-checking
might be used to overcome that problem.

ACKNOWLEDGMENT

This work is carried out under the BENEFIC project
(CA505), a project labeled within the framework of
CATRENE, the EUREKA cluster for Application and Tech­
nology Research in Europe on NanoElectronics.

REFERENCES

[1] http://spinroot.comlspin/whatispin.html

[2] http://www.eembc.org/

[3] Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal.
pages 200-236. Springer. 2004.

[4] Tom Bergan, Joseph Devietti, Nicholas Hunt, and Luis Ceze. The
deterministic execution hammer: How well does it actually pound
nails? In 2nd Workshop on Determinism and Correctness in Parallel
Programming, 2011.

[5] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Mod­
eling shared cache and bus in multi-cores for timing analysis. In
SCOPES, 2010.

[6] Andreas Gustavsson, Andreas Ermedahl, Bjorn Lisper, and Paul Pet­
tersson. Towards wcet analysis of multi core architectures using uppaal.
In Proceedings of the 10th International Workshop on Worst-Case

Execution Time Analysis, 2010.

[7] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo:
efficient deterministic multithreading in software. SIGPLAN Not.,
44(3):97-108, March 2009.

[8] Hamid Mushtaq, Zaid AI-Ars and Koen Bertels. Detlock: Portable and
efficient deterministic execution for shared memory multicore systems.
In High Peiformance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:. pages 721-730, 2012.

39

[9] Lan Wu and Wei Zhang. A model checking based approach to bounding
worst-case execution time for multi core processors. ACM Trans. Embed.

Comput. Syst., 1l(S2):56:1-56:19, August 2012.

[10] Jun Yan and Wei Zhang. Wcet analysis for multi-core processors with
shared 12 instruction caches. In RTAS,2008.

[11] Wei Zhang and Jun Yan. Accurately estimating worst-case execution
time for multi-core processors with shared direct-mapped instruction
caches. In RTCSA, 2009.

[12] Hamid Mushtaq, Zaid AI-Ars and Koen Bertels. Accurate and efficient
identification of worst-case execution time for multicore processors: A
survey. In lDT 2013.

[13] S. Bygde. Static WCET Analysis Based on Abstract Interpretation and
Counting of Elements. Lic. dissertation, School of Innovation, Design
and Engineering, March 2010.

[14] Xianfeng Li, Yun Liang, Tulika Mitra, Abhik Roychoudhury. Chronos:
A Timing Analyzer for Embedded Software. Science of Computer
Programming, Special issue on Experimental Software and Toolkit,
69(1-3), December 2007.

[15] Haluk Ozaktas, Christine Rochange, and Pascal Sainrat. Automatic
WCET Analysis of Real-Time Parallel. In 13th International Workshop
on Worst-Case Execution Time Analysis, 2013.

[16] Mike Gerdes, Theo Ungerer and Rudolf Knorr. Timing Analysable
Synchronisation Techniques for Parallel Programs on Embedded Multi­
Cores. Phd Thesis.

[17] Sudipta Chattopadhyay. Time-predictable Execution of Embedded
Software on Multi-core Platforms. Phd Thesis.

[18] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark
suite: characterization and architectural implications. In PACT, 2008.

[19] S.c. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-
2 Programs: Characterization and Methodological Considerations. In
lSCA, 1995.

