
An Experimental Microarchitecture for a Superconducting
�antum Processor

X. Fu1,2 M. A. Rol1,3 C. C. Bultink1,3 J. van Someren1,2 N. Khammassi1,2 I. Ashraf1,2
R. F. L. Vermeulen1,3 J. C. de Sterke4,1 W. J. Vlothuizen5,1 R. N. Schouten1,3

C. G. Almudever1, 2 L. DiCarlo1,3 K. Bertels1,2
1 QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands

2 Computer Engineering Lab, Delft University of Technology
3Kavli Institute of Nanoscience, Delft University of Technology

4 Topic Embedded Systems B.V.
5 Netherlands Organisation for Applied Scientic Research (TNO)

{x.fu-1, m.a.rol,c.c.bultink, j.vansomeren-1, n.khammassi, i.ashraf, r.f.l.vermeulen}@tudelft.nl,
jacob.de.sterke@topic.nl, wouter.vlothuizen@tno.nl,

{r.n.schouten, c.garciaalmudever-1, l.dicarlo, k.l.m.bertels}@tudelft.nl

ABSTRACT
Quantum computers promise to solve certain problems that are
intractable for classical computers, such as factoring large numbers
and simulating quantum systems. To date, research in quantum
computer engineering has focused primarily at opposite ends of
the required system stack: devising high-level programming lan-
guages and compilers to describe and optimize quantum algorithms,
and building reliable low-level quantum hardware. Relatively little
attention has been given to using the compiler output to fully con-
trol the operations on experimental quantum processors. Bridging
this gap, we propose and build a prototype of a �exible control
microarchitecture supporting quantum-classical mixed code for
a superconducting quantum processor. The microarchitecture is
based on three core elements: (i) a codeword-based event control
scheme, (ii) queue-based precise event timing control, and (iii) a
�exible multilevel instruction decoding mechanism for control. We
design a set of quantum microinstructions that allows �exible con-
trol of quantum operations with precise timing. We demonstrate
the microarchitecture and microinstruction set by performing a
standard gate-characterization experiment on a transmon qubit.

CCS CONCEPTS
• General and reference→ General conference proceedings;
• Computer systems organization→ Quantum computing; •
Hardware → Quantum technologies;

KEYWORDS
Quantum (micro-) architecture, QuMA, quantum instruction set
architecture (QISA), QuMIS, superconducting quantum processor

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4952-9/17/10.
https://doi.org/10.1145/3123939.3123952

ACM Reference format:
X. Fu1,2 M. A. Rol1,3 C. C. Bultink1,3 J. van Someren1,2 N. Khammassi1,2
I. Ashraf1,2 R. F. L. Vermeulen1,3 J. C. de Sterke4,1 W. J. Vlothuizen5,1
R. N. Schouten1,3 C. G. Almudever1, 2 L. DiCarlo1,3 K. Bertels1,2.
2017. An Experimental Microarchitecture for a Superconducting Quantum
Processor. In Proceedings of MICRO-50, Cambridge, MA, USA, October 14–18,
2017, 13 pages.
https://doi.org/10.1145/3123939.3123952

1 INTRODUCTION
To construct a fully programmable quantum computer based on the
circuit model [1], a system stack [2] composed of several layers is
required (Figure 1). Quantum algorithms are formulated and then
described using a high-level quantum programming language [3–
7]. Depending on the choice of quantum error correction code [8],
such as surface code [9], the compiler [6, 10, 11] takes that descrip-
tion as input, performs optimization [6, 12–15] and generates a
fault-tolerant implementation of the original quantum algorithm.
Next, it realizes the algorithm using instructions [10, 11, 16–18]
belonging to a quantum instruction set architecture (QISA). Just
like in classical architectures [19], the QISA is the interface between
software and hardware. A control microarchitecture is needed to
decode the quantum instructions into required control signals with
precise timing as well as real-time quantum error detection and
correction [20, 21]. Finally, based on the speci�c quantum techno-
logy – e.g., superconducting qubits [22–24], trapped ions [25, 26],
spin qubits [27], nitrogen-vacancy centers [28, 29], etc. – control
signals are translated into required pulses, and sent to the quantum
chip via the quantum-classical interface.

In current experiments, quantum processors are controlled with
well-de�ned electrical signals, e.g., microwave-frequency and base-
band pulses, which require accurate parameters and timing. To sat-
isfy the strict requirements on control signals, dedicated electronic
devices are typically used to interface with the quantum proces-
sor. However, existing control methods introduce high resource
consumption, long con�guration times, and control complexity, all
of which scale poorly with the number of qubits [30]. Although
high-level languages o�er �exibility, quantum compilers typically
generate instructions that are not directly executable on a quantum

813

https://doi.org/10.1145/3123939.3123952
https://doi.org/10.1145/3123939.3123952

MICRO-50, October 14–18, 2017, Cambridge, MA, USA X. Fu et al.

Figure 1: Overview of the quantum computer system stack
from [2].

processor. It is a challenge to design a control microarchitecture
that accepts a set of instructions output by a compiler and translates
them into the interface required by a quantum processor.

Motivated by heterogeneous computing, we propose a control
microarchitecture, named QuMA, for a superconducting quantum
processor based on the circuit model. QuMA accepts quantum-
classical mixed code and enables �exible and precise-timing control
over a quantum processor. The four concepts at the core of QuMA
are:

• Codeword-based event control scheme: every event includ-
ing pulse generation and measurement is assigned with an
index, which is called a codeword. These events are trig-
gered by corresponding codewords at runtime. This scheme
abstracts the control of quantum processors using complex
analog pulses into a simple interface consisting of only handy
binary signals, providing the foundation for �exible control
via instructions.

• Queue-based event timing control: in this scheme, events
with precise timing decoded from instruction execution are
�rst bu�ered in a group of queues and then triggered at
expected timing. It allows that events are triggered at de-
terministic and precise timing while the instructions are
executed with non-deterministic timing.

• Multilevel instruction decoding: quantum instructions are
successively translated intomicroinstructions, micro-operations,
and �nally codewords with accurate timing. It enables using
technology-independent instructions to control operations
on qubits.

• Quantum microinstruction set: we design and implement
a low-level quantum microinstruction set (QuMIS) which
enables �exible control of quantum operations.

In addition, we implement QuMA on a �eld-programmable gate
array (FPGA). We experimentally validate QuMA by conducting a
standard gate-characterization experiment on a superconducting
qubit, which is called AllXY [31, 32]. The control, initially speci�ed

in a high-level programming language, is converted to our proposed
instructions by a quantum compiler.

The paper is structured as follows. Section 2 brie�y introduces
the basics of quantum computing and the superconducting qubits
as used in the experiment. Section 3 presents related previous work.
After stating the challenges of controlling quantum processors
using instructions in Section 4, Section 5 details how QuMA ad-
dresses these challenges in a systematic way with three proposed
mechanisms. Section 6 discusses the advantages and scalability of
QuMA. The implementation and experimental validation of QuMA
and QuMIS are shown in Sections 7 and 8, respectively. Section 9
concludes.

2 BACKGROUND
2.1 Quantum Computing Basics
Quantum computing can be best viewed as computation-in-memory,
in which information is stored and processed at the same place with
the basic elements called qubits. A qubit can exist in a superposition
of its two logical states, |0i and |1i, which is mathematically de-
scribed by |� i = � |0i+ � |1i, where � , � 2 C satisfy |� |2+ |� |2 = 1.
The state of a qubit can be intuitively depicted by a vector on the
Bloch sphere [1]. When measured in the logical basis, a qubit is pro-
jected onto |0i or |1i with probabilities |� |2 and |� |2, respectively.

The qubit state can be modi�ed by applying quantum gates.
Every single-qubit gate is a rotation Rn̂ (�) on the Bloch sphere
along an particular axis n̂ by an angle � . Popular single-qubit gates
include Rx (�), R� (�), and Rz (�), which are also called X , Y , and Z ,
respectively. There are also two-qubit gates, among which the most
popular are the controlled-NOT (CNOT) and the controlled-phase
(CZ). For a comprehensive introduction to quantum computing
basics, we refer the interested reader to [1].

2.2 Superconducting Qubits
In this paper, we focus on transmon qubits [33] in planar circuit
quantum electrodynamics [34]. This is a promising architecture for
solid-state quantum computing where qubit measurement and a
universal gate set [35], comprised of single-qubit gates (mainly X
and Y rotations) and the CZ gate, have already achieved error rates
lower than the fault-tolerance threshold for surface code [9]. Recent
experiments have demonstrated basic quantum error correction for
this architecture, including the repetition code [22, 23] and elements
of the surface code [36].

Figure 2 shows images at various length scales of the transmon
(Q) [37] that wewill use in the validation. The transmon is a lumped-
element nonlinear LC resonator consisting of an interdigitated
capacitor in parallel with a pair of Josephson junctions providing
nonlinear inductance. We use the ground state (�rst-excited state)
of this circuit as the qubit |0i (|1i) state. The transition frequency
fQ between these states can be tuned over several gigahertz on
nanosecond timescales by controlling the �ux through the loop
between the two Josephson junctions using the proximal �ux-bias
line (port PF).

Qubit measurement exploits the qubit-state dependent funda-
mental frequency fR of a coplanar waveguide resonator (R) which
is capacitively coupled both to the transmon and to a feedline.
A pulsed measurement (typically 300 ns - 2 µs) of transmission

814

An Experimental Microarchitecture for a Superconducting�antum Processor MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Q

PF
R

PoPi
(a)(b)(c)

500 μm

2 μm
300 nm

Figure 2: Images at various scales of a transmon qubit cou-
pled to a readout resonator in a planar circuit quantum elec-
trodynamics chip. (a) Qubit (Q), resonator (R), �ux-bias line
(PF), feedline input (Pi), and feedline output (Po). (b) Zoom-in
on the two Josephson junctions of the qubit. The magnetic
�ux threaded through the loop sets the qubit transition fre-
quency fQ. (c) Zoom-in on one of the two Josephson junc-
tions.

through the feedline (from input port Pi to output port Po) near
the fundamental of R interrogates the qubit state, projecting it to
|0i or |1i. Demodulation, integration, and discrimination of the
transmitted signal is used to infer the measurement result.

Single-qubit gates are performed by applying calibrated micro-
wave pulses (typically 20 ns) at fQ to the feedline. These pulses are
commonly generated by single-sideband modulation of a carrier us-
ing an I-Q mixer and envelope functions generated by an arbitrary
waveform generator. The envelopes and the phase of the carrier
determine the rotation axis along the equator of the Bloch sphere,
and the amplitude of the pulse determines the rotation angle. Note
that arbitrary single-qubit gates can be decomposed into x- and �-
axis rotations albeit at the cost of longer operation sequences using
some decomposition techniques, such as repeat-until-success [14].

In circuit quantum electrodynamics, the most common two-
qubit gate is the CZ gate. Such a gate can be performed between
qubits coupled to a common resonator or capacitor. It is realized by
applying suitably calibrated pulses of typical duration ⇠ 40 ns to
the �ux-bias line. We avoid going into further detail on CZ gates
here as these are not part of our validation. Please see [38–40] for
details.

3 RELATEDWORK
Several quantum programming languages [3, 5–7, 41] and compil-
ers [6, 10, 11] exist in which quantum algorithms can be written
and compiled into a series of instructions. These quantum compil-
ers [4, 10, 42] all generate a variant of quantum assembly language
(QASM)-based instructions that belong to the quantum instruction
set. Although several quantum instruction sets have been proposed,
such as a vonNeumann architecture-based virtual-instruction set ar-
chitecture [16], quantum physical operations language (QPOL) [10],
Hierarchical QASM with Loops (QASM-HL) [11], Quil [17], and
OPENQASM [18], they are intermediate representations of quan-
tum applications without considering the low-level constraints to
interface with the quantum processor. They all lack an explicit
control microarchitecture that implements the instructions set and
allows the execution of such instructions on a real quantum pro-
cessor.

Previous papers discussing quantum (micro-) architecture can
be roughly divided into three groups. The �rst group discusses
how to physically design and fabricate a quantum processor based
on a speci�c technology, such as trapped ions [16, 26, 43, 44], su-
perconducting qubits [45, 46], spin qubits [47], etc. The second
group [15, 44, 48–51] studies how to organize qubits into multiple
regions for di�erent computational purposes to reduce the required
hardware resources and communication overhead, and to maxi-
mize parallelism. The third group takes a high-level view to discuss
research domains [52] and quantum abstraction [53]. All of these
works use the term microarchitecture di�erently from this paper.

An example of control microarchitecture as viewed in this paper
is [2], where emphasis is placed on the de�nition of technology-
independent and technology-dependent functions in which the
microcode unit plays an essential role. The microcode approach
was �rst introduced by Wilkes [54] to emulate a relatively complex
machine instruction as a sequence of micro-operations, called a
microprogram. The microprogram can be permanently stored or
cached in a control store. It enables �exible complex instruction
de�nition using the same hardware implementation. Vassiliadis et
al. [55] extended the microcode method to a three-level translation
frommachine instructions to microinstructions and �nally to micro-
operations. A microinstruction decoded into one (multiple) micro-
operation(s) is called vertical (horizontal).

The microcode method is a computational model that also maps
quitewell onto quantum computing because: (1) there are frequently-
used routines in quantum computing, such as error correction,
which impact system performance signi�cantly but can be well
optimized via carefully tuning the microcode for these routines, as
proposed by [51]; (2) most quantum algorithms frequently use more
complex operations which cannot, at least in the foreseeable future,
be directly implemented by a quantum processor. In this paper, we
adopt the microcode approach in the proposed microarchitecture
to enable �exible technology-independent instruction de�nition.

4 MICROARCHITECTURAL CHALLENGES
4.1 Motivational Example
We use the AllXY experiment [32] as an example to illustrate the
microarchitectural challenges when controlling superconducting
qubits. This experiment, although simple, requires �exible control
over the qubit and is sensitive to control errors such as timing
inaccuracy. Hence, it can reveal some of the essential features of a
microarchitecture to control a superconducting quantum processor.

The AllXY experiment is a simple test of the calibration of single-
qubit gates, which are realized by microwave pulses. Di�erent pulse
errors (amplitude, frequency, etc.) produce distinct signatures that
are easily recognized. The qubit (initialized in the |0i state) is sub-
jected to two back-to-back single-qubit gates and measured (Fig-
ure 3). In each round, we run 21 di�erent gate pairs: ideally, the �rst
5 return the qubit to |0i, the next 12 drive it to 1p

2

⇣
|0i + ein� /2 |1i

⌘
with n 2 {0, 1, 2, 3}, and the �nal 4 drive it to |1i. By averaging
the measurements results for each pair over N rounds (we take
N = 25600 in experiment), we can extract the �delity of the qubit

815

MICRO-50, October 14–18, 2017, Cambridge, MA, USA X. Fu et al.

to the |1i state, and compare to the ideal staircase signature. Al-
gorithm 1 shows the required procedure to perform the AllXY
experiment.

Algorithm 1: Pseudo code of the AllXY experiment.
Data: gate[21][2] = {{I , I }, {Rx (�), Rx (�)},
{R� (�), R� (�)}, {Rx (�), R� (�)}, {R� (�), Rx (�)},
{Rx (�/2), I }, {R� (�/2), I }, {Rx (�/2), R� (�/2)},
{Rx (�/2), R� (�/2)}, {Rx (�/2), R� (�)},
{R� (�/2), Rx (�)}, { Rx (�), R� (�/2)},
{R� (�), Rx (�/2)}, {Rx (�/2), Rx (�)},
{Rx (�), Rx (�/2)}, {R� (�/2), R� (�)},
{R� (�), R� (�/2)},{Rx (�), I }, {R� (�), I },
{Rx (�/2), Rx (�/2)}, {R� (�/2), R� (�/2)}};

for (j = 0; j < N ; j + +) do
for (i = 0; i < 21; i + +) do

Init the qubit; // by waiting multiple T1 (tInit).
Apply gate[i][0] on the qubit;
Apply gate[i][1] on the qubit;
Sj,i = measure(qubit);

end
end
F |1i |meas,i

ÕN�1
j=0 Sj,i/N ;

Figure 3:Waveforms and timings for one round of theAllXY
experiment.

4.2 Complex Analog Waveform Control
In classical computers, data and control signals are both binaries.
In contrast, the input and output signals of quantum processors are
both complex analog signals. The measurement outcome of qubits
resides in the output analog signals from the quantum processor,
while quantum operations on qubits (input signals) are performed
by sending analog pulses that have well-de�ned but variable enve-
lope, frequency, duration, timing, etc. For example, the X gate on a
transmon qubit can be implemented using a 20 ns Gaussian pulse
modulated to the frequency of the qubit with a particular phase.

A popular method to produce the required pulses uses arbitrary
waveform generators. Before executing quantum algorithms, the
pulses are calibrated and placed in the memory of these generators
as arrays of amplitude values for each sample. A pulse lasting for a
time Td requires the memory to store Ns = 2 ·Td · Rs samples for
both in-phase (I) and quadrature (Q) components, where Rs is the
sampling rate, typically ⇠ 1 GSample/s. Each sample can consist
of ⇠ 12 bits, representing the vertical resolution of the amplitude.

4.2.1 Measurement Result Discrimination. As described in Sec-
tion 2.2, measurement results are contained in an analog signal
Va (t). To discriminate the result for a qubitq, dedicated data-acquisition
boards are commonly used to digitizeVa (t) and perform integration
and discrimination in software as follows:

Sq =

π
Va (t)Wq (t)dt , and Mq =

(
1 if Sq > Tq ;
0 otherwise.

Here,Wq (t) and Tq are a calibrated weightfunction and threshold
for q, respectively. Sq is the integration result and Mq the �nal
binary measurement result. The software-based method is disad-
vantageous because of two reasons. First, the long latency of the
software-based method (hundreds of microseconds) makes real-
time feedback control for superconducting qubits impossible, since
latency well below the typical qubit coherence time (< 100 µs) is re-
quired. The feedback control determines the next operations based
on the result of measurements and is critical in many quantum
algorithms, e.g., a speci�c implementation [56] of Shor’s factoring
algorithm [57]. Second, the implied hardware resource consumption
cannot scale up to a large number of qubits. A scalable measurement
discrimination method with short latency constitutes a challenge.

4.2.2 Flexible Combination of Operations. Quantum algorithms
and even basic quantum experiments, such as AllXY, require com-
bining multiple quantum operations. To generate the required op-
eration combinations, current arbitrary waveform generators �rst
upload long waveforms combining di�erent pulses with appropri-
ate timing and later play them. A drawback of this method is that
even a small change to the operations requires a new upload of
the entire waveform which costs signi�cant memory and upload
time. To generate the 21 combinations in the AllXY experiment,
21 di�erent waveforms must be uploaded. With more qubits and
more complex algorithms, the combination of operations can be
more, which asks for more waveforms, leading to more memory
consumption and larger uploading latency. Therefore, this method
does not easily scale to a large number of qubits.

Furthermore, the execution of quantum programs requires more
�exible feedback control, which cannot be supported by the au-
tonomous arbitrary waveform generators as these devices cannot
change a waveform to incorporate dynamically determined opera-
tions. Therefore, it is a requirement to de�ne a �exible and scalable
way to combine multiple smaller pulses, such that any sequence
can be easily programmed, changed and executed when necessary.

4.2.3 Accurate Timing Control. Instructions in classical proces-
sors are usually executed with non-deterministic timing on a nano-
second timescale due to (1) process switching and system calls in
the software layer, (2) inde�nite communication latency includ-
ing memory access, (3) static and dynamical instruction reorder,
(4) pipeline stall and �ushing, etc. However, the non-deterministic
timing typically does not matter and the program can run cor-
rectly as long as the relative order of inter-dependent instructions
is preserved.

In contrast, precise timing on nanosecond timescales is criti-
cal to quantum operations. As discussed in Section 2.2, when a
�xed single-sideband modulation is used, the timing of pulses must
be accurate to maintain the carrier phase, which sets the rota-
tion axis of single-qubit gates. For example, given a �xed 50 MHz

816

An Experimental Microarchitecture for a Superconducting�antum Processor MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Figure 4: Overview of the Quantum MicroArchitecture (QuMA).

single-sideband modulation in the AllXY experiment, applying the
modulation envelope of an x rotation 5 ns later will produce a �
rotation instead. Besides, some quantum experiments require oper-
ations to be applied at a particular point in time. For example, the
pulses implementing the two single-qubit gates and the measure-
ment must be applied on the qubit back-to-back. To provide the
appropriate timing precision, dedicated hardware is needed where
again scalability in terms of the number of qubits is an additional
requirement.

Using instructions to specify the timing of operations is more
promising. However, it is challenging to use non-deterministic
instruction execution to generate pulses with deterministic and
precise timing.

4.3 Instruction De�nition
The instruction set architecture is the interface between hardware
and software and is essential in a fully programmable classical
computer. So is QISA in a programmable quantum computer.

As explained in Section 3, existing instruction set architecture
de�nitions for quantum computing mostly focus on the usage of
the description and optimization of quantum applications without
considering the low-level constraints of the interface to the quan-
tum processor. It is challenging to design an instruction set that
su�ces to represent the semantics of quantum applications and
to incorporate the quantum execution requirements, e.g., timing
constraints.

It is a prevailing idea that quantum compilers generate technology-
dependent instructions [4, 10, 42]. However, not all technology-
dependent information can be determined at compile time because
some information can only be generated at runtime due to hardware

limitations. An example is the presence of defects on a quantum
processor a�ecting the layout of qubits used in the algorithm. In
addition, the following observations hold: (1) quantum technology
is rapidly evolving, and more optimized ways of implementing the
quantum gates are continuously explored and proposed; a way to
easily introduce those changes, without impacting the rest of the ar-
chitecture, is important. (2) depending on the qubit technology, the
kind, number and sequence of the pulses can vary. Hence, it forms
another challenge to microarchitecturally support a set of quantum
instructions which is as independent as possible of a particular
technology and its current state of the art.

5 QUANTUMMICROARCHITECTURE
In this section, we describe theQuantumMicroArchitecture (QuMA)
as shown in Figure 4. QuMA is a heterogeneous architecture which
includes a classical CPU as a host and a quantum coprocessor as
an accelerator.

As proposed in [2], the input of QuMA is a binary �le generated
by a compiler infrastructure where classical code and quantum code
are combined. The classical code is produced by a conventional
compiler such as GCC and executed by the classical host CPU.
Quantum code is generated by a quantum compiler and executed
by the quantum coprocessor.

As shown in Figure 4, the host CPU fetches quantum code from
the memory and forwards it to the quantum coprocessor. In the
quantum coprocessor, executed instructions in general �ow through
modules from left to right. The execution controller performs reg-
ister update, program �ow control and streams quantum instruc-
tions to the physical execution layer. The physical microcode unit
translates quantum instructions into microinstructions using the Q

817

MICRO-50, October 14–18, 2017, Cambridge, MA, USA X. Fu et al.

control store. These are further decomposed into micro-operations
by the quantum microinstruction bu�er (QMB). The timing of each
micro-operation is also determined by the physical microcode unit.
Based on the output of quantum microinstruction bu�er, the timing
control unit triggers micro-operations at a deterministic timing.
The analog-digital interface converts digitally represented micro-
operations into corresponding analog pulses with precise timing
that perform quantum operations on qubits, as well as analog sig-
nals containing measurement information of qubits into binary sig-
nals. Required modulation and demodulation with radio-frequency
carrier waves are also carried out in the quantum-classical interface.

In order to address the challenges described in the previous
section, three schemes are introduced in QuMA. (i) The codeword-
based event control scheme is implemented by the codeword-triggered
pulse generation unit (CTPG), which produces analog input to the
quantum processor based on the received codeword triggers, and
the measurement discrimination unit (MDU) converting the analog
output from the quantum processor into binary results. (ii) The
queue-based event timing control scheme is implemented by the
timing control unit, which issues event triggers with precise timing
to the measurement discrimination unit and the micro-operation
unit (u-op unit). (iii) A multilevel instruction decoding scheme,
which successively decodes a quantum instruction into microin-
structions at the Q Control Store, micro-operations at the quantum
microinstruction bu�er, and �nally codeword triggers at the micro-
operation unit. The complex analog waveform control challenge
is addressed by (i) and (ii) whereas the instruction de�nition is
addressed by (iii).

5.1 Codeword-Based Event Control
The analog-digital interface (Figure 4) is at the boundary of analog
signals and digital signals in QuMA,which is technology-dependent.
As shown in Figure 4, from left to right , the micro-operation unit
and the codeword-triggered pulse generation unit translate code-
word triggers into pulses representing quantum operations on the
qubits with a �xed latency. From right to left, analog measurement
waveforms from the quantum processor are discriminated into bi-
nary results by the measurement discrimination unit. In this way,
the analog-digital interface abstracts the complex analog waveform
generation and puts forward the responsibility of codeword control
with precise timing to the upper digital layers. Therefore, it enables
controlling analog pulse generation using instructions. Fast and
�exible feedback control is also possible in principle because the
codeword-triggered pulse generation scheme does not require the
waveform to be uploaded at runtime and codeword triggers with
precise timing can be e�ciently generated dynamically.

5.1.1 Codeword-Triggered Pulse Generation. From experiments,
we observe that the pulses for a �xed and small set of quantum
operations can be well de�ned and used after calibration. They
are also called primitive operations because they are su�cient for
many quantum computing experiments. Based on this, we intro-
duce the codeword-triggered pulse generation scheme in QuMA to
generate pulses corresponding to primitive operations. In codeword-
triggered pulse generation, well-de�ned primitive pulses instead
of entire waveforms are uploaded to the memory. The memory
is organized as a lookup table and each entry in the lookup table,

indexed by means of a codeword, contains the sample amplitudes
corresponding to a single pulse. The codeword-triggered pulse gen-
eration unit converts a digitally stored pulse into an analog one
only when it receives a codeword trigger. An example of the lookup
table content for single-qubit operations is shown in Table 1.

Table 1: An example of the lookup table content of a
codeword-triggered pulse generation unit for single-qubit
gates.

Codeword 0 1 2 3
Pulse I Rx (�) Rx (�2) Rx (� �2)

Codeword 4 5 6 · · ·
Pulse R� (�) R� (�2) R� (� �2) · · ·

The codeword-triggered pulse generation scheme has a modest
memory requirement since it only needs to store a small number
of pulses for the well-de�ned primitive operations. In the AllXY
experiment, only the pulses for 7 operations need to be stored,
which only consumes the memory for 7 ⇥ 2 ⇥ 20 ns ⇥ Rs samples
(in total 420 Bytes), instead of 21 waveforms each containing two
operations, that are 21⇥2⇥2⇥20 ns⇥Rs samples (in total 2520 Bytes).
When more complex combination of operations is required, the
memory consumption will remain the same and the memory saving
will be more signi�cant. The small memory footprint provides a
scalable path for controlling a larger number of qubits.

The delay between the codeword trigger and the pulse gener-
ation is required to be �xed and short in the codeword-triggered
pulse generation unit. The �xed delay ensures that the �exible
combination of the pulses with precise timing can be achieved by
�exibly generating the corresponding codeword triggers at precise
timing. In the AllXY experiment, by issuing the codeword triggers
for the two gates with an interval of 20 ns, the pulses for the two
gates can be played out exactly back to back.

5.1.2 Measurement Discrimination. Recent experiments have
demonstrated measurement discrimination using a customized
FPGA [37], achieving a short latency < 1 µswhich enables real-time
feedback control. This method also costs modest hardware exhibit-
ing better scalability. Adopting this idea, we introduce hardware-
based measurement discrimination units in the analog-digital in-
terface. The measurement discrimination unit translates the analog
signal containing measurement information of a single qubit into a
binary measurement result. Once the measurement discrimination
unit for qubit q receives a codeword trigger, it starts the measure-
ment discrimination process and generates a binary result Rq . Rq
can be subsequently forwarded to the quantum control unit for
feedback control or reading back.

Recent experiments have also demonstrated combining the mea-
surement result of multiple qubits into one analog signal [23, 58].
This can reduce the number of required measurement discrimina-
tion units and exhibits better scalability.

5.2 Queue-Based Event Timing Control
The timing control unit divides the microarchitecture into two
timing domains: the non-deterministic timing domain and the de-
terministic timing domain, which are on the left and right side

818

An Experimental Microarchitecture for a Superconducting�antum Processor MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Figure 5: Operations of the AllXY experiment in the timeline. Measurement pulse generation and measurement result dis-
crimination overlap in time and are shown using the same meter box.

of the timing control unit in Figure 4, respectively. In the non-
deterministic timing domain, the quantum control unit and physical
execution layer execute instructions and feed quantum operations
to the queues in an as-fast-as-possible fashion. In the deterministic
timing domain, quantum operations in the queue are emitted to
the analog-digital interface with deterministic and precise timing.
To this end, queue-based event timing control is introduced.

To illustrate the working principle of queue-based event timing
control, the operations of theAllXY experiment with corresponding
timing are shown in Figure 5. The horizontal axis labels mark the
time points in microseconds when a corresponding operation takes
place. Each time point is assigned a timing label, which is the
number in brackets on the top. The bold numbers above the double-
arrow lines indicate intervals between two time points in cycles.
Here and throughout the rest of the paper, a cycle time of 5 ns is
used.

The timing control unit implements queue-based event timing
control in QuMA. It consists of a timing queue, multiple event
queues, and a timing controller. The timing queue bu�ers the time
points with corresponding timing labels. The location of the time
points can be designated in the timeline, e.g., by specifying the
intervals between consecutive time points as shown in Figure 5 and
the �rst column of Table 2. Each event queue bu�ers a sequence
of events with a time point at which the event is expected to take
place. The time point is indicated by the aforementioned timing
label. An event can be a quantum gate, measurement, or any other
operation. The timing controller maintains the clock of the deter-
ministic timing domain (TD), which can be started by an instruction
or another source, e.g., an external trigger. When TD reaches the
assigned time point, the timing controller signals the queues to
�re the events matching that time point and emits them to the
analog-digital interface.

In order to better illustrate how queue-based event timing control
works, we use theAllXY experiment. Three event queues are used in
this experiment (see Table [2-4]): the Pulse Queue for single-qubit
operations, the MPG Queue for measurement pulse generation,
and the MD Queue for measurement discrimination. Besides the
timing label for each event, the pulse queue contains the single-
qubit operations, e.g., the I orX� operation, to be triggered, and the
MD queue contains the destination register, e.g., r7, to write back
the measurement result. After executing a couple of instructions in
the program and before TD is started, the state of the queues is as
shown in Table 2. The bottom of the table corresponds to the front
of the queues. AfterTD is started, a counter in the timing controller
starts counting. When the counter reaches the �rst interval value in
the timing queue, i.e., 40000, the corresponding timing label, i.e., 1,

Table 2: Queue state of the AllXY experiment when TD = 0.

Timing Queue Pulse Queue MPG Queue MD Queue
...

... ...
...

(4, 6)
(4, 5)

(40000, 4) (X� , 5)
(4 , 3) (X� , 4)
(4, 2) (I , 2) (6) (r7, 6)

(40000, 1) (I , 1) (3) (r7, 3)

Table 3: Queue state of the AllXY experiment when TD =
40000.

Timing Queue Pulse Queue MPG Queue MD Queue
...

... ...
...

(4, 6)
(4, 5)

(40000, 4) (X� , 5)
(4, 3) (X� , 4) (6) (r7, 6)
(4, 2) (I , 2) (3) (r7, 3)

Table 4: Queue state of the AllXY experiment when TD =
40008.

Timing Queue Pulse Queue MPG Queue MD Queue
...

...(4, 6)
(4, 5) (X� , 5)

(40000, 4) (X� , 4) (6) (r7, 6)

is broadcast to all event queues. At the same time, the counter resets
and restarts. Since the pulse queue contains that same label, 1, at
the front of the queue, the operation I is �red to the analog-digital
interface. The queue state then turns into Table 3. The second I
operation is issued in the same way when the counter reaches the
next interval value, 4. After the counter reaches the third interval
value, 4, the timing label 3 is broadcast and the MG Queue triggers
the measurement pulse generation and the MD queue triggers
a measurement discrimination process of which both associated
timing labels are 3. The queue state then turns into Table 4. The
rest can be done in the same manner.

819

MICRO-50, October 14–18, 2017, Cambridge, MA, USA X. Fu et al.

5.3 Multilevel Instruction Decoding
Combining the codeword-based event control scheme and queue-
based event timing control enables other stages in QuMA to focus
on �exibly decoding the quantum instructions and �lling the queues
as fast as possible without worrying about complex analog wave-
form control with rigid timing constraints. In this subsection, we
�rst give an overview of the instruction de�nition and then discuss
the multilevel decoding scheme for the quantum instructions.

5.3.1 Instruction Definition. The quantum code is written with
instructions in the Quantum Instruction Set (QIS). An example
of QIS instructions is shown in Table 5. QIS contains auxiliary
classical instructions and quantum instructions. Auxiliary classical
instructions are used for basic arithmetic and logic operations and
program �ow control. Quantum instructions describe which and
when quantum operations will be applied on qubits. By including
auxiliary classical instructions, QIS can support feedback control
based on measurement results and a hierarchical description of
quantum algorithms which can signi�cantly reduce the program
code size [13].

5.3.2 InstructionDecoding. To support a technology-independent
quantum instruction set de�nition, we adopt a multilevel instruc-
tion decoding approach in which quantum instructions, especially
that for quantum gates, are successively decoded into quantum
microinstructions, micro-operations and �nally codeword triggers
to control codeword-triggered pulse generation to generate pulses.
For example, Table 5 shows four decoding steps for the instructions
of the AllXY experiment. From the QIS on, time is calculated in
cycles. Due to the simplicity of the AllXY experiment and for the
sake of code e�ciency, the inner loop as shown in Algorithm 1 is
unrolled. The execution of quantum instructions starts from the
execution controller.

Execution Controller. This unit executes the auxiliary classical
instructions in the QIS and streams quantum instructions to the
physical microcode unit. By executing the auxiliary classical in-
structions in the execution controller, the same quantum instruction
can be issued to the physical microcode unit multiple times and
each time with expected parameters computed at runtime. For ex-
ample, the QNopReg r15 instruction in the QIS is used to specify
the initialization time. Each of the 21 QNopReg r15 instructions will
be issued once per round. Every time it is issued, it reads a waiting
time from the register r15, which results in aWait 40000 instruction.
If the register value is updated using auxiliary classical instructions,
the waiting time speci�ed in theWait instruction can be calculated
at runtime. In this way, it enables a compact and �exible description
of quantum algorithms.

Physical Microcode Unit. Quantum instructions are translated
into a sequence of microinstructions in the physical microcode unit
based on the microprograms uploaded into the Q control store. The
timing for each quantum operation is also determined at this stage.
For now and as shown in Table 6, the microinstruction set, QuMIS,
consists of the following instructions: i) the Wait instruction used
to specify the interval between consecutive time points, ii) the
Pulse instruction used to apply quantum gates on qubits; iii) the
MPG instruction used to generate the measurement pulse; iv) the

Table 5: The format of QIS instructions, quantum microin-
structions, micro-operations and codeword triggers. Taking
the AllXY experiment as an example.

QIS QuMIS
Input to the execution controller

mov r1, 0
mov r2, 25600
mov r3, ResultMemAddr
mov r15, 40000

Outer_Loop:
QNopReg r15
Apply I, q0
Apply I, q0
Measure q0, r7
Load r9, r3[0]
Add r9, r9, r7
Store r9, r3[0]

QNopReg r15
Apply X180, q0
Apply X180, q0
Measure q0, r7
Load r9, r3[1]
Add r9, r9, r7
Store r9, r3[1]
...
add r1, r1, 1
bne r1, r2, Outer_Loop

Input to the QMB
round 0:

Wait 40000
Pulse {q0}, I
Wait 4
Pulse {q0}, I
Wait 4
MPG {q0}, 300
MD {q0}, r7

round 1:
Wait 40000
Pulse {q0}, X180
Wait 4
Pulse {q0}, X180
Wait 4
MPG {q0}, 300
MD {q0}, r7

. . .

Micro-operations Codeword Triggers
Input to the u-op units

TD = 40000:
I sent to u-op unit0

TD = 40004:
I sent to u-op unit0

TD = 40008:
MPG and MD bypass this stage

TD = 80008:
X� sent to u-op unit0

TD = 80012:
X� sent to u-op unit0

TD = 80016:
MPG and MD bypass this stage
. . .

Input to the MDU or CPTG
� is the delay of the u-op unit
TD = 40000 + �:

CW 0 sent to CTPG0
TD = 40004 + �:

CW 0 sent to CTPG0
TD = 40008:

CW 7 sent to CTPG5 # Msmt
MD(r7) sent to MDU0

TD = 80008 + �:
CW 1 sent to CTPG0

TD = 80012 + �:
CW 1 sent to CTPG0

TD = 80016:
CW 7 sent to CTPG5 # Msmt
MD(r7) sent to MDU0

. . .

MD instruction used to trigger the measurement discrimination
process.

In the quantum microinstruction bu�er (QMB), quantum mi-
croinstructions for quantum gates are decomposed into separate
micro-operations with timing labels and push them into the queues
in the timing control unit as shown in Table 2. Due to the sim-
plicity of measurements in terms of instruction control, quantum
microinstructions for measurement pulse generation or measure-
ment discrimination can be directly translated into codeword trig-
gers to control the codeword-triggered pulse generation unit or the
measurement discrimination unit bypassing the micro-operation
unit. The timing control unit then emits the micro-operations at

820

An Experimental Microarchitecture for a Superconducting�antum Processor MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Table 6: QuMIS instructions.

Assembly Format Description

Wait Interval Wait for the number of cycles indicated
by the immediate value Interval.

Pulse (QAddr0, uOp0)[,
(QAddr1, uOp1), . . .]

Apply the micro-operation uOpi on each
of the qubit(s) speci�ed by the address
QAddri .

MPG QAddr, D

Generate the measurement pulse for
the qubits speci�ed by the address QAddr.
D indicates the duration of the
measurement pulse in number of cycles.

MD QAddr, $rd
Discriminate the measurement results of
the qubits speci�ed by QAddr and store
the result into register $rd.

the expected timing. The Pulse and MPG instructions are both
horizontal instructions, which can trigger the operation on multiple
qubits at the same time.

Let us illustrate these concepts using the CNOT gate. A CNOT
gate with a control qubit c and a target qubit t can be decomposed
in the following way [1]:

CNOTc,t = R� (�/2)t ·CZ · R� (��/2)t .
Adopting the microcoded approach for the instruction CNOT qt, qc
applying on superconducting qubits results in Algorithm 2.

Algorithm 2: Microprogram for the physical CNOT q1, q2.

1 Pulse {qt}, Ym90
2 Wait 4
3 Pulse {qt , qc}, CZ
4 Wait 8
5 Pulse {qt}, Y90
6 Wait 4

By utilizing horizontal microcode, one quantum instruction can
be translated into multiple microinstructions and one microinstruc-
tion into multiple micro-operations. This allows �exible emulation
of complex, technology-independent instructions using technology-
dependent primitives.

Micro-Operation Unit. At the micro-operation unit, each micro-
operation is translated into a sequence of codeword triggers with
prede�ned latency, which furthermakes associated codeword-triggered
pulse generation units generate primitive operation pulses. For each
prede�ned micro-operation uOpi , the micro-operation unit stores
a sequence Seqi comprising of codewords and timing. Seqi has the
following format:

Seqi : ([0, cw0]; [�t1, cw1]; [�t2, cw2]; . . .),
where �tj represents the interval between codeword triggers cw j�1
and cw j . Once the micro-operation uOpi is triggered, the micro-
operation unit starts to output codeword cw j after waiting for �tj
cycles sequentially as de�ned in the sequence Seqi . Since the timing
controller �res the micro-operation at precise timing, the codeword
triggers are also generated at precise timing.

For example, a Z gate can be decomposed into a Y gate followed
by an X gate since Z = X ·Y (up to an irrelevant global phase). The

micro-operation unit can perform the translation for superconduc-
ting qubits using the following sequence given the lookup table
content as listed in Table 1:

SeqZ : ([0, 1]; [4, 4]).
The micro-operation unit allows the emulation of commonly-

used quantum operations which are not directly implementable
using primitive operations. Moreover, it reduces the communication
between the timing control unit and the analog-digital interface.
This is especially helpful when the timing control unit and the
analog-digital interface are implemented in di�erent electronic
devices for performance and scalability.

6 EVALUATION
To evaluate QuMA, we make a comparison between QuMA and
the architecture of the Raytheon BBN APS2 system, which is a
commercial device that has been recently demonstrated [58, 59] for
superconducting qubits. Then we discuss the scalability limitation
of QuMA.

The APS2 system has a distributed architecture consisting of
nine individual APS2 modules and a trigger distribution module
(TDM) that can fully control up to eight qubits. A quantum appli-
cation is translated into multiple binary executables running in
parallel on each of the APS2 modules. A binary is composed of sep-
arated program �ow control instructions and output instructions.
Instead of instructions with explicit quantum semantics, low-level
output instructions are used, such as waveform with a physical
memory address. Idle waveforms are used to implement precise
timing between operations, and the TDM distributes trigger signals
to perform parallelism/synchronization of multiple outputs via an
interconnect network. The main disadvantage are that no output in-
structions can be processed when synchronization is required, and
the interconnect network is cumbersome and fragile when scaling
up to tens of qubits where multiple APS2 systems are required [58].

In contrast, QuMA employs a centralized architecture, in which:
(i) only one binary executable is required for controlling multiple
qubits, (ii) quantum semantics and timing of operations are explic-
itly de�ned at the instruction level, (iii) parallelism/synchronization
of outputs is achieved by triggering events at speci�c timing points,
which is neither dependent on another module nor limited by the
interconnect network. These three points contribute to a relatively
simple compilation model for QuMA. As explained in Section 5.2,
QuMA decouples the timing of executing instructions and perform-
ing output. So it can maintain fully deterministic timing of the
output and maximally process instructions during waiting. Since
data is gathered in a single place (the register �le), it is natural to
extend QuMA to a heterogeneous computing platform by adding
extra data exchange instructions to interact with the host CPU and
the main memory.

Regarding scalability, QuMA is not limited by the analog-digital
interface and the timing control unit, as their size scales linearly to
the number of qubits and can be implemented in a distributed way.
However, the limited time for executing instructions in quantum
computers may form a challenge in QuMAwhenmore qubits ask for
a higher operation output rate while only a single instruction stream
is used. A Very-Long-Instruction-Word (VLIW) architecture [19]
can be adopted to provide much larger instruction issue rate. In

821

MICRO-50, October 14–18, 2017, Cambridge, MA, USA X. Fu et al.

Figure 6: Schematic of the CBox �rmware architecture.
The QuMA core is implemented in the Master Controller.
Dashed lines indicate functionality to be added in the future.

addition, by optimizing the microcode unit and the micro-operation
unit, it is possible to use less quantum instructions to describe more
quantum operations, which can relax the instruction issue rate
requirement.

7 IMPLEMENTATION
In this section, we discuss the quantum control box, where the
aforementioned mechanisms have been implemented.

7.1 Quantum Control Box
The quantum control box, as shown schematically in Figure 6,
consists of four FPGA boards. One board implements the Master
Controller and the other three boards implement a two-channel
arbitrary waveform generator (AWG) each.

The master controller is implemented using an Arrow BeMicro
CV A9 board holding an Altera Cyclone V 5CEFA9 FPGA chip. It
connects to two 8-bit resolution analog-to-digital converters (ADC)
that digitize analog measurement signals from the quantum chip.
The master controller has eight digital outputs used for triggering
measurement pulse generation and triggers the pulse generation of
each AWG via a pair of Low-Voltage-Di�erential-Signaling wires.

Inside the MC, the QuMA core implements the quantum control
unit and the physical execution layer of QuMA. The digital output
unit converts the measurement operation tuple (QAddr ,D) received
from the QuMA core into ‘1’ state with a duration of D cycles
for the eight digital outputs masked by QAddr . The measurement
discrimination unit (MDU) can discriminate the measurement result
of a single qubit. The data collection unit can collect K consecutive
integration results of a single qubit for N rounds, calculate and
store the average of K integration results across the N rounds:

S̄i =
©≠
´
N�1’
j=0

Si, j
™Æ
¨
/N , i 2 {0, 1, · · · ,K � 1}.

After the data collection process is done, the PC can retrieve the
averaging integration results {S̄i }.

Each AWG is implemented using a Terasic DE0-Nano board
holding an Altera Cyclone IV EP4CE22F FPGA chip and uses two
14-bit resolution digital-to-analog converters (DAC) to generate the
in-phase and quadrature components of qubit control pulses. Each
AWG includes a micro-operation unit and a codeword-triggered
pulse generation unit. The implemented codeword-triggered pulse
generation unit has a �xed delay of 80 ns from the codeword trigger
to the output pulse.

All FPGAs, ADCs, and DACs are clocked at 200 MHz, except for
communication and data collection, which run at 50 MHz. The MC
communicates with the PC via USB. The MC communicates to the
AWGs, e.g., uploading the lookup table content of the codeword-
triggered pulse generation unit.

7.2 QuMA Implementation
The QuMA implementation in the control box in shown in Figure 7.
In view of the running physics experiments, it slightly di�ers from
the microarchitecture presented in Section 5. We have partially
implemented the system including the quantum instruction cache,
the execution controller, part of the physical microcode unit, the
timing control unit and the quantum classical interface. The rest is
planned for future release. Due to the absence of a fully functioning
physical microcode unit, the high-level quantum instructions of
the QIS are not implemented yet. A combination of the auxiliary
classical instructions in the QIS and QuMIS (see Table 6) is loaded
into the quantum instruction cache.

We have designed a quantum programming language OpenQL
based on C++ with a compiler that can translate the OpenQL de-
scription into the auxiliary classical instructions and QuMIS in-
structions.

The execution controller incorporates a classical pipeline to exe-
cute auxiliary classical instructions. The register �le in this pipeline
contains runtime information related to quantum program execu-
tion. QuMIS instructions are dispatched to the physical microcode
unit after reading register values. The physical microcode unit can
determine the timing of QuMIS instructions and decompose QuMIS
instructions into micro-operations. A full implementation of the
physical microcode unit is still under development. The timing con-
trol unit implements the queue-based event timing control scheme
(as described in Section 5.2). The measurement pulse triggers pulse
modulated microwave carrier generators in the other devices block
to produce the measurement pulse for qubits.

8 EXPERIMENTAL RESULTS
We have performed various quantum experiments on a qubit to
validate and verify the design of QuMA and QuMIS, including T1,
T2 Ramsey, T2 Echo, AllXY, and randomized benchmarking [60]
experiments. Considering the readability and page limitation, we
only show the AllXY experiment in the paper.

Figure 8 shows the experimental setup. All classical electronics
are at room temperature. The quantum chip, operating at 20 mK,
contains 10 transmon qubits with dedicated readout resonators all
coupled to a common feedline. The measured qubit (labeled 2) has
transition frequency fQ = 6.466 GHz, and the coupled resonator
has fundamental fR = 6.850 GHz (for qubit in |0i) (further detailed
in [37]). To perform single-qubit gates, we use one microwave

822

An Experimental Microarchitecture for a Superconducting�antum Processor MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Figure 7: Schematic of the implemented QuMA. The thick gray lines are analog signals while the dark thin lines are digital
signals. Dashed lines indicate functionality to be added in the future.

300 K

I Q R&S
SMB100A

Triggers

1

2

3

4

5

6

7

8 10

9

Quantum ControlBox

1mm

Digital OutputsAWG2 Acquisition

Msmt PulseGate Pulse Msmt Result

R&S
SGS100A

R&S
SGS100A

20 mK

Quantum-Classical
 Interface

Flux Bias

Figure 8: Experimental setup used for validation of the mi-
croarchitecture.

source [Rohde & Schwarz (R&S) SGS100A] to generate a 6.516 GHz
carrier and control box AWG 2 to produce the in-phase and quadra-
ture components (including �50 MHz single-sideband modulation)
that de�ne the pulse envelope. To generate the measurement pulse,
we trigger a 6.849 GHz carrier (generated by a R&S SMB100A) using
the control box digital output 1. The transmitted feedline signal
is demodulated to an intermediate frequency of 40 MHz using a
6.809 GHz local oscillator (another R&S SGS100A). Prior to the
experiment, the qubit pulses are calibrated and uploaded into con-
trol box AWG 2. Since the operations in the AllXY experiment are
primitive, the micro-operation unit simply forwards the codewords
to the wave memory without translation.

The QuMIS program used to perform the AllXY experiment is
generated from a OpenQL description and is shown in Algorithm 3.
In this experiment, each of the 21 combinations is measured twice
to make a direct visual distinction between systematic errors and
low signal-to-noise ratio. Figure 9 shows the measurement results.
The red staircase shows the ideal signature of perfect pulsing. The

Algorithm 3: QuMIS Program to perform AllXY experiment.

1 mov r15 , 40000 # 200 us
2 mov r1 , 0 # loop counter
3 mov r2 , 25600 # number of averages
4

5 Outer_Loop:
6 QNopReg r15 # Identity , Identity
7 Pulse {q2}, I
8 Wait 4
9 Pulse {q2}, I

10 Wait 4
11 MPG {q2}, 300
12 MD {q2}
13 (repeat the previous 7 instructions once again)
14

15 QNopReg r15 # X180 , X180
16 Pulse {q2}, X180
17 Wait 4
18 Pulse {q2}, X180
19 Wait 4
20 MPG {q2}, 300
21 MD {q2}
22 (repeat the previous 7 instructions once again)
23

24 QNopReg r15 # Y180 , Y180
25 Pulse {q2}, Y180
26 Wait 4
27 Pulse {q2}, Y180
28 Wait 4
29 MPG {q2}, 300
30 MD {q2}
31 (repeat the previous 7 instructions once again)
32

33 ...
34

35 addi r1 , r1 , 1
36 bne r1 , r2 , Outer_Loop

results of the 0-th (18-th and 19-th) combination are taken as the cal-
ibration point S̄ |0i,r (S̄ |1i,r). Using the calibration points to rescale

823

MICRO-50, October 14–18, 2017, Cambridge, MA, USA X. Fu et al.

the signal, we obtain the �delity F |1i |i corrected for readout error:

F |1i |meas,i =
⇣
S̄i � S̄ |0i,r

⌘
/
⇣
S̄ |1i,r � S̄ |0i,r

⌘
.

We loop over these K = 42 pulse combinations over N = 25600
rounds. The data acquisition unit performs the required averaging
of measurement results for each K .

This experiment uses the instructions generated from the high-
level language OpenQL description to control the operations on
the qubit. Only 7 pulses including the Identity operation are stored
in the lookup table of the codeword-triggered pulse generation
unit, regardless of the number of combinations of operations. It
has a moderate memory consumption to store 140 ns ⇥ Rs samples
exhibiting a better scalability compared to the conventional method.
From the experiment result, we can see that the measured �delity
for each combination matches well with the ideal readout �delity.
Since theAllXY experiment is sensitive to imperfection of the pulses
and the timing, it demonstrates that the right pulses are generated
and the precise timing of operations is well preserved.

Deviation: 0.012

 II

Reference Line

XX YY XY YX xI yI xy yx xY yX Xy Yx xX Xx yY Yy XI YI xx yy

Data

Figure 9: The AllXY result of qubit 2. In the label, each X /Y
(x/�) denotes a rotation by � (�/2) around the x/� axis of the
Bloch sphere.

9 CONCLUSION
We have proposed and developed QuMA, a microarchitecture that
takes the compiler generated instructions as input to �exibly con-
trol a superconducting quantum processor. Three mechanisms are
introduced in QuMA to enable �exible control over quantum pro-
cessors : i) codeword-based event control, ii) precise queue-based
event timing control, and iii) multilevel instruction decoding pulse
control mechanism. We have also designed and implemented the
quantum microinstructions set QuMIS which can well describe
quantum operations on qubits with precise timing.

We implemented a QuMA processor prototype on a FPGA. We
have validated this microarchitecture by performing a successful
AllXY experiment on a superconducting qubit, using a combination
of the auxiliary classical instructions and QuMIS instructions which
are generated by OpenQL. QuMA enables �exible de�nition of
quantum experiments by a straightforward change in the input
program.

Future work will involve implementing a QuMA supporting a
VLIW instruction set, and extending the microcode unit to enable

the de�nition of quantum instructions and the execution of real-
time feedback control.

ACKNOWLEDGMENTS
We thank M. Tiggelman, S. Visser, J. Somers, L. Riesebos, E. Gar-
rido Barrabés, and E. Charbon for contributions to an early version
of the CBox, A. Bruno for fabricating the quantum chip, H. Homulle
for drawing Figure 1, and L. Lao, H. A. Du Nguyen, R. Versluis and
F. T. Chong for discussions. We acknowledge funding from the
China Scholarship Council (X. Fu), Intel Corporation, an ERC Syn-
ergy Grant, and the O�ce of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity (IARPA),
via the U.S. Army Research O�ce grant W911NF-16-1-0071. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the o�-
cial policies or endorsements, either expressed or implied, of the
ODNI, IARPA, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

REFERENCES
[1] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information.

Cambridge University Press, 2010.
[2] X. Fu, L. Riesebos, L. Lao, C. Almudever, F. Sebastiano, R. Versluis, E. Charbon,

and K. Bertels, “A heterogeneous quantum computer architecture,” in Proceedings
of the ACM International Conference on Computing Frontiers. ACM, 2016, pp.
323–330.

[3] B. Omer, “Structured quantum programming,” Information Systems, p. 130, 2003.
[4] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F. Chiang,

S. Vanderwilt, J. Black, and F. Chong, “Sca�old: Quantum programming language,”
DTIC Document, Tech. Rep., 2012.

[5] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron, “An intro-
duction to quantum programming in quipper,” in International Conference on
Reversible Computation. Springer, 2013, pp. 110–124.

[6] D. Wecker and K. M. Svore, “LIQUi|>: A software design architecture and domain-
speci�c language for quantum computing,” arXiv:1402.4467, 2014.

[7] D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: an open source software frame-
work for quantum computing,” arXiv:1612.08091, 2016.

[8] B. M. Terhal, “Quantum error correction for quantum memories,” Reviews of
Modern Physics, vol. 87, p. 307, 2015.

[9] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes:
Towards practical large-scale quantum computation,” Physical Review A, vol. 86,
p. 032324, 2012.

[10] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov, “A layered
software architecture for quantum computing design tools,” Computer, pp. 74–83,
2006.

[11] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and
M. Martonosi, “Sca�CC: Scalable compilation and analysis of quantum programs,”
Parallel Computing, vol. 45, pp. 2–17, 2015.

[12] M. Amy, M. Roetteler, and K. Svore, “Veri�ed compilation of space-e�cient
reversible circuits,” arXiv:1603.01635, 2016.

[13] D. Kudrow, K. Bier, Z. Deng, D. Franklin, Y. Tomita, K. R. Brown, and F. T. Chong,
“Quantum rotations: a case study in static and dynamic machine-code generation
for quantum computers,” in ACM SIGARCH Computer Architecture News. ACM,
2013, pp. 166–176.

[14] A. Paetznick and K. M. Svore, “Repeat-Until-Success: Non-deterministic decom-
position of single-qubit unitaries,” Quantum Information & Computation, vol. 14,
no. 15-16, pp. 1277–1301, 2014.

[15] J. Heckey, S. Patil, A. JavadiAbhari, A. Holmes, D. Kudrow, K. R. Brown,
D. Franklin, F. T. Chong, and M. Martonosi, “Compiler management of communi-
cation and parallelism for quantum computation,” in ACM SIGARCH Computer
Architecture News. ACM, 2015, pp. 445–456.

[16] S. Balensiefer, L. Kregor-Stickles, and M. Oskin, “An evaluation framework and
instruction set architecture for ion-trap based quantum micro-architectures,” in
ACM SIGARCH Computer Architecture News, vol. 33. IEEE Computer Society,
2005, pp. 186–196.

[17] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum instruction set
architecture,” arXiv:1608.03355, 2016.

[18] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “QISKit OPENQASM,”
arXiv:1707.03429, 2017.

824

An Experimental Microarchitecture for a Superconducting�antum Processor MICRO-50, October 14–18, 2017, Cambridge, MA, USA

[19] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2011.

[20] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,”
Journal of Mathematical Physics, vol. 43, pp. 4452–4505, 2002.

[21] A. G. Fowler, “Minimum weight perfect matching of fault-tolerant topological
quantum error correction in average o (1) parallel time,” Quantum Information
and Computation, vol. 15, pp. 145–158, 2015.

[22] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Je�rey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi,
C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner,
A. N. Cleland, and J. M. Martinis, “State preservation by repetitive error detection
in a superconducting quantum circuit,” Nature, vol. 519, no. 7541, pp. 66–69, 2015.

[23] D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. Di-
Carlo, “Detecting bit-�ip errors in a logical qubit using stabilizer measurements,”
Nature Communications, vol. 6, p. 6983, 2015.

[24] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, J. M. Chow, and J. M. Gam-
betta, “Hardware-e�cient quantum optimizer for small molecules and quantum
magnets,” arXiv:1704.05018, 2017.

[25] C. Monroe, D. Meekhof, B. King, W. M. Itano, and D. J. Wineland, “Demonstration
of a fundamental quantum logic gate,” Physical Review Letters, vol. 75, p. 4714,
1995.

[26] S. Debnath, N. Linke, C. Figgatt, K. Landsman, K.Wright, and C. Monroe, “Demon-
stration of a small programmable quantum computer with atomic qubits,” Nature,
vol. 536, pp. 63–66, 2016.

[27] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen,
“Spins in few-electron quantum dots,” Reviews of Modern Physics, vol. 79, pp.
1217–1265, 2007.

[28] G. De Lange, Z. Wang, D. Riste, V. Dobrovitski, and R. Hanson, “Universal dy-
namical decoupling of a single solid-state spin from a spin bath,” Science, vol. 330,
no. 6000, pp. 60–63, 2010.

[29] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen,
R. Hanson, and T. H. Taminiau, “Repeated quantum error correction on a con-
tinuously encoded qubit by real-time feedback,” Nature Communications, vol. 7,
2016.

[30] J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard,
J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly, “Cryogenic
control architecture for large-scale quantum computing,” Physical Review Applied,
vol. 3, p. 024010, 2015.

[31] J. M. Chow, L. DiCarlo, J. M. Gambetta, F. Motzoi, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf, “Optimized driving of superconducting arti�cial atoms for improved
single-qubit gates,” Physical Review A, vol. 82, p. 040305, 2010.

[32] M. D. Reed, “Entanglement and quantum error correction with superconducting
qubits,” Ph.D. dissertation, Yale University, 2013.

[33] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais,
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design
derived from the cooper pair box,” Physical Review A, vol. 76, p. 042319, 2007.

[34] A. Blais, R.-S. Huang, A. Wallra�, S. Girvin, and R. J. Schoelkopf, “Cavity quan-
tum electrodynamics for superconducting electrical circuits: An architecture for
quantum computation,” Physical Review A, vol. 69, p. 062320, 2004.

[35] D. P. DiVincenzo, “The physical implementation of quantum computation,”
ArXiv:quant-ph/0002077, 2000.

[36] M. Takita, A. Córcoles, E. Magesan, B. Abdo, M. Brink, A. Cross, J. M. Chow,
and J. M. Gambetta, “Demonstration of weight-four parity measurements in the
surface code architecture,” Physical Review Letters, vol. 117, p. 210505, 2016.

[37] C. C. Bultink, M. A. Rol, T. E. O’Brien, X. Fu, B. Dikken, R. Vermeulen, J. C.
de Sterke, A. Bruno, R. N. Schouten, and L. DiCarlo, “Active resonator reset in
the nonlinear dispersive regime of circuit QED,” Physical Review Applied, vol. 6,
p. 034008, 2016.

[38] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster,
J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Demonstration
of two-qubit algorithms with a superconducting quantum processor,” Nature, vol.
460, pp. 240–244, 2009.

[39] L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frun-
zio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measure-
ment of three-qubit entanglement in a superconducting circuit,” Nature, vol. 467,
pp. 574–578, 2010.

[40] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Je�rey, T. C. White, J. Mutus,
A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill,
P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cle-
land, and J. M. Martinis, “Superconducting quantum circuits at the surface code
threshold for fault tolerance,” Nature, vol. 508, no. 7497, pp. 500–503, 2014.

[41] S. Bettelli, T. Calarco, and L. Sera�ni, “Toward an architecture for quantum
programming,” The European Physical Journal D-Atomic, Molecular, Optical and
Plasma Physics, vol. 25, pp. 181–200, 2003.

[42] T. Häner, D. S. Steiger, K. Svore, and M. Troyer, “A software methodology for
compiling quantum programs,” arXiv:1604.01401, 2016.

[43] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale
ion-trap quantum computer,” Nature, vol. 417, pp. 709–711, 2002.

[44] D. D. Thaker, T. S. Metodi, A. W. Cross, I. L. Chuang, and F. T. Chong, “Quantum
memory hierarchies: E�cient designs to match available parallelism in quantum
computing,” in ACM SIGARCH Computer Architecture News, vol. 34. IEEE
Computer Society, 2006, pp. 378–390.

[45] D. P. DiVincenzo, “Fault-tolerant architectures for superconducting qubits,” Phys-
ica Scripta, vol. 2009, p. 014020, 2009.

[46] T. Brecht,W. Pfa�, C.Wang, Y. Chu, L. Frunzio, M. H. Devoret, and R. J. Schoelkopf,
“Multilayer microwave integrated quantum circuits for scalable quantum com-
puting,” NPJ Quantum Information, vol. 2, p. 16002, 2016.

[47] C. D. Hill, E. Peretz, S. J. Hile, M. G. House, M. Fuechsle, S. Rogge, M. Y. Simmons,
and L. C. Hollenberg, “A surface code quantum computer in silicon,” Science
Advances, vol. 1, p. e1500707, 2015.

[48] M. Oskin, F. T. Chong, and I. L. Chuang, “A practical architecture for reliable
quantum computers,” Computer, vol. 35, pp. 79–87, 2002.

[49] T. S. Metodi, D. D. Thaker, and A. W. Cross, “A quantum logic array microarchi-
tecture: Scalable quantum data movement and computation,” in Proceedings of
the 38th annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2005, pp. 305–318.

[50] E. Chi, S. A. Lyon, and M. Martonosi, “Tailoring quantum architectures to imple-
mentation style: a quantum computer for mobile and persistent qubits,” in ACM
SIGARCH Computer Architecture News, vol. 35. ACM, 2007, pp. 198–209.

[51] L. Kreger-Stickles and M. Oskin, “Microcoded architectures for ion-tap quantum
computers,” in 35th International Symposium on Computer Architecture. IEEE,
2008, pp. 165–176.

[52] R. Van Meter and C. Horsman, “A blueprint for building a quantum computer,”
Communications of the ACM, vol. 56, pp. 84–93, 2013.

[53] N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and
Y. Yamamoto, “Layered architecture for quantum computing,” Physical Review X,
vol. 2, p. 031007, 2012.

[54] M. V. Wilkes, “The best way to design an automatic calculating machine,” in The
early British computer conferences. MIT Press, 1989, pp. 182–184.

[55] S. Vassiliadis, S. Wong, and S. Cotofana, “Microcode processing: Positioning and
directions,” IEEE Micro, vol. 23, no. 4, pp. 21–30, 2003.

[56] S. Beauregard, “Circuit for Shor’s algorithm using 2n + 3 qubits,” arXiv:quant-
ph/0205095, 2002.

[57] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and fac-
toring,” in Foundations of Computer Science, 1994 Proceedings., 35th Annual Sym-
posium on, 1994, pp. 124–134.

[58] C. A. Ryan, B. R. Johnson, D. Ristè, B. Donovan, and T. A. Ohki, “Hardware for
dynamic quantum computing,” arXiv:1704.08314, 2017.

[59] R. BBN, “Bbn technologies arbitrary pulse sequencer 2,” 2017.
[60] J. M. Epstein, A. W. Cross, E. Magesan, and J. M. Gambetta, “Investigating the

limits of randomized benchmarking protocols,” Physical Review A, vol. 89, no. 6,
p. 062321, 2014.

825

	Abstract (40)
	1 Introduction (39)
	2 Background (12)
	2.1 Quantum Computing Basics
	2.2 Superconducting Qubits

	3 Related Work (2)
	4 Microarchitectural Challenges
	4.1 Motivational Example
	4.2 Complex Analog Waveform Control
	4.3 Instruction Definition

	5 Quantum Microarchitecture
	5.1 Codeword-Based Event Control
	5.2 Queue-Based Event Timing Control
	5.3 Multilevel Instruction Decoding

	6 Evaluation (5)
	7 Implementation
	7.1 Quantum Control Box
	7.2 QuMA Implementation

	8 Experimental Results
	9 Conclusion (7)
	Acknowledgments (5)
	References (41)

