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Abstract-Safety critical real time systems need to meet strict 

timing deadlines. We use a model checking based approach to 
calculate the WCET, where we apply optimizations to reduce 
the number of states stored by the model checker. Furthermore, 
we used deterministic shared memory accesses to further reduce 
calculation time, memory and number of states needed for 
calculating WCET. By optimizing the model checking code, we 
were able to complete benchmarks which otherwise were having 
state explosion problems. Furthermore, by using deterministic 
execution, we significantly reduced the calculation time (up to 
158x), memory (up to 89x) and states needed (up to 188x) for 
calculating WCET with a negligible increase (up to 4%) in the 
calculated WCET for a multicore system with 4 cores. Lastly, 
unlike other state-of-the-art approaches, that perform binary 
search to search the WCET by running several iterations, our 
method calculates WCET in just one iteration. Taking all these 
optimizations into consideration, the gain in speed was from 
1775x to 2471x for 4 threads. 

I. INTRODUCTION 

Adapting multicore systems to real time embedded systems 
is a challenging task, as a real time process, besides being error 
free, must also meet timing deadlines. The real time scheduler 
needs to know the worst-case execution time (WCET) of each 
task. Finding a good WCET estimate (less pessimistic) of a 
task is much simpler if it runs on a single core processor than 
if it runs on a multicore processor concurrently with other 
tasks. This is because those tasks can share resources, such as 
shared cache or shared bus, and/or may need to concurrently 
read and/or write shared data. 

Recently, there has been an increase in interest to solve the 
problem of finding WCET for tasks running on multicore pro­
cessors, from on-chip hardware support to software solutions 
for commodity off the shelf (COTS) processors. But most of 
those do not take into account the shared memory accesses. In 
[6], the authors do take into account shared memory accesses, 
but the state explosion problem of the model checking based 
approach they use limits the effectiveness of that approach. 

In this paper, we investigate, whether deterministic shared 
memory accesses [7] [8] would reduce the possible number 
of states used by the model checker and therefore reduce the 
WCET calculation time. The contributions of this paper are as 
follows. 

• Limiting the state space explosion problem by uti­
lizing deterministic execution when calculating the 
WCET of a multithreaded program running on multi­
cores using model checking. 

• Implementing optimizations to further reduce the size 
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Figure I. Methods used for WCET calculation 

Figure 2. Measurement based vs static methods 

of the state space as well as to get a tighter WCET 
estimation. 

• Using only one iteration to calculate the WCET rather 
than performing binary search as used by the current 
state-of-the-art approaches (which requires several it­
erations). 

In Section II, we discuss the background, while in Sec­
tion III, we discuss the implementation. This is followed by 
the Section IV, which discusses the performance evaluation. 
We finally conclude the paper with Section V. 

II.  BACKGROUND 

Safety critical real time embedded systems need not only 
be functionally correct but also meet strict timing deadlines. 
For this purpose, it is necessary to calculate the WCET of 
these tasks. However, calculation of WCET is not straight 
forward for modern processors due to features such as multi­
level caches and out of order execution. 

There are two methods of calculating WCET, measurement 
based and static methods as shown in Figure 1. In measurement 
based methods, we test the execution time by giving different 
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inputs. However, it is often very difficult to test a program 
with all different inputs. Not checking the program with every 
possible input might give an underestimated WCET, as shown 
in Figure 2. A more appropriate approach is to use static meth­
ods, which can be classified into static-analysis and model­
checking based. In static analysis, rather than running the 
program with different inputs, all possible paths are statically 
checked for calculating WCET. In static analysis, often abstract 
interpretation [l3] is used to model the architectural features of 
a processor using an approximated model. On the other hand, 
with model checking, one can write code for a precise model 
of the processor. The result is a tighter WCET, but using more 
computational overhead. 

In this section, we first describe the problem of WCET 
calculation (Section II-A), and then the description of deter­
ministic execution that can be used to reduce the number of 
states during model checking (Section II-B). 

A. WCET calculation 

Modern processors have features such as cache hierarchies 
and out of order execution, which are meant to improve the 
average-case execution time of programs running on them. 
However, these features make it much more difficult to deter­
mine a tight WCET. In addition, more complex architectures 
mean more states for a model checker to keep track of, making 
it more prone to state explosion problems. Despite these 
problems, there exist sophisticated tools, such as Chronos [ 14], 
that can guess a good WCET for programs running on single 
core processors. Multicore systems on the other hand have 
an additional complexity, due to shared resources, such as 
shared memories. With shared memory, tasks running on 
different cores also need to synchronize to access the shared 
data, for example by using locks. This makes it difficult to 
deduce tight WCET bounds for such systems. Synchronization 
of shared memory accesses also means that many different 
possible interleavings of the threads are possible, which further 
aggravates the problem of calculating the WCET. They can 
have timing anomalies due to shared resources and shared 
memory accesses. For example, assume that a path ABD is the 
worst-case path if seen separately, where A, B and D are basic 
blocks. In the presence of shared L2 cache however, another 
path, say ACD might become the worst-case path if a thread 
running on another core evicts more instructions from C than 
B in the L2 cache. Therefore, whenever analyzing WCET for 
a multicore, we always need to consider all the tasks running 
on different cores together, which can significantly increase 
the complexity of timing analysis. 

Recently, there have been several papers published which 
deal with calculating WCET on multicore processors. A survey 
of those techniques is given in [ 12]. Some of those assume that 
there are no shared memory accesses by the tasks running on 
the different cores. In other words, they assume that tasks are 
running embarrassingly parallel to each other. They only cater 
for the problem of shared L2 cache accesses [ 10] [ 1 1] and the 
shared bus [5]. Papers like [ 15] and [ 16] do consider shared 
memory synchronization, but they assume simpler processor 
architectures which do not have any cache, but only scratchpad 
memories. Such kind of processors are not mainstream and 
require special programming techniques, since the scratchpad 
memories have to be manually managed by the programmer. 
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Table l. COMPARISON OF DIFFERENT TOOLS 

Tool Method Used L2 cache Shared data L1 CC 

[10][11] Static analysis + - -

[5] Static analysis & + - -

Model checking 
[15][16] Static analysis - + -

[9] Model checking + - -

[6]. This Model checking + + + 

[6] considers both cache coherence as well as synchroniza­
tion operations such as spin locks for shared memory accesses. 
The authors use UPAAL [3] based model checking for that 
purpose. They do take into account shared memory accesses, 
but their solution suffers from state explosion problem even for 
very simple programs. [9] also uses model checking but do not 
support synchronization operations. [ 17] recently proposed a 
mathematical model to determine WCET of multicore systems 
with caches and cache coherence using abstract interpretation. 
However, they still do not consider cache coherence that is 
generated due to accessing the shared synchronizing objects. 
Moreover, they do not perform any evaluation. 

All the tools described above are shown in Table I, along 
with the methods they use and the platforms they are made 
for. There is only one tool [6] which considers shared data 
on systems with Ll cache coherence (Ll CC). However, 
as explained before, it is too slow as it suffers from state 
explosion problems even for very small programs. Our tool 
improves upon that. 

In this paper, we investigate whether model checking 
overhead used for calculating WCET can be reduced using 
deterministic shared memory accesses [7] [8]. We use the SPIN 
model checker [ 1] with its associated language PROMELA 
for model checking. Moreover, unlike [6], which uses a very 
simple example, we use real benchmark programs written 
in C. We use Chronos [ 14] to compile those programs into 
assembly and also to construct the control flow graph (CFG). 
The assembly code and CFG are then used to generate the 
PROMELA code for model checking to calculate WCET. 

B. Deterministic execution 

Multithreaded programs have a frequent source of non­
determinism in the form of shared memory accesses. Due to 
this, multithreaded programs can have many possible thread 
interleavings for shared memory accesses, which makes it 
difficult to find WCET of such programs. We can remove 
interleavings for shared memory accesses altogether if we 
know the input of the program and perform deterministic 
execution, as deterministic execution would make sure that 
the threads perform the shared memory accesses always in the 
same sequence. Even for multiple inputs, we can still reduce 
the possibilities as explained by [4]. 

One such algorithm for deterministic execution is 
Kendo [7], which uses logical clocks for each thread to 
determine when a thread will acquire a lock. The thread with 
the least logical clock value gets the lock. For example, Thread 
1 will be unable to acquire a lock when its logical clock ( 1029) 
is higher than that of Thread 2 (329). But, as soon as Thread 
2's clock get past 1029, Thread 1 may acquire the lock. With 
DetLock [8], we showed that updating clocks ahead of time 



Figure 3. Architecture of the processor used 

Figure 4. Steps for WCET calculation 

improves the performance as compared to Kendo. Therefore, 
in this paper we also update the clocks ahead of time. 

III. IMPLEMENTATION 

In this section, we discuss the implementation of our 
tool. Firstly, in Section III-A, we discuss the architecture of 
the processor used. Next, in Section III-B, we discuss our 
method of finding WCET using deterministic execution, while 
in Section III-C, we discuss an optimization applied to reduce 
the calculated WCET with deterministic execution. Finally 
in section III-D, we describe our method of model checking 
which avoids performing binary search to calculate WCET, as 
done by other state of the art approaches. 

A. Processor architecture 

Since, the focus of this paper is to see how much reduction 
in analysis time we get by using deterministic execution, 

CiockBus2Core 

Core 
Core2ClockBus, Cycles 

Clock and 
Bus 

Figure 5. Block diagram of communication between a core's process and 
the Clock and Bus process 

process. Similarly, for the non-shared data, we assume it has 
already been brought to the Ll caches of the cores, since the 
benchmarks we used are small enough to accOlmnodate the 
local data in the Ll caches of the cores. 

B. WCET calculation 

As shown in Figure 4, we used the Chronos tool to extract 
the CFG and assembly code. This CFG and assembly code is 
then used to generate part of the code for our PROMELA code 
used to calculate the WCET. 

We have two kinds of processes in our model checker. 
There is a core process for each of the cores while there 
is a Clock and Bus process that represents the processor's 
clock and the shared bus which manages cache coherency. 
Figure 5 shows the communication channels between the 
Clock and Bus process and a core's process. Through the 
CiockBus2Core channel, the Clock and Bus process tells a 
core to either go ahead or wait. A core's process on the other 
hand sends the number of clock cycles it needs to advance to 
the Clock and Bus process along with other information on 
the Core2ClockBus channel, such as the address of a shared 
memory access. Note that the only types of shared memory 
accesses we allow in our model are the shared mutexes and 
shared variables within locks. 

I atomic { 
min_clock = get_minimuffi_clock(); 

fori pid � 0; pid < NUM_OF_PROC; i++ ) { 
if( clock[pid] �� min_clock ) 

advance ( pid ); 

6 )} 

Listing 1. Pseudo-code to advance clock cycles 

1 atomic { 
line � get_cache_line_of_addr(addr); 

if (!in_12_cache[line]) { 
in_12_cache = true; 

st[line] � clock[pid] + l2_mt; 

wait_for_cycles( pid, l2_mt + ll_mt ); 
we assume a simple processor model, which is that every 7) 
instruction takes one cycle and an Ll cache miss takes 10 
cycles, while an L2 cache miss takes 80 cycles. Moreover, a 

8 else if ( clock[pid] <� st[line] ) { 

10 
to_wait � st[line] - clock[pid] + ll_mt; 

wait_for_cycles( pid, to_wait )i 
taken branch causes extra 3 cycles. The architecture of the 11 ) 
processor is shown in Figure 3. There are separate Ll caches 12 else 

for instruction and data, while the L2 cache is shared. We 13 wait_foccycles ( pid, 

14 ) 
also assume that there are as many read ports for instruction 
cache as the number of cores. For cache coherence, we use 
the MESI cache coherence protocol. We also assume that 
every shared memory access takes place within a spinlock. 
For checking whether a certain memory access can cause a 
cache miss, we check the memory addresses. We check for 
shared L2 cache misses only for instructions, while assuming 
all the data is already there in the L2 cache. This assumption 
is not unreasonable since a typical L2 cache can be large 
enough to accommodate data for one loop cycle of a real time 
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Listing 2. Pseudo-code to access L2 cache for instructions 

Since a model in which we explicitly synchronize each 
thread at each clock cycle is quite costly, we have devised 
a method to significantly reduce the overhead without in­
troducing errors. The C-style pseudo-code for that purpose, 
which is part of the Clock and Bus process, is shown in 
Listing 1. Only the cores with the minimum clocks are allowed 
to progress, while those which have advanced ahead have 
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Figure 6. Optimization to improve deterministic execution, WCET and 
WCET calculation time 

to wait. In this way, we make sure that the clocks of the 
cores are synchronized and yet avoid the overhead of explicit 
synchronization. In case of accessing instructions from the L2 
cache, the C-style pseudo-code to make sure the cores progress 
properly, is shown in Listing 2. This code is part of a core's 
process. For example, if a core A experiences L2 cache miss 
for a cache line, the next core B reading the same cache line 
would read it from the L2 cache, as the core A would have 
already brought it into the L2 cache. However, since core B 
would access that cache line in a later time, to make sure this 
is properly modeled, we save that value in st (line 5), and the 
clock of core B is advanced using that value if its clock was 
less than that of core A (line 8). Here ll_mt is the Ll cache 
miss penalty while 12_mt is the L2 cache miss penalty. We 
also use a simplified cache coherence model for shared data 
which is read/modified only within locks, since only one core 
would be reading/modifying that data. 

We check the WCET, both with and without detenninistic 
execution. For deterministic execution, we used a hardware 
based comparator, as a totally software based detenninistic 
execution would cause substantial cache coherence activity due 
to reading the shared clocks for detenninistic execution. Each 
core writes to one of the input registers of the comparator. The 
comparator writes 1 to the output register whose corresponding 
input register contains the smallest clock value, while writing 
o to all the other output registers. In this way, a thread can 
know, whether to acquire a lock by just reading the value 
of its corresponding output register. In case of two or more 
input registers having the smallest value, 1 is written to the 
corresponding output register of the one with the least index. 
Through this hardware, there is no need for threads to read 
other cores' clocks and also no overhead is incurred due to 
cache invalidations that occur for maintaining cache coherence. 

Since for detenninistic execution, we assume a hardware 
based mechanism, to have a fairer comparison between the 
deterministic and non-detenninistic methods, we also compare 
the deterministic execution with a method where we assume 
a hardware based synchronization mechanism, that is, where 
a lock could be acquired irmnediately, that is without the 
overhead of cache coherency for compare and swap operation 
on a shared variable. 
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C. Optimization of deterministic execution 

We use the DetLock mechanism of updating clock for 
deterministic execution. One limitation of that method is that a 
thread cannot update its clock ahead of time if its waiting for 
a lock, even when the lock it is waiting for is different from 
the locks other threads are trying to acquire. For a program 
with two threads, Thread 0 can acquire a lock only when its 
clock is less than or equal to that of Thread 1 as shown by the 
condition below, where dt[O J and dt[ 1} are logical clocks for 
Thread 0 and Thread 1 respectively. 

dt[O] ::; dt[l] 

To overcome the above mentioned limitation, besides the 
logical clock, we introduce two more variables for each thread. 
These two variables are ahead and nl, where ahead is used by 
a thread waiting for a lock to tell other threads, that its not 
going to acquire a subsequent lock, which is different from 
the one it is waiting for, at least for the amount of instructions 
assigned to ahead. On the other hand, nl is the number of the 
lock, or more precisely the address of the mutex in question. 
The formula for lock acquisition for Thread 0, now changes 
to the following. 

dt[O] ::; (dt[l] + ahead[l] x (ni[l] =I- ni[O])) 

This mechanism can be more easily understood by Fig­
ure 6. Here if Thread 0 has reached the place where it is trying 
to acquire Lk2. With the DetLock only approach, it would 
not be able to acquire that lock, until Thread 1 has unlocked 
Lkl. However, with this new optimization, it would be able to 
acquire Lk2 even if Thread 1 has not acquired lock Lkl yet. 
Basically, when Thread 1 would reach the point where it is 
about to acquire Lkl, Thread 0 would know that Thread 1 is 
not going to acquire Lk2 until it would have executed more 
instructions than what Thread 0 has executed up till now. With 
this optimization, we can reduce the calculated WCET, albeit 
at the cost of slightly increased WCET calculation time. 

D. Avoiding binary search 

Approaches using model checking to calculate the WCET, 
such as [9] and [6] use assertions to find the WCET. So, 
they have to run the model checker several times in a binary 
mode fashion to reach the right WCET value. Although [6] 
talks about using the sup operator of UPPAAL to avoid binary 
search, the current stable release of UPPAAL, which is version 
4.0. 13, does not support the sup operator. Only versions 4. 1 
and greater of UPPAAL support the sup operator. That is why, 
the authors of [6] discuss the sup operator only in the future 
work section of their paper. On the other hand, our technique 
of avoiding binary search works perfectly on the stable release 
version of SPIN. 

We avoid perfonning binary search by logging the value of 
the elapsed time instead. We make use of the VAR_RANGES 
flag in SPIN to log the ranges of the variables. However, 
VAR_RANGES only give ranges from 0-255. Since, SPIN 
generates C files which are further compiled to make the 
executable model checking file, it is possible to modify the 
C code to log the full integer value of the elapsed time. We 
have written a script that does exactly that by inserting code 
in the logval function to log the value of the elapsed time, 
the maximum value of which is taken as the WCET. Running 



Table II. BENCHMARK CHARACTERISTICS 

Benchmark Basic Cond Locks Max L2 
blocks branches cache 

misses 
Fluidanimate (ComputeForcesMT) " 2 2 12 
Network (thread_ippktcheck) 20 " 2 16 
Radiosity (radiosity averaging) 6 3 3 12 
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Slowdown without deterministic execution (Software based lock) c:::::::J 
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100 I-::-

10 t- r-- - -

II 
0;-�('�05>;- 0;-�('�05>;-

Fluidanimate (2T) Fluidanimate (4T) 

0;-�('�05>;­
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r-- -----, 
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0;-�('�05>;­
Radiosity (4T) 

Figure 7. Slowdown with non-deterministic execution w.r.t deterministic 
execution (Panels 2 & 3 in Table III) 

the model checker with VAR_RANGES flag increases the 
calculation time, but is still a much faster method than running 
several iterations to reach the WCET value through binary 
search. 

IV. PERFORMANCE EVALUATION 

In this section, we will discuss the results that we achieved 
by applying optimizations and using deterministic execution. 
Section IV-A discuss the results, while Section IV-B shows 
further improvement achieved by avoiding binary search to 
reach the WCET value. 

A. Results 

We selected three benchmarks. One is Fluidanimate from 
the PARSEC [ 18] benchmarks suite, another one is a Network 
protocol benchmark from EEMBC [2] and lastly we have 
Radiosity from SPLASH [ 19]. We only used a portion of these 
applications. Those portions included shared memory accesses. 
The characteristics of those parts of the code are shown in 
Table II. The names of the functions from which the code is 
taken are also shown. To run these benchmarks, we used a 
computer with 96GB RAM. We used the DCOLLAPSE flag 
of PROMELA for compressing memory. The results are shown 
in Table III. 

Using only the approach of [6] and without applying the 
optimizations discussed in Section III-B, none of the bench­
marks could complete, due to the state explosion problem. 
With our optimizations, most of the configurations could finish. 
Those configurations that still could not finish are indicated 
with a 00 mark in Table III. 
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Figure 8. Slowdown of updating clocks after execution (Panel 4 in Table III) 

The first panel in the Table III shows the results with deter­
ministic execution with clocks updated ahead of time. The sec­
ond panel shows the results with non-deterministic execution 
with hardware based lock acquisition, which do not require 
cache coherence for the shared mutexes. Adding hardware­
based lock acquisition is done to have a fair comparison 
with the deterministic case, because we used hardware based 
deterministic execution to avoid excessive cache coherency that 
comes with software based deterministic execution. The third 
panel shows non-deterministic execution with normal software 
based lock acquisition that does involve cache coherence for 
the shared mutexes. Lastly, the fourth panel shows the results 
with deterministic execution that does not update the clock 
ahead of time but after execution, like Kendo. 

From the Table III, we can see that deterministic execution 
with optimized clock updates (clocks updated ahead of time) 
gives the best results in terms of calculation time, memory 
consumed and number of states stored. Introducing determin­
istic execution does however increase the WCET slightly due 
to the extra code included in the programs. The increase 
in WCET however is not more than 4% for the selected 
benchmarks. The improvement in calculation time, memory 
consumed and number of states stored scales with the number 
of threads used. For example, for the F1uidanimate benchmark, 
the calculation time, memory consumed and number of states 
were reduced by as much as 158x, 89x and 188x respectively 
for 4 threads. From Panel 3 of Table III, we can see that the 
lack of hardware support causes cache coherency for shared 
mutexes to significantly increase calculation time, memory 
and states. The comparison of non-deterministic execution 
with respect to the deterministic version is also illustrated in 
Figure 7, where the bars on the left (in white color) show 
the overhead for non-deterministic execution with hardware 
support while the colored bars on the right show the overhead 
without hardware support. In cases where the later could not 
complete, we leave that column empty, that is, no bar is drawn. 
In that figure, CT represents calculation time, MEM represents 
memory consumed and ST represents the number of states used 
by the model checker. 

Our method of updating clocks ahead of time also shows to 
significantly improve both the WCET and calculation time, as 



Table III. PERFORMANCE RESULTS 

Configuration ParamlBM Fluidanimate (ComputeForcesMT) Network (thread ippktcheck) Radiosity (radiosity averaging) 

Number of cores 2 

1. Deterministic with optimized clock up-
WCET(cycles) 1209 

dates and hardware support Calculation lime (secs) 0.11 
MemOlY consumed (MB) 179.8 

Stales (millions) 0.031 
WCET(cycles) 1200 (0.99x) 

2. Non4deterministic with hardware support Calculation lime (sees) 0.74 (6.7x) 

MemOlY consumed (MB) 194.2 (1.08x) 

Stales (millions) 0.21 (6.�x) 

3. Non-deterministic without hardware sup-
WCET(cycles) 1254 (1.04x) 

port Calculation lime (secs) 7.78 (71x) 

MemOlY consumed (MB) 289.5 (1.61x) 

Stales (millions) 2.03 (65x) 

4. Deterministic without optimized clock up· 
WCET(cycles) 1224 (1.01x) 

dates and with hardware support Calculation time (sees) 0.46 (O.I�X) 

MemOlY consumed (MB) 187.8 (l.04x) 

States (millions) 0.13 (O.I'X) 

compared to updating clocks after execution. The improvement 
in WCET happens due to the fact that by updating clocks ahead 
of time, we reduce the waiting time of a thread waiting for a 
lock. That waiting also increases the possible number of states, 
thus increasing the calculation time and memory consumed. 
The slowdown caused by updating clocks after execution is 
illustrated in Figure 8. 

In Table IV, we discuss the improvement in WCET that we 
observed by applying the optimization that we discussed in 
Section III-C, that is, by using the ahead and nl variables to 
allow a thread to proceed with lock acquisition even when 
another thread is waiting for a lock but has a lesser value 
of logical clock. We show the numbers for the Radiosity 
benchmark for both 2 and 4 threads. The other two benchmarks 
do not have different mutexes, so we could not apply this 
optimization to them. In the Wlo opt column, we use the 
basic DetLock mechanism of updating the clock ahead of time, 
while in With opt, we also use ahead and nl variables. In 
the With opt column, we also show improvement (> Ix) or 
degradation « Ix) for all the parameters as compared to the 
Wlo opt column. From the table, for 4 threads, we can see 
improvement in WCET at the cost of increased number of 
states, memory consumption and calculation time. However, 
these numbers are still much better than the non-deterministic 
case (see Table III). 

B. Improvement by avoiding binary search 

In Section III-D, we discussed how we can avoid binary 
search by modifying the C code generated by SPIN to include 
the code to log the elapsed time value. This method avoids 
performing binary search as done by the state of the art 
approaches that use model checking to calculate WCET, such 
as [9] and [6]. Table V shows the overall speedup for 4 threads, 
including that which comes from avoiding the binary search. 
The column titled Wlo VR shows the calculation time without 
using VAR_RANGES (See Section III-D to see discussion 
about the VAR_RANGES flag), while the With VR column 
shows the calculation time by using it. Next we show the 
speedup that we achieved with deterministic execution (DE) 
with clocks updated ahead of time, followed by the number of 
iterations used to reach WCET if binary search (BS) is used. 
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4 2 2 4 

1209 1276 1378 1506 
25.1 1050 0.1 3.42 
410.6 11414 178.8 201.3 
2.9 218.7 0.019 0.34 

1200 (0.99x) 1257 (0.99x) 1346 (0.98x) 1442 (O.96x) 

3980 (15�x) 7300 (7x) 0.36 (3.6x) 428 (IZ5x) 

36595.4 (89x) 81919.9 (7.2x) 182.3 (1.02x) 3445.1 (l7x) 

544.4 (1�x) 1576.6 (7 .• x) 0.053 ( •• 7 .. ) 46.96 (I.mx) 

00 00 1444 (1.05x) 00 

00 00 7.6 (76x) 00 

00 00 337.8 (1.�9x) 00 

00 00 1.63 (�6x) 00 

1364 (l.13x) 1297 (1.02x) 1509 (1.1x) 1889 (1.25x) 

414 (16x) 9450 (,x) 0.32 (.5.") 4.49 ( _IIX) 

3653.3 (�.9x) 81919.9 (7.2x) 180.8 (I.OIx) 208.9 (1.04x) 

57.8 «ux) 1645.37 (7.5x) 0.041 ( •• IOX) 0.47 ( _,�x) 

Table IV. IMPROVEMENT BY UPDATING CLOCK AHEAD OF A LOCK 

ACQUISITION FOR RADI0SITY BENCHMARK 

Parameters 2 threads 4 threads 

Configuration Wlo opt With opt Wlo opt With opt 
WCET (cycles) 1440 1378 (1.04x) 1728 1516 (1.l5x) 

Calc time (secs) 0.17 0.1 (1.7x) 3.33 3.42 (O.97x) 

Mem consumed (MB) 179.0 178.8 (Ix) 192.28 201.3 (O.96x) 

Slales (millions) 0.021 0.019 (1.Ux) 0.21 0.34 (O.62x) 

Table V. IMPROVEMENT BY AVOIDING BINARY SEARCH (FOR 4 
THREADS) 

Benchmark W/o VR With VR DE BS itera- Overall 
(sees) (sees) speedup lions speedup 

F1uidanimate 18.7 25.1 158x 21 2471 x 

Radiosity 2.70 3.42 125x 18 1775x 

The overall speedup is then calculated by using the following 
formula. 

(WithouCV R/With_V R) x DE_speedup x BS_iters 

From the table, we can see that for the Fluidanimate 
benchmark, the overall speedup is as high as 247Ix. 

V. CONCLUSIONS 

In this paper, we used model checking for estimating the 
WCET for portions of the applications where shared memory 
accesses occurred. We showed that by using deterministic 
execution, we can reduce calculation time and memory us­
age significantly at the cost of negligible increase of the 
calculated WCET. We significantly reduced the time (up to 
I58x), memory (up to 89x) and states (up to I88x) for 
calculating WCET with a negligible increase (up to 4%) in the 
calculated WCET for a multicore system with 4 threads. We 
also showed an improvement in all the parameters, if we update 
the deterministic execution clock ahead of time, as in the case 
of DetLock. Moreover, we avoid performing binary search to 
calculate the WCET, which involves running several iterations 
of the model checker, by modifying the C code generated by 
SPIN to log the value of the elapsed time instead. The total 
combined gain in speed was found to be as high as 247Ix. The 
state explosion problem still poses a challenge to this solution 



for practical purposes though. Future work will focus on an 
approach which combines static analysis with model-checking 
might be used to overcome that problem. 
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