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ABSTRACT
In this paper, we present the design in reconfigurable logic of a
matrix multiplier for matrices of 32-bit posit numbers with es=2 [1].
Vector dot products are computed without intermediate rounding as
suggested by the proposed posit standard to maximally retain preci-
sion. An initial implementation targets the CAPI 1.0 interface on the
POWER8 processor and achieves about 10Gpops (Giga posit opera-
tions per second). Follow-on implementations targeting CAPI 2.0
and OpenCAPI 3.0 on POWER9 are expected to achieve up to
64Gpops. Our design is available under a permissive open source li-
cense at https://github.com/ChenJianyunp/Unum_matrix_multiplier.
We hope the current work, which works on CAPI 1.0, along with
future community contributions, will help enable a more extensive
exploration of this proposed new format.

CCS CONCEPTS
• Computer systems organization → Reconfigurable com-
puting;
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1 INTRODUCTION
In their paper "Beating Floating Point at its Own Game: Posit Arith-
metic" [1], the authors introduce posit numbers, designed to replace
the IEEE 754 standard. While the paper lays out several desirable
properties of posits, application studies have been hindered by the
lack of available hardware implementations. In this paper, we report
our work on an implementation in reconfigurable logic of a posit
matrix-multiply unit. One reason to build a matrix multiply (C=AB)
is that one can consider this to be a streaming operation where
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each row vector of A multiplied with a stored matrix B produces
an output row vector of C. When matrices are stored with entries
in a row in successive memory locations, this allows for efficient
memory access, both for accessing the stored matrix B (which can
be read in row-wise) as well as the row vectors of matrices A and C.
This organization also allows us, for matrices of sufficient size, to
simultaneously maximize input and output bandwidth, as well as
reach the maximum number of floating-point operations. Because
a matrix multiply is decomposed into a set of vector dot product
operations, this operation encourages us to implement the wide
accumulator the proposed posit standard calls for to avoid inter-
mediate rounding when calculating vector dot products [2]. We
have chosen to leverage the (Open)CAPI interface [7] [8], first for
ease of programming and to enable the host application to simply
pass a (stack)pointer to the accelerator, and avoid both pinning
and host-memory copy operations. Because the accelerator has
unfettered access to host memory, the accelerator can optimize its
memory access pattern to complete a full matrix multiply of any de-
sired size without the need for different implementation-dependent
host-side drivers. The OpenCAPI interface exceeds the bandwidth
available with PCIe, and provides reduced-latency access to host
main memory. The remainder of this paper is organized as follows:
Section 2 of this document describes the 32-bit posit representa-
tion supported by this design. Section 3 describes the design of
the dot product unit. Section 4 describes the design of the matrix
multiply accelerator. Setion 5 discusses the measured and estimated
performance results. Section 6 ends with the conclusions.

2 POSIT HARDWARE REPRESENTATION
The value of a posit number can be represented as described in the
formula below:

(−1)siдn bit ∗ useedk ∗ 2e ∗ f

where useed = 22
es
, k is the integer represented by the regime bits,

e is the unsigned integer represented by the exponent bits, and f is
the fraction.
Before calculating posits on an FPGA, we transform the posit repre-
sentation to a hardware friendly format. To achieve this, we need to
define the length of posits and the value of es. This paper describes
an implementation for 32-bit posits with es=2. For this case, the
largest positive value is 2120 and the smallest positive value is 2−120.
Thus, the value of a posit can be represented in the formula below
(the exponent value is an 8-bit unsigned integer calculated from
the regime and exponent bits):

(−1)siдn bit ∗2exp_value−128∗ f ,where exp_value = k∗2es+e+128
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The exponent value is an unsigned integer calculated by regime bits
and exponent bits. The number of regime bits is variable in a posit.
To calculate the number of regime bits and obtain the position of
exponent bits and fraction bits, a leading zero/one counter (LZC) [6]
is applied from the 2nd bit to the end of the posit. The LZC result is
a 5-bit integer with a length that is equal to the regime bits minus
one. In addition, a left shift is applied so the exponent bits and
fraction bits will be in a fixed position.
Next, the exponent value can be calculated by applying the process
depicted in Figure 1. First, copy the first bit of regime bits to bit7 of
the exponent value and copy the exponent bits to bit1 and bit0 of
the exponent value. Then, if bit7 of the exponent value is 0, reverse
every bit of the result of the LZC and assign it to the range from
bit6 to bit2. If not, simply copy the result of LZC to the range bit6
to bit2.

Figure 1: Transform regime bits and exponent bits to expo-
nent value

3 DESIGN OF THE EXACT DOT-PRODUCT IN
RECONFIGURABLE LOGIC

3.1 Principle of operation
For a posit, the largest magnitude is useedn−2 and the smallest
non-zero magnitude is useed2−n , where useed is 22

es
and n is the

length of the posit. Therefore, the largest magnitude and smallest
non-zero magnitude for a product of two posits are useed2n−4 and
useed4−2n respectively. Every product of two posits is an integer
multiple of the smallest non-zero magnitude. So, our internal repre-
sentation should be big enough to hold useed4n−8. In practice, this
number should be even bigger to account for the carries during
accumulation. Thus, for our implementation, the largest magnitude
and smallest non-zero magnitude are 2240 and 2−240 respectively,
and therefore our representation should have at least 481 bits. To
make the calculation convenient, a 512-bit quire register [1] is used
to hold all the products. The 512 bits represent the magnitudes
from 2255 to 2−256. The result of the dot-product is correct within
the rounding error of the final result, which is more accurate than
using IEEE float, especially when accumulating a large number of
values .

3.2 Principle of the carry-save dot product unit
For our choice of posit, fraction bits have a maximum length of
28 bits (including the leading 1 before a fraction, or 1.xx), thus the
fraction of the product can be up to 56 bits. However, adding a
56-bit number to a 512-bit quire register requires a 512-bit adder,
which is very expensive and slow.

If a short positive number is added to a much larger number
and no carry occurs, only a small part of the larger number will be
changed, and therefore most of the adder is wasted in most of cases.
To avoid requiring a large adder for all cases, two problems should
be solved [4]: 1) how to solve the carries? and 2) how to handle a
negative number?

Figure 2: Each fraction has one or two corresponding blocks

As Figure 2 shows, the 512-bit number can be divided into 8 64-
bit blocks, which are called Block7 to Block0. Every 56-bit fraction
can be added to one block or two of these blocks, the other blocks
will not be influenced if no carry happens. Therefore we use two
random access memories to store the even and odd blocks. Each
block stores the magnitude from 20bXXX 11111 (0b means binary
number here) to 20bXXX 00000, where XXX is the number of the
block in binary (from 0b111 to 0b000).

As Figure 3 shows, to store the carry, a 16-bit number for carry
is appended to every 64-bit block, and each block is extended from
64 bits to 80 bits. Carry save adders are used here, once a carry
exceeding the 64-bit block happens, it will be saved in its 16-bit [3].

The number of the carry bits is related to the length of adder,
which determines the working frequency of this accumulator. On
the other hand, the number of carry bits also determines the maxi-
mum number of carries. 16 bits are enough to hold 215 − 1 carries,
which is enough for normal use. Our current implementation prop-
agates carries at multiples of 64, which is less than this limit.

Figure 3: Append carry bits on the left

If a negative number is added, a borrow rather than carry may
occur. A borrow can be regarded as “carry a negative number”. In
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this case, 16-bit for carry should be a number in 2’s complement,
where its MSB is the sign bit.

3.3 Optimization by using FPGA RAMs
In order to access the blocks easily, the blocks are stored in RAMs.
In this design, the blocks are stored in distributed RAM (registers)
because the requirement of depth of RAM is only 4 in this design
(one RAM for the even blocks and one for the odd blocks). However,
the same idea can be applied for longer posit number with larger es .
In that case, block RAM (BRAM) can be used to store more blocks
in order to save LUT and FF resource in FPGA. It also possible to
use BRAM in this design, but a lot of BRAMs storage will be wasted
and working frequency will be influenced.

3.4 Calculation of the address and shift of the
fraction

The fraction of the product is 56 bits long. Before the addition,
the RAM address of its corresponding blocks should be found and
it should be shifted to its posit. The block that contains the mag-
nitude of the leading one of the fraction and its right block are
the corresponding blocks. As Figure 4 shows, define bit8 to bit6 of
exponent value as address bits and bit5 to bit0 as shift bits. From
the magnitude range and address of the blocks, the block numbers
of corresponding blocks can be found: address bits, address bits-1.
When the address bit is 0b000, address bits-1 is 0b111, which is the
leftmost block (Block 7). However, this is not a problem, because in
this case the number added to Block 0b111 (Block 7) is always zero.

Figure 4: Address bits and shift bits

The address of the odd RAM and even RAM can be easily cal-
culated from the address bits: the address of the even block is
Bit8 Bit7, and the address of the odd block is calculated as Bit8
Bit7−(Bit6). Furthermore, 1.xx. . . xx is represented as 20 * 1.xx. . . xxx,
and once we align the 1.xx. . . xxx to a block, its magnitude becomes
20bXXXX 00000 * 1.xx. . . xxx, where XXXX is the number of the block.
As Figure 5 shows, the amount of the left shift is the number of
shift bits. After the alignment and shift, the magnitude will become
2exponent value * 1.xx. . . xxx.

Figure 5: Align the fraction

3.5 Carry and normalization
To get the final result in 2’s complement, the carry for each block
should be calculated one by one from least to most significant.
Thus the 2’s complement number can be transformed into a 512-bit

magnitude in the format below, where the sign bit is the MSB of
the carry bits of the leftmost block (Block 7):

Figure 6: The format of a 512-bit number in signed magni-
tude

The posit result can be obtained by normalizing this number.
However, it is slower and more expensive to do the carry and
normalization separately. A way to do carry and part of the nor-
malization at the same time is introduced below. If the final result
is positive, the result after carry (before normalization) will be in
the format shown in Figure 6.

As Figure 7 shows, only the block with the leading one (the
leftmost ONE) and its neighboring block to the right (the orange
blocks in the figure) are useful to calculate the fraction. While
the carry is done from right to left, we should buffer two blocks
and buffer the address of the current block following the rules in
Figure 9.

If the final result is negative, the result after carry (before nor-
malization) will be in the format as Figure 8 shows.

Figure 7: Pattern of a 512-bit number in 2’s complement
when positive

Figure 8: Pattern of a 512-bit number in 2’s complement
when negative

In this case, only the block with the leading zero (the leftmost
ZERO) and its right block (the orange blocks in figure) are useful
to calculate the fraction. We should buffer two blocks and buffer
the address of the current block following the rules in Figure 10.

Figure 9: Operation to get the result blocks when positive

As the sign of the result can only be calculated after all the carry
bits have been processed, behavior of both positive numbers and
negative numbers should be accounted for during the carry.

For a negative number, there is some extra work to transform it
into signed magnitude format after carry. If the number is negative,
the result of carry will be a sign bit and two buffer blocks as Fig-
ure 11 shows. The sign bit and buffer block2 represent a negative
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number in 2’s complement, which is called Number 1. Buffer block1
represents an unsigned positive number or zero, which is called
Number 2. Also, the magnitude of LSB of buffer block2 is greater
than MSB of buffer block1. When calculating the value of Number
1 + Number 2, Number 2 should borrow 1 from Number 1.

Figure 10: Operation to get the result blocks when negative

Figure 11: Pattern of result blocks

3.6 Two ways of optimization by using double
buffering structure

Figure 12: 1st double buffering structure

Figure 13: 2nd double buffering structure

An accumulation has three phases: addition, carry and normal-
ization. After addition, the RAM arrays store the odd and even
blocks, respectively, are occupied by the carry module, and the next
accumulation cannot start immediately. To optimize our design,
another RAM is added as Figure 12 shows. In the first dot-product
calculation, the carry-save adder module operates on RAM1 (adds
numbers to RAM1). After the addition of all the numbers, the carry-
save adder module will operate on RAM2 and carry module on
RAM1. Hence, the addition phase of the next accumulation can
start at once. In this structure, the next accumulation can start im-
mediately after current accumulation. However, to maintain full
throughput, each accumulation should have at least eight pairs of

numbers. Since the design of this matrix-multiplier focuses on cal-
culating with larger matrices, the accumulator will be well utilized.
However, there is another way to optimize. As Figure 13 shows,
another carry module is added. In this structure, each accumula-
tion should have at least four pairs of numbers to maintain full
throughput.

4 DESIGN OF THE MATRIX-MULTIPLIER
For the construction of our matrix multiplier we assume our design
consists of V vector dot-product units. Each dot-product unit stores
a vector (a column of matrix B) of at most M elements. For the sake
of simplicity this description assumes that all dot-product units
are used for the same matrix B. Because we assume all matrices
are stored in row-major order, it is advantageous to load the V
dot-product units in parallel.

Currently, a matrix-multiplier with 64 dot-products is designed,
which means it can calculate 64 numbers in result matrix (matrix
C) at the same time.

When calculating two matrices with the size n*64 and 64*n, the
matrix multiplication is carried out with the following sequence of
steps:
1) As Figure 14 shows, all numbers in matrix A and matrix B are
stored in RAM_A or RAM_B, respectively. Currently the RAM_A
and RAM_B are implemented by BRAMs, which may be replaced
by URAM in the future. RAM_A will output numbers in matrix
A one by one. RAM_B will output numbers row by row, and 64
numbers in the same row in the result matrix will be calculated at
the same time.
2) After the calculation of each row, the result will be stored in
RAM_C.
3) Step 1 and 2 are repeated until every row is calculated.
When the input matrices are larger, the result matrix will be sepa-
rated into some small matrix with 64 columns. Step3 is repeated
until all the small matrices are processed. By processing a column
of the larger matrix on a single dot-product unit without resetting
the quire register, no intermediate rounding occurs.

Large matrices can be handled by dividing into sub-blocks and
by performing a final carry step, but not the normalization step, and
keeping the intermediate values in the quire registers. An upper
limit on the size of the vectors is determined by the difference
between the size of the quire registers ( 512 bits ) and the minimum
required range ( 481 bits ) and thus vectors and array sizes of at
least a billion elements can be supported.

Figure 14: Structure of matrix multiplier

Because (Open)CAPI-based implementations have full access
to shared memory, all the control for the matrix multiplier can be
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created on the reconfigurable logic [5]. The host thread merely
needs to wake up the FPGA logic and pass it a stack pointer, equiv-
alent to doing a function call, but ensuring all parameters are in
memory and not in registers. The host thread then suspends until
the accelerator wakes it up on completion of the matrix multiply.

5 PERFORMANCE
We implemented our design on FPGAs and measured the perfor-
mance. In the following, we report the results measured for our
design running on configuration 1 below, and we estimate the per-
formance on configurations 2&3.
Configuration 1. A Xilinx Virtex7 VX690 with a x8 CAPI 1.0 inter-
face.
Configuration 2. A Xilinx Virtex Ultrascale Plus VU3P with a x8
OpenCAPI 3.0 interface.
Configuration 3. A Xilinx Virtex Ultrascale Plus VU37P with a x16
OpenCAPI 3.0 interface.
These devices and configurations have the characteristics listed in
Table 1.

FPGA Eff. BW DSP FF LUT BRAM URAM
VX690 4GB/s 3600 866K 433K 52.9Mb -
VU3P 16GB/s 2280 788K 394K 25.3Mb 90Mb
VU37P 32GB/s 9024 2607K 1304K 70.9Mb 270Mb

Table 1: Resources available in the 3 (Virtex) FPGA configu-
rations

Unit type FF LUT DSP Frequency
Single posit dot-product 1031 2618 4 200MHz
32-bit float number 1325 866 4 300MHz
multiply-adder

Table 2: Resource comparison and operating frequency of
the posit dot-product and float number multiply-adder de-
sign

Table 2 shows the required resources and working frequency
for a single dot-product unit with the comparison with a multiply-
adder for 32-bit single IEEE float number which is generated by
Vivado IP core. Leaving room for interface logic, configurations 1&2
can be expected to support 64 such units, limited by the number of
BRAM in configuration 2 and targeting a single design for both 1&2
and configuration 3 at least 256 such units. Configuration 1 should
be able to support vector lengths of at least 1,024 (stored) elements
with up to 32K long vectors efficiently supported by configurations
2&3 leveraging the available URAMs in those FPGAs. The work-
ing frequency for matrix-multiplier is 125MHz. A bandwidth of
4/16/32GB/s corresponds to 1/4/8 Giga elements per second. For
an FPGA operating at 125MHz, 8/32/64 elements per cycle. For a
single input element per cycle and n vector units, n outputs are
generated every vector-length cycles and one per cycle if vector
length = n, matching the input bandwidth. For shorter vectors the
design is bandwidth limited, and for longer vectors the design is

arithmetic speed limited. Maximum expected posit(-multiply ac-
cumulate, counting each separately) operations per second (pops)
is 16Gpops for configurations 1&2 and 64Gpops for configuration
3. Measured peak performance of our current implementation is
about 10Gpops.

6 CONCLUSIONS
This paper presented an initial design of an FPGA-based posit
matrix-multiply unit. The design is estimated to deliver between
16Gpops and 64Gpops 32bit (es=2) posit-operations per second us-
ing currently available reconfigurable logic devices. The design is
built with dot-vector multipliers that maintain full precision for
the intermediate results. A first posit implementation in hardware
delivers about 10Gpops and is measured to be about 1000x faster
than the (Julia-based) software implementation. The design is being
contributed to open source with a permissive license, and the expec-
tation is that this work will not only enable further exploration of
the posit format, but will also spur further hardware improvements
and implementations.
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