
Cluster-Based Apache Spark Implementation of the
GATK DNA Analysis Pipeline

Hamid Mushtaq and Zaid Al-Ars
Computer Engineering Laboratory

Delft University of Technology
{H.Mushtaq, Z.Al-Ars}@tudelft.nl

Abstract—Fast progress in next generation sequencing has
dramatically increased the throughout of DNA sequencing, re-
sulting in the availability of large DNA data sets ready for
analysis. However, post-sequencing DNA analysis has become the
bottleneck in using these data sets, as it requires powerful and
scalable tools to perform the needed analysis. A typical analysis
pipeline consists of a number of steps, not all of which can readily
scale on a distributed computing infrastructure. Recently, tools
like Halvade, a Hadoop MapReduce solution, and Churchill, an
HPC cluster-based solution, addressed this issue of scalability in
the GATK DNA analysis pipeline. In this paper, we present a
framework that implements an in-memory distributed version of
the GATK pipeline using Apache Spark. Our framework reduced
execution time by keeping data active in the memory between
the map and reduce steps. In addition, it has a dynamic load
balancing algorithm that better utilizes system performance using
runtime statistics of the active workload. Experiments on a 4 node
cluster with 64 virtual cores show that this approach is 63% faster
than a Hadoop MapReduce based solution.

I. INTRODUCTION

Next generation DNA sequencing platforms, such as the
Illumina HiSeq can generate high-throughput DNA sequencing
data that require high-performance computational solutions to
meet the needs of the sequencing platform. One widely used
post-sequencing DNA analysis tool set is the Best Practices
GATK pipeline from the Broad Institute [Auwera13]. While
some stages of that pipeline, such as the Burrows-Wheeler
Aligner (BWA) [Li13], are highly scalable, other stages are
not, when executed on a distributed computing infrastructure.

A couple of solutions have been proposed to deal with
the scalability challenge of the GATK pipeline. One example
is the Churchill DNA analysis pipeline, which addresses this
challenge using an input data set segmentation method to
achieve parallelization across chromosomal regions [Kelly15].
The approach is able to efficiently utilize the available compu-
tational resources by combining the different analysis stages
into a single tightly-integrated computational pipeline that runs
on a custom-made high-performance computing (HPC) cluster.
However, the use of proprietary algorithms makes this solution
inaccessible and difficult to test and evaluate by third parties.
On a 48-core Dell R815 server, Churchill achieves a speedup of
10x compared to a straight forward implementation of GATK
with in-built multithreading enabled.

Another solution proposed to solve the scalability challenge
of the GATK pipeline is the Halvade framework, which im-
plements the different GATK pipeline stages using a Hadoop-
based MapReduce approach [Decap15]. This enables standard-
ized open-source pipelines, such as GATK, to be executed in
parallel on a multi-node and/or multicore compute infrastruc-
ture in an efficient manner. Like Churchill, Halvade utilizes

an input data set segmentation method to achieve scalability
in all pipeline stages. One drawback of the Halvade framework
though is that it is implemented as a classic Hadoop MapRe-
duce based big data solution that is heavily disk oriented,
which leads to disk access overhead due to the large data set
sizes of genomics applications. In addition, the computational
load of different stages of the pipeline is statically distributed
across chromosomal regions, which results in non-optimal load
balancing of the input data set. On a 24-core dual-socket Xeon
E5-2695 server, Halvade is able to achieve a speedup of 2.5x
compared to a GATK run with multithreading enabled.

This paper presents a big data framework to parallelize the
different stages of the GATK pipeline using Apache Spark.
The framework uses an input data set segmentation approach
to achieve scalability similar to the approaches mentioned
above. Our framework, however, enables scalability on stan-
dardized open-source pipelines using a dynamic load balancing
algorithm that divides chromosomal regions according to the
number of mapped reads to each chromosome rather than the
static length of the chromosomes. This division of regions is
done in-memory and therefore incurs minimal cost. We can
sum up our contributions for this paper as follows.

• We implemented a cluster-based parallel framework
for DNA analysis pipelines using Apache Spark.

• We perform load balancing by dividing chromosomal
regions according to the number of reads mapped to
each chromosome.

In Section II, we discuss the different stages of a DNA anal-
ysis pipeline. Section III presents the Apache Spark framework
we implemented to enable pipeline scalability. This is followed
by Section IV, which discusses the performance and accuracy
evaluations. We finally conclude the paper with Section V.

II. BACKGROUND

Figure 1 shows a typical DNA analysis and variant calling
pipeline. The input data set to the pipeline is generated by
sequencing a DNA sample in a sequencing machine and ac-
quiring the DNA sequencing data. This is done in a massively
parallel fashion with millions of short DNA pieces (called
short reads) being sequenced at the same time. These reads
are stored in large files of sizes in the range of hundreds of
giga bytes. The DNA is usually over-sampled, resulting in
generating multiple short reads for each segment of the DNA,
typically with a coverage ranging from 30x to 80x, depending
on the experiment. One standard file format used today to store
these reads is called the FASTQ file format [Jones12]. Once the
input data becomes available, the first step in the DNA analysis
pipeline is to align the sequenced reads to a human reference

Algorithm 1 Parallelized GATK pipeline
1: procedure GATKPARALLEL
2: . Get the names of the input chunks
3: chunksName← sc.parallelize(inputChunksName)

4: . chrToSamRecord contains elements of type <chromosome number, SAM record>
5: chrToSamRecord← chunksName.flatMap(x => bwaRun(x))
6: chrToSamRecord.cache()

7: . avgSamRecords = average number of SAM records per chromosome
8: avgSamRecords← chrToSamRecord.count/NumberOfChromosomes
9: . chrToNumSamRecords contains the number of SAM records for each chromosome

10: chrToNumSamRecs← chrToSamRecord.map{case(chr, SAM) => (chr, 1)}.reduceByKey(+)
11: . chrInfo contains values of type <number of SAM records, chromosome length> keyed by chromosome number
12: chrInfo← CreateMap(chrToNumSamRecs.map{case(chr, nSR) => (chr, (nSR,ChrLen(chr)))}.collect)

13: . Load balancing
14: . chrToSamRecordBal contains elements of type <chromosome region, SAM record>
15: chrToSamRecordBal← chrToSamRecord.map(x => balanceLoad(x, chrInfo, avgSamRecords))
16: numOfRegions← chrToSamRecordBal.map(x => x. 1).reduce((x, y) => max(x, y))

17: . Variant calling
18: . vcf contains elements of type <chromosome, output line>
19: chrToSamPartitioned← chrToSamRecordBal.partitionBy(new CustomPartitioner(numOfRegions+ 1))
20: vcf = chrToSamPartitioned.mapPartitions(variantCallingWrapper)

21: . Write results to the file
22: writeV CF (vcf.distinct.sortByKey.collect)
23: end procedure

DNA assembly
Sorting & mark

duplicates
GATK toolkit

Figure 1. DNA analysis and variant calling pipeline.

genome and reconstruct the sequenced genome from the short
read sequences, a process that is called DNA assembly. A well-
known program used to perform this step is the Burrows Wheel
Aligner, typically using the BWA-MEM algorithm. The results
of this assembly step are stored in a file with the SAM file
format.

After assembly, the short reads in the SAM file are sorted
and duplicated reads are marked to avoid using them in
downstream analysis. This reduces the bias effect resulting
from the way the DNA sample is prepared and sequenced.
A widely-used tool to perform this step is the Picard tool. The
output of this tool is a compressed file format called BAM.
Subsequently, a number of steps are performed to refine the
read data and finally to identify the DNA mutations (or so-
called variant calling). GATK is a commonly-used tool set for
this type of analysis that contains the following tools: Indel
Realignment, Base Recalibration and the Haplotype Caller.
The output of this tool set is a VCF (variant call format) file
with the variations in the sequenced DNA. These widely-used
tools described here make part of the Broad best practices
pipeline, widely used for variant calling both in research and
in the clinic [Auwera13]. We will use the Best Practices
pipeline for demonstrating the capabilities of our Spark-based

framework, though the framework is able to parallelize tools
used in other variant calling pipelines as well.

While the BWA-MEM DNA alignment tool of the best
practices pipeline can scale well on a multicore system using
multi-threading, it is difficult to exploit parallelism for other
tools in the rest of the pipeline. In addition, other pipelines,
not as well constructed and optimized as the best practices
pipeline, are much less able to utilize the available computa-
tional infrastructure efficiently. The objective of our framework
is to provide a generic method that is easy to use to ensure
scalability to many of the various genomics analysis pipelines
out there.

Our framework tackles this challenge by using the Apache
Spark big data infrastructure, as shown in Figure 2. In a typical
DNA sequencing experiment, two FASTQ files are generated,
that represent the 2 ends of a pair of sequences. These 2 input
FASTQ files are divided into interleaved chunks using the
chunks segmentation tool, written in Scala and using Spark,
that also uploads these files into HDFS, thereby making them
accessible to all nodes in a distributed cluster. Each chunk is
then processed by a separate BWA-MEM task that performs
DNA alignment of the short reads against a reference genome.
The output of this step represents a list of read alignments
(so-called SAM records) that would normally be stored in the
SAM file. These records are then read into <key, value>
pairs in the memory and regrouped into sub-chromosomal
regions by a load balancer according to the number of reads
per chromosome. This ensures a better distribution of the
subsequent tasks and a better utilization of the computational

Fastq_l Fastq_r

Chunk 1 Chunk 2 Chunk n

Chr 1 Chr 2 Chr Y

Chr 1a Chr 1b Chr 2 Chr Y

VCF 1a VCF 1b VCF 2 VCF Y

Final VCF

BWA-MEM BWA-MEM BWA-MEM

Chunk segmentation

Load balancer

Picard
and

GATK

Picard
and

GATK

Picard
and

GATK

Picard
and

GATK

Figure 2. Data flow of the GATK pipeline using our framework

cluster.

Subsequently, these records are sorted using the position of
the aligned reads on each chromosome region (which replaces
the Picard sort step in the pipeline). Then the rest of the
GATK tool set is performed in parallel by executing it on
each chromosomal region separately, resulting in various VCF
files. Finally, the content of those VCF files are merged into
one with all variants identified in the analysis.

Our tool uses a technique similar to Halvade, but instead of
using Hadoop MapReduce, our tool uses Apache Spark. Using
Apache Spark has several advantages. Firstly, the code written
is much succinct as compared to Hadoop MapReduce. Instead
of using a map followed by a reduce step, Spark allows our
code to contain a few cascaded map calls subsequently, which
are explained in Section III. Secondly, Spark can cache data in
the memory of the nodes. This means, we can perform extra
steps to improve the performance efficiently. For example, in
our case, instead of just depending upon the length of the
chromosomes, we divide chromosomal regions by inspecting
the number of reads mapped for each chromosome, which

Table I. COMPARISON OF THE TOOLS USED IN OUR FRAMEWORK

Step Original GATK
best practices

Our framework

Align reads BWA-MEM BWA-MEM
SAM to BAM Picard Uses Picard library
Sort reads Picard Quicksort in Scala
Mark duplicates Picard Modified Picard
Indel Realignment GATK GATK
Base Recalibration GATK GATK
Haplotype Caller GATK GATK

results in a more optimized load balancing algorithm.

1 def balanceLoad (x : (I n t , SAMRecord) ,
chromosomesInfo : HashMap [I n t , (I n t , I n t)] ,

2 avgn : I n t) : Array [(I n t , SAMRecord)] =
3 {
4 val l i m i t = avgn ∗ 1.5
5 var key = x . 1
6 val sam = x . 2
7 val c h r I n f o = chromosomesInfo (key)
8 var output = Ar rayBu f fe r . empty [(I n t , SAMRecord)]
9

10 i f (c h r I n f o . 1 > l i m i t)
11 {
12 val beginPos = sam. ge tA l ignmentS ta r t ()
13

14 i f (beginPos > (c h r I n f o . 2 / 2))
15 {
16 key = key + NumOfChromosomes
17 output . append ((key , sam))
18 }
19 else
20 {
21 output . append ((key , sam))
22 val endPos = beginPos + sam. getReadLength ()
23 i f (endPos > (c h r I n f o . 2 / 2))
24 output . append ((key + NumOfChromosomes , sam))
25 }
26 }
27 else
28 output . append ((key , sam))
29

30 return output . toAr ray
31 }

Listing 1. Load balancing approach

III. IMPLEMENTATION

We used Apache Spark to implement our framework to
parallelize the GATK best practices pipeline. However, we
replace parts of the Picard tool in the pipeline with our own
code as shown in Table I. First, instead of using Picard to
convert the SAM file produced by BWA-MEM to a BAM
file, we use the Picard library within Spark to write the
BAM file. This eliminates the need for intermediate SAM file
conversions, and allows keeping the SAM records in-memory
while being sorted. Similarly, instead of writing a BAM file
after mark duplicates, we modified Picard to continue with
subsequent Picard steps in-memory before writing the BAM
file needed by Indel Realignment.

In the following, we discuss the implementation describing
our parallelized GATK approach in Section III-A, followed
by our load balancing approach in Section III-B. Next, we
discuss our optimizations to perform sorting and variant call-
ing in Section III-C. Lastly, we discuss how we improved
Picard preprocessing by allowing in-memory computation in
Section III-D.

A. Main algorithm

The main algorithm is shown as Algorithm 1. The input
is interleaved paired-end FASTQ files in the form of chunks.
These chunks are created using the chunk segmentation utility.
These FASTQ chunks are mapped to function bwaRun, as seen
from the code on line 5. Each bwaRun task then produces
an output that consists of key value pairs, where key is the
chromosome number, while value is a SAM record.

1 def var ian tCa l lWrapper (i t e r : I t e r a t o r [(I n t , SAMRecord
)]) : I t e r a t o r [(In teger , S t r i n g)] =

2 {
3 var res = Array . empty [(In teger , S t r i n g)]
4 val arrayBuf = Ar rayBu f fe r . empty [SAMRecord]
5 var key = 0
6

7 while (i t e r . hasNext)
8 {
9 val x = i t e r . next

10 key = x . 1
11 arrayBuf . append (x . 2)
12 }
13

14 i f (! ar rayBuf . isEmpty)
15 {
16 val samRecordsSorted : Array [SAMRecord] =

arrayBuf . toAr ray
17 / / So r t i ng
18 i m p l i c i t val samRecordOrdering = new Order ing [

SAMRecord] {
19 override def compare (a : SAMRecord , b :

SAMRecord) = a . compare (b)
20 }
21 scala . u t i l . So r t i ng . qu ickSor t (samRecordsSorted)
22 / /
23 res = v a r i a n t C a l l (key , samRecordsSorted)
24 }
25

26 res . i t e r a t o r
27 }

Listing 2. Sorting and variant calling

From this data, we first find the average number of mapped
reads (in the form of SAM records) per chromosome (line 8).
Next, we calculate the number of mapped reads for each chro-
mosome (line 10). These two parameters are useful for load
balancing. On line 12, we create a hash map chrInfo, which is
keyed by the chromosome number and whose values are tuples,
where the first element of the tuple is the number of SAM
records while the second element is the chromosome’s length.
The division of chromosome into regions occurs during the
load balancing step (line 15), where we make keys according
to chromosome regions rather than just chromosome numbers.
There, the chromosomes with larger number of mapped reads
are divided into more regions than those with lesser number
of mapped reads. This division is done by using the average
number of mapped reads per chromosome and the number of
mapped reads for a chromosome.

Since, at this moment, we used a cluster with 4 nodes,
which can run 28 variant calling tasks in parallel, it was enough
to divide a chromosome into maximum of two regions. The
way we did this is to see if the number of mapped reads for
a chromosome is more than 1.5 of the average number of
mapped reads per chromosome. If it is more than that, we
divide the chromosome into two regions, otherwise the whole
chromosome is considered a region. Therefore, with code at

0

200

400

600

800

1000

1200

1400

Halvade GBK MP GBK+LB MP+LB MP+LB+mod Picard

T
im

e
 (

se
cs

)

Figure 3. Performance compared to Halvade

GATK

This work

Halvade

6

134

35

142

52

32976

6

Figure 4. Concordance of variant calls between the selected runs

line 15, we get key value pairs, where a key represents a
chromosome region, while the value represents a SAM record.

For doing variant calling, one possibility was to group the
SAM records for different keys. This could be achieved by us-
ing the groupByKey function. We tried it by using the code, val
vcf = chrToSamRecordBal.groupByKey().flatMap(x=> vari-
antCall(x. 1, x. 2.toArray)), and performing sorting at the start
of the variantCall function. However, we found this approach
to be rather slow, as shown in the results in Section IV.
Therefore, we used the mapPartitions approach, where SAM
records are processed in separate partitions. If we had just
called mapPartitions, the partitions would have been random,
and this means that SAM records from different keys could
be in the same partition. To solve this problem, we used
a custom partitioner where partitions are made according to
the key values. This means SAM records for different keys
(chromosome regions) would be in different partitions. The
relevant code for doing these steps is shown in line 19 and 20.

Each variant calling task then returns the content of the vcf
file produced by the Haplotype caller. Chromosome number is
used as the key for each line of the produced vcf file. This helps
in sorting the combined vcf file according to the chromosome
numbers. The contents of the vcf files produced by all the
variant calling tasks are then combined and finally written to
a file using the code at line 22.

Figure 5. Breakdown of the variant classes by SNPs, Insertions, and Deletions.

B. Load balancing

The load balancing code is shown in Listing 1. A hash
map (chromosomeInfo), keyed by the chromosome number, is
passed to this function from the main code, where the value
of a key contains information for a chromosome in the form
of tuples. The first value of that tuple is the number of SAM
records for the chromosome, while the second value is the
length of the chromosome. If we see that the number of SAM
records for a chromosome is greater than the allowed limit,
we divide that chromosome into t wo regions, as shown by
the code inside the if statement on line 10. At line 12, we
check the starting position of the SAM record. If the starting
position lies at greater than half point of the chromosome, we
put it into the right half of the divided chromosome. Otherwise,
we check if the SAM record is at the boundary of the divided
regions of the chromosome, with its starting position at left
side of the divide and the end position at the other side. If
that is the case, we copy the SAM record to both the regions,
as shown by the code inside the else condition on line 19.
Lastly, if the end position of the SAM record lies at a position
less than the half point of the chromosome, we put that SAM
record only in the left half of the divided chromosome. The left
half is represented by the original number of the chromosome
(key), while the right half is represented by a new number (key
+ NumOfChromosomes).

C. Sorting and variant calling

The code for sorting and variant calling is shown in
Listing 2. Due to this sorting step, there is no need for Picard
sorting. Each partition gets a list of tuples, where the first
element of the tuple is the key of the region, while the second
element is the SAM record. We put those SAM records into an
array and then sort them using the quicksort function. These
sorted arrays are then used for variant calling. Variant calling
for each region then outputs the contents of the VCF file
produced by the Haplotype caller. Since chromosome numbers
are later used as keys to sort the final combined vcf file, the
output array of the variant calling function contains key value
pairs of type <chromsome number, line>.

Table II. SPEEDUP COMPARED TO HALVADE ON THE 4-NODE CLUSTER

Configuration Time [s] Speedup
Halvade 1121 —
groupByKey 1186 -6%
mapPartitions 1022 10%
groupByKey + load balancing 788 42%
mapPartitions + load balancing 713 57%
mapPartitions + load balancing + modified Picard 689 63%

D. Picard preprocessing

Picard preprocessing, which includes mark duplicates, is
normally done using different tools, where the output of one
tool is given as an input to another tool. This means that
unnecessary intermediate files are created, which creates I/O
overhead. To circumvent this problem, we combined these
tools into one program. The list of SAM records are then just
passed around as references. In this way, we avoid unnecessary
copying of the SAM records.

IV. EVALUATION

We tested the results on two different machines. The first
is an IBM Power7+ cluster with 4 nodes. Each node contains
128GB of memory, and two Power7 sockets, each having 8
physical cores and 10MB L3 cache per core. Power7 cores
are capable of 4-way simultaneous multi-threading. We com-
pared the results for this machine by running both our Spark
implementation as well as Halvade on it. The second machine
we used is an identical single-node IBM Power7 system (each
core has 4MB L3 cache). We used the illumina-100bp-pe-
exome-30x sample data set from Bioplanet [Bio] for all the
experiments. In the following, we discuss the performance first
followed by the accuracy of the results.

A. Performance analysis

With the sample data set, on the cluster with 4 nodes, Hal-
vade took 1121 seconds to complete, while our implementation
only took 689 seconds. Therefore, our approach is 1.63 times
faster than Halvade on that machine.

Table II shows the performance of our implementation
with different configurations. Without load balancing and using
groupByKey to group the SAM records and pass them to the

Table III. SPEEDUP COMPARED TO THE GATK PIPELINE ON THE
SINGLE NODE SYSTEM

Configuration Time [s] Speedup
GATK pipeline 8725 —
groupByKey 2953 2.95x
groupByKey + load balancing 2779 3.14x
mapPartitions 2224 3.92x
mapPartitions + load balancing 2051 4.25x
mapPartitions + load balancing + modified Picard 1939 4.50x

variant calling step, our framework is slightly slower than Hal-
vade. However, by using mapPartitions to group and sort the
SAM records for variant calling, our framework is better than
Halvade by 10% even without load balancing. When we use
the groupByKey approach with load balancing, our framework
is 42% faster than Halvade, while with mapPartitions with load
balancing, it is 57% faster. If we also use our modified Picard
tool, the performance is improved even further. In that case, it
is 63% faster than Halvade.

The information in Table II is also illustrated in Figure 3.
In that figure, GBK is an abbreviation for groupByKey, while
MP is an abbreviation for mapPartitions. Moreover, LB is an
abbreviation for load balancing.

We also compared our implementation with the multi-
threading activated version of the GATK pipeline. For that
purpose, we ran our implementation on the single node IBM
Power7 machine. Table III shows the performance of our
implementation with different configurations. By using group-
ByKey to group the SAM records and pass them to the variant
calling step, our framework is 2.95 times faster than the GATK
pipeline. By also using load balancing, the speedup increases
to 3.14 times faster. However, by using mapPartitions to group
and sort the SAM records for variant calling, our framework
is faster than the GATK pipeline by 3.92 times, even without
load balancing. With load balancing, it becomes 4.25 times
faster. Moreover, the use of our modified Picard tool improves
the performance even further by up to 4.5 times of that of
the GATK pipeline. In terms of execution time with the used
input data set, the GATK pipeline took 145 minutes, while our
optimized implementation took just 32.5 minutes on a single
node IBM Power7 machine.

Figure 6 gives a breakup of the execution time for the
different tools in the pipeline. The left most bar is for the
GATK pipeline, while the middle bar shows the cumulative
time of all the tasks of our Spark based implementation for
the cluster. Cumulative time is calculated by summing up the
execution time of each parallel task. So, basically, its the
equivalent of the time that would have been taken by the
program if all the tasks were run one by one serially. Lastly,
the right most bar shows the breakup using the tasks taking the
most time (worst case execution time) for each tool. The sum
of these worst case execution times is therefore approximately
equal to the total time taken by the program when run on the
cluster. We can see here that the summed up execution times
of the parallel tasks on the cluster are slightly more than that
of the GATK pipeline. However, this is not surprising. For
example, for the GATK pipeline, for BWA, we use all the 64
virtual cores of the IBM Power7 machine, while each task of
our cluster based approach occupies 8 cores, as the scheduler
runs approximately 7 tasks per node. Although we are running
28 tasks on 4 nodes, with each task using the 1/28th data as

0	

2000	

4000	

6000	

8000	

10000	

12000	

GATK	

pipeline	

Spark	

cumula8ve	

Spark	
 max	

Ti
m
e	

(s
ec
s)
	
 	

Haplotype	
 caller	

Base	
 recalibrator	

Indel	
 realigner	

Mark	
 duplicates	

Load	
 balancing	
 +	
 Picard	

sor8ng	

BWA	

Figure 6. Breakdown of performance.

input compared to the input data of the GATK pipeline, each
task is also using fewer resources. Therefore, when we serially
add the times of all these tasks, it comes out more. Only if
each of those 28 tasks were also using the full 64 cores, the
cumulative time for the cluster based approach would have
been similar to the time taken by BWA of the GATK pipeline.
For the components which do not parallelize well, such as,
Mark duplicates and Indel realigner, we do not notice much
difference though, which is obvious. In fact, for the Haplotype
caller, surprisingly, the cumulative time of the cluster based
approach is even less than that taken by the GATK pipeline.
The reason of which is yet unknown to us.

B. Accuracy

The accuracy of our solution as compared to the GATK
pipeline and Halvade is shown in Figures 4 and 5. The former
figure shows the concordance of variant calls between the
selected runs while the later shows the breakdown of the
variant classes by SNPs, insertions and deletions. From those
figures, we can see that our solution achieves an accuracy level
comparable with that of the GATK pipeline sharing 99.55%
of the variants, as opposed to 99.47% concordance score of
Halvade.

V. CONCLUSIONS

Next generation sequencing has dramatically increased
the speed of DNA sequencing. However, since sequencing
produces a large amount of data, post-sequencing DNA anal-
ysis requires effective and scalable solutions to ensure high
computational performance. For that purpose, we propose a big
data framework based on Apache Spark that runs efficiently on
a multi-node cluster. Unlike Halvade, which uses the Hadoop
MapReduce framework, our tool can make use of in-memory
caching provided by Apache Spark, thereby increasing the
efficiency and flexibility of the framework and enabling a
number of run-time performance optimizations. One such
optimization that we implemented is a dynamic load balancing
algorithm that divides the chromosomes into regions after the
DNA assembly step, depending on the computational load
required in each chromosome. Results show that the GATK
pipeline with multi-threading activated takes 145 minutes on
a single IBM Power7 node, while our approach takes around
32.5 minutes, achieving a speedup of 4.5x. Moreover, on a

scalable cluster, our implementation is 63% faster than Halvade
on the sample data set used, when executed on a 4-node IBM
Power7 big data cluster.

VI. ACKNOWLEDGMENTS

Special thanks to Daniel Molnar for implementing the
modified Picard program.

REFERENCES

[Auwera13] G.A. van der Auwera, M. Carneiro, C. Hartl, R. Poplin, G. del
Angel, A. Levy-Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault,
E. Banks, K. Garimella, D. Altshuler, S. Gabriel, M. DePristo, ”From
FastQ Data to High-Confidence Variant Calls: The Genome Analysis
Toolkit Best Practices Pipeline”, Current Protocols in Bioinformatics,
43:11.10.1-11.10.33, 2013.

[Decap15] D. Decap, J. Reumers, C. Herzeel, P. Costanza and J. Fostier,
”Halvade: scalable sequence analysis with MapReduce”, Bioinformatics,
btv179v2-btv179, 2015.

[Bio] http://www.bioplanet.com/gcat
[Gusfield97] Dan Gusfield. 1997. Algorithms on Strings, Trees and

Sequences. Cambridge University Press, Cambridge, UK.
[Jones12] D.C. Jones, W.L. Ruzzo, X. Peng and M.G. Katze, ”Compression

of next-generation sequencing reads aided by highly efficient de novo
assembly”, Nucleic Acids Research, 2012.

[Kelly15] B.J. Kelly, J.R. Fitch, Y. Hu, D.J. Corsmeier, H. Zhong, A.N.
Wetzel, R.D. Nordquist, D.L. Newsom and P. White,”Churchill: an ultra-
fast, deterministic, highly scalable and balanced parallelization strategy
for the discovery of human genetic variation in clinical and population-
scale genomics”, Genome Biology, vol. 16, no. 6, 2015.

[Li13] H. Li, ”Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM”, arXiv:1303.3997 [q-bio.GN], 2013.

[Pabinger13] S. Pabinger, A. Dander, M. Fischer, R. Snajder, M. Sperk, M.
Efremova, B. Krabichler, M.R. Speicher, J. Zschocke, Z. Trajanoski, ”A
survey of tools for variant analysis of next-generation genome sequencing
data”, Brief Bioinformatics, bbs086v1-bbs086, 2013.

