
An Efficient FPGA Design of Reverse Converter for
the Moduli Set {2n+2,2n+1,2n}

Kazeem Alagbe Gbolagade1,2, George Razvan Voicu1, and Sorin Dan Cotofana1

Computer Engineering Lab., Delft University of Technology, Delft, The Netherlands1

and
University for Development Studies, Navrongo, Ghana2.

Abstract—This paper points out error in earlier literature
and then proposes a novel reverse converter for the moduli
set {2n + 2,2n + 1,2n}. A previously proposed scheme is
simplified in order to obtain a reverse converter that uses
mod-n operations. Next, a low complexity implementation
that does not require the explicit use of modulo operation
in the conversion process is presented. We implement the
proposed converter and the best equivalent state of the art
converters on Xilinx Spartan 3 FPGA. The results indicate
that, on average, our proposal is about 2% and 15% better
in terms of area costs and conversion time, respectively,
when compared to the best known equivalent state of the
art converter.

Index Terms—Residue Number System, Reverse Con-
verter, Chinese Remainder Theorem.

I. INTRODUCTION

Residue Number Systems (RNS) is an unweighted
number system, which is usually employed in addition
and multiplication dominated intensive applications such
as fast Fourier transform, discrete Fourier transform,
image processing, cryptography, digital filtering, and
video coding [3], [10]. This is due to the RNS inher-
ent features, such as carry free operations, parallelism,
modularity, and fault tolerance. However, despite all
these advantages, RNS have not found a widespread
usage in general purpose processors since sign detection,
magnitude comparison, overflow detection, and division
are rather difficult to perform. Several solutions for
these problems, which rely heavily on RNS to binary
conversion, have been proposed [10].

RNS based calculation requires reverse and forward
conversions, which must be as fast as possible not to
nullify the RNS advantages. In the past, several convert-
ers have been proposed for different moduli sets, e.g.,
{2n,2n−1,2n +1} [2], [11], [13], {2n,2n+1−1,2n−1}
[6], [7], {2n+2,2n+1,2n} [4], [8], {2n+2,2n+1,2n}
[1], [5], [9]. The advantages of utilizing the moduli set
{2n+2,2n+1,2n} over the {2n,2n−1,2n +1} moduli
set have been discussed extensively in literature [1], [9].

In this paper, we point out error in [5] and then
propose a novel reverse converter for the moduli set
{2n + 2,2n + 1,2n}, which has a common factor of
2. First, we simplify a previously proposed scheme,
which is based on the traditional Chinese Remainder
Theorem (CRT) in order to obtain a reverse converter
that uses mod-n operations. Next, a low complexity
implementation that does not require the explicit use of
modulo operation in the conversion process is presented.
We implement the proposed converter and the converters
[1] and [9] on Xilinx Spartan 3 FPGA. The results
indicate that, on average, our proposal performs reverse
conversion 15% and 13% faster than the converters in
[1] and [9], respectively. Additionally, on average, the
proposed scheme requires 2% and 66% lesser hardware
resources than the converters in [1] and [9], respectively.

The rest of this paper is organized as follows. In
Section II, the new algorithm for reverse conversion is
proposed. Section III presents the hardware realization
of the proposed reverse converter, while the paper is
concluded in Section IV.

II. PROPOSED ALGORITHM

The RNS to binary converter proposed in [5] is not
entirely valid. Given the RNS number (x1,x2,x3) for
the moduli set {2n+ 2,2n+ 1,2n}, we first correct the
error in [5] and then present an efficient RNS to binary
conversion technique based on the proposed conversion
scheme in [5]. The proposed scheme does not require
explicit use of the modulo operation at the final stage of
computation.

The following theorem was presented in [5].
Theorem 1: The decimal equivalent of the RNS

number (x1,x2,x3) with respect to the moduli set
{m1 = 2n + 2,m2 = 2n + 1,m3 = 2n}, for any even
integer n > 0 is computed as follows:

X = (x2− x1)m1 + x1

+m1m2

∣∣∣∣(x1 + x3)

2
− x2

∣∣∣∣m3
2

(1)

(1) is erroneous due to the following reasons:
If the condition

x1 > x2 (2)∣∣∣∣(x1 + x3)

2
− x2

∣∣∣∣m3
2

= 0 (3)

holds true, (1) produces a negative result, which is
erroneous. In order to obtain correct results also if this
type of situation arises, we modify Theorem 1 as follows:

Theorem 2: The decimal equivalent of the RNS num-
ber (x1,x2,x3) for the moduli set {2n+2,2n+1,2n} is
computed as follows:{

X = y, y ≥ 0
X = y+ML, y<0 (4)

where

y = m1(x2− x1)+ x1

+m1m2

∣∣∣∣(x1 + x3)

2
− x2

∣∣∣∣m3
2

(5)

and ML = m1m2m3
2

Proof: To prove this theorem, we use the following
lemma presented in [12]:

|am1|m1m2
= m1 |a|m2

. (6)

We utilize the equation given below, which has been
proved in [5] in order to prove the above theorem.

X =
∣∣∣m2m3

2
x1−m1m3x2 +

m1m2

2
x3

∣∣∣
ML

Putting m3 = m2−1 in the above equation, we obtain:

X =
∣∣∣m2m3

2
x1−m1x2(m2−1)+

m1m2

2
x3

∣∣∣
ML

= |m1x2

+
∣∣∣m2m3

2
x1−m1m2x2 +

m1m2

2
x3

∣∣∣m1m2m3
2

∣∣∣∣
ML

Applying (6) we have:

X = |m1x2

+m2

∣∣∣m3

2
x1−m1x2 +

m1

2
x3

∣∣∣m1m3
2

∣∣∣∣
ML

(7)

Putting m3 = m1−2 in the above equation, we obtain:

= |m1x2

+m2

∣∣∣∣(m1−2)
2

x1−m1x2 +
m1

2
x3

∣∣∣∣m1m3
2

∣∣∣∣∣
ML

= |m1x2−m2x1

+m2

∣∣∣∣m1
(x1 + x3)

2
−m1x2

∣∣∣∣m1m3
2

∣∣∣∣∣
ML

Applying (6) we obtain:

X = |m1x2− x1(m1−1)

+m1m2

∣∣∣∣(x1 + x3)

2
− x2

∣∣∣∣m3
2

∣∣∣∣∣
ML

Further simplifications give:

X =

∣∣∣∣∣(x2− x1)m1 + x1 +m1m2

∣∣∣∣x1 + x3

2
− x2

∣∣∣∣m3
2

∣∣∣∣∣
ML

= |y|ML

(8)
(8) is the general expression of (5), valid for both y

positive and negative.
Next we demonstrate that at most one ML corrective

addition is required. By definition of modulus we have:

0≤
∣∣ x1+x3

2 − x2
∣∣m3

2
≤ m3

2
−1

∣∣ ·m1m2

0≤ m1m2
∣∣ x1+x3

2 − x2
∣∣m3

2
≤ m1m2m3

2
−m1m2.

Adding to this double inequality the following inequal-
ities: 0 ≤ m1x2 < m1m2 and −m1m2 < −m2x1 ≤ 0, we
have

−m1m2 < m1x2−m2x1 +m1m2

∣∣∣∣x1 + x3

2
− x2

∣∣∣∣m3
2

<
m1m2m3

2

Thus one corrective addition of ML is required in order
to obtain the correct result when y < 0, and (5) holds
true.
For the case when y < 0, the correct result is computed
as follows:

X = m2(x2− x1)+ x2

+m1m2

∣∣∣∣(x1 + x3)

2
− x2

∣∣∣∣m3
2

+ML

= m2(x2− x1)+ x2

+m1m2

(∣∣∣∣(x1 + x3)

2
− x2

∣∣∣∣m3
2

+
m3

2

)
(9)

III. HARDWARE REALIZATION OF ALGORITHM-2

The hardware realization of the proposed scheme
is depicted by Figure 1. The implementation follows
Equation (5) but the following should be noted. At a first
glance, D is a 3:1 adder. However, the extra input x2 can
be embedded into the partial product matrix of the m1
multiplier according to the merged arithmetic principle.
Furthermore, the modulo-m3

2 operation associated with
the adder C does not have to be explicitly computed. It
can be replaced by at most one corrective addition.

X

m2

C

m1m2

D

x2

2
m

3

m
3

–
m

3

3
m

3

Comparators

x3x1

B

-2x2

A

x1 x2

m
3

–
m

3

0

Figure 1. Block diagram of our proposal

In order to demonstrate that no explicit modulo oper-
ation is required by the proposed converter, we analyze
the two possible extreme cases as follows:

Case 1: (x1 + x3) = 0 and x2 = 2n. This results in
the most negative value one may get. In this case
Equation (5) reduces to |−x2|m3

2
. To perform the modulo

m3
2 operation, we need to do corrective additions. Given

that m3 +(−x2) = (2n)+ (−2n) = 2n− 2n = 0, for any
positive even integer n, only one corrective addition with
m3 is required to compute the modulo.

Case 2: (x1+x3) is even and has the maximum possi-
ble value and x2 is zero. This is the largest positive value
one may get and Equation (5) reduces to | (x1+x3)

2 |m3
2

.

Given that m3− (x1+x3)
2 = (2n)− (2n+1+2n−1)

2 = 2n−2n=
0 the maximum sum in the modulo adder cannot exceed
m3
2 , thus only one correction is required.

This means that the modulo m3
2 operation can be

implemented with at most one corrective addition.
As demonstrated by (5), the final modulo-M also does

not require explicit implementation as in (9).
The scheme is simplified by moving the ML corrective

addition before the m1m2 multiplication, hence trans-
forming it into a corrective m3

2 addition. As mentioned
before, this correction must be applied when both of the
following statements hold true:

x1 > x2 (10)∣∣∣∣(x1 + x3)

2
− x2

∣∣∣∣m3
2

= 0 (11)

We now combine the modulo- m3
2 operations by revis-

iting the correction rules:
• if tentative sum is smaller than - m3

2 add m3;
• if tentative sum is greater than or equal to - m3

2 add
m3
2 ; Equation (11) holds true when the tentative sum

is equal to −m3, but we can see from Case 1 that
Equation (10) does not hold true, hence the extra
m3
2 addition is not needed;

• if tentative sum is zero and Equation (10) is true
(the sign bit of adder A is 1) add m3

2 ;
• otherwise do nothing;

In this way all modulo operations have been replaced
by a single corrective addition or subtraction greatly
reducing the complexity of the converter. The theoretical
analysis result of our proposal is almost the same as
the one already presented in [5]. To avoid duplication,
this theoretical analysis result is omitted in this paper.
We structurally described our proposal, the ones in
[1] and [9], in VHDL. We implement the proposed
converter and the converters in [1] and [9] using Xilinx
ISE 10.1 software on a Xa3s2004vqg100 FPGA. The
implementation result is presented in Table I. The results
indicate that, on average, our proposal performs reverse
conversion 15% and 13% faster than the converters in
[1] and [9], respectively. Additionally, on average, the
proposed scheme requires 2% and 66% lesser hardware
resources than the converters in [1] and [9], respectively.

IV. CONCLUSIONS

In this paper, we pointed out error in [5] and then
proposed a novel reverse converter for the moduli set
{2n+ 2,2n+ 1,2n}, which has a common factor of 2.
First, we simplified a previously proposed scheme, which
is based on the traditional CRT in order to obtain a
reverse converter that uses mod-n operations. Next, a
low complexity implementation that does not require

Table I
IMPLEMENTATION RESULTS

n Proposed Area Area [1] Area [9] Proposed Delay Delay [1] Delay [9]
(FPGA Slices) (FPGA Slices) (FPGA Slices) (ns) (ns) (ns)

5 48 58 161 33.16 41.15 40.09
6 55 58 156 29.84 40.68 38.81
7 39 58 142 29.89 40.95 41.64
8 36 48 113 22.25 29.26 30.47
9 58 74 186 31.39 43.07 38.06

10 69 73 190 34.30 42.54 37.08
15 45 73 186 37.66 42.97 43.05
16 43 57 135 23.05 27.75 33.85
20 78 85 218 40.92 46.05 38.86
30 112 85 320 45.23 45.93 45.72
40 87 102 243 37.16 44.13 41.84
50 114 102 318 40.74 45.06 45.53
60 125 102 358 44.63 44.72 46.27
70 129 116 373 41.55 46.66 45.24
80 97 115 274 36.71 47.23 41.33
90 150 115 434 44.75 46.05 48.66

100 125 115 352 39.136 44.80 43.97

the explicit use of modulo operation in the conversion
process is presented. We implemented the proposed con-
verter and the converters [1] and [9] on Xilinx Spartan 3
FPGA. The results indicate that, on average, our proposal
performs reverse conversion 15% and 13% faster than
the converters in [1] and [9], respectively. Additionally,
on average, the proposed scheme requires 2% and 66%
lesser hardware resources than the converters in [1] and
[9], respectively.

REFERENCES

[1] M.O. Ahmad, Y. Wang, and M.N.S. Swamy. Residue to binary
number converters for three moduli set. IEEE Trans. on Circuits
and Systems-II, Vol. 46, No.7, pp. 180-183, Feb., 1999.

[2] R. Chaves and L. Sousa. Improving residue number system
multiplication with more balanced moduli sets and enhanced
modular arithmetic structures. IET Comp. Digital Tech., Vol. 5,
No.1, pp.472-480, Sept., 2007.

[3] R. Conway and J. Nelson. Improved RNS fir filter architectures.
IEEE Trans. on Circuits and Systems-II: Express briefs, Vol. 51,
No.1, pp. 26-28, January, 2004.

[4] K.A. Gbolagade and S.D. Cotofana. Residue number system
operands to decimal conversion for 3-moduli sets. Proceedings
of 51st IEEE Midwest Symposium on Circuits and Systems,
pp.791-794, Knoxville, USA, August, 2008.

[5] K.A. Gbolagade and S.D. Cotofana. A residue to binary
converter for the {2n+2,2n+1,2n} moduli set. Proceedings of
42nd Asilomar Conference on Signals, Systems, and Computers,
pp. 1785-1789, California, USA, October, 2008.

[6] S. Lin, M. Sheu, and C. Wang. Efficient VLSI design of residue
to binary converter for the moduli set {2n,2n+1 − 1,2n − 1}.
IEICE Trans. INF. and SYST., Vol. E91-D, No.7, pp. 2058-2060,
July, 2008.

[7] P.V.A. Mohan. Rns-to-binary converter for a new three-moduli
set {2n+1−1,2n,2n−1}. IEEE Trans. on Circuits and Systems-
II: Express briefs, Vol. 54, No.9, pp. 775-779, September, 2007.

[8] A.B. Premkumar. An RNS to binary converter in {2n +
1,2n,2n−1} moduli set. IEEE Trans. on Circuits and Systems-
II: Analog and Digital Signal Processing, Vol. 39, No.7, pp.
480-482, July, 1992.

[9] A.B. Premkumar. Residue to binary converter in three moduli
set with common factors. IEEE Trans. on Circuits and Systems-
II: Analog and Digital Signal Processing, Vol. 42, No.4, pp.
298-301, April, 1995.

[10] L. Sousa. Efficient method for magnitude comparison in RNS
based on two pairs of conjugate moduli. Proceedings of the
18th IEEE Symposium on Computer Arithmetic, 2007.

[11] W. Wang, M.N.S. Swamy, M.O. Ahmad, and Y. Wang. A study
of the residue-to-binary converters for the three-moduli sets.
IEEE Trans on Circuits and Syst.-I, Vol. 50, No.2, pp. 235-243,
Feb., 2003.

[12] Y. Wang. New chinese remainder theorems. in Proc. Asilomar
Conference, USA, pp. 165-171, Nov., 1998.

[13] Y. Wang, X. Song, M. Aboulhamid, and H. Shen. Adder based
residue to binary number converters for {2n + 1,2n,2n − 1}.
IEEE Trans. on Signal Processing, Vol. 50, pp.1772-1779, July,
2002.

