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A Microarchitecture for a 
Superconducting Quantum 
Processor 

This article proposes a quantum microarchitecture, 

QuMA. Flexible programmability of a quantum 

processor is achieved by multilevel instructions 

decoding, abstracting analog control into digital 

control, and translating instruction execution with non-

deterministic timing into event trigger with precise 

timing. QuMA is validated by several single-qubit 

experiments on a superconducting qubit. 

To construct a fully programmable quantum computer 
based on the circuit model, a system stack1 composed of 
several layers is required (see Figure 1). Quantum algo-
rithms are formulated and then described using a high-level 
quantum programming language. Depending on the choice 

of quantum error correction code, such as surface code, the compiler takes that description as 
input, performs optimization, and generates a fault-tolerant implementation of the original quan-
tum algorithm. Next, it implements the algorithm using instructions belonging to a quantum 
instruction set architecture (QISA). Just like in classical architectures, the QISA is the interface 
between software and hardware. A control microarchitecture is needed to decode the quantum 
instructions into microcode. The microcode can represent the required control signals with pre-
cise timing, as well as real-time quantum error detection and correction. Finally, based on the 
specific quantum technology—superconducting qubits, trapped ions, spin qubits, nitrogen-
vacancy centers, and so on—control signals are translated into required pulses and sent to the 
quantum chip through the quantum-classical interface.  

To date, research in quantum computer engineering has focused primarily on the top and bottom 
layers of the system stack, leaving a gap between quantum software and hardware. On the one 
hand, most of the existing quantum compilers mainly focus on efficiently describing and opti-
mizing the application for a large number of qubits and pay little attention to low-level con-
straints of controlling physical qubits, such as the complex analog waveforms or the precise 
timing of operations on the nanosecond timescale. On the other hand, current popular methods of 
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controlling qubits are mainly based on autonomous arbitrary waveform generators (AWG) and 
data collection units. These methods introduce high resource consumption, long configuration 
times, and control complexity, all of which scale poorly with the number of qubits. Hence, a 
conversion from the compiler output to the control medium accepted by the quantum processor 
is required to enable operating a quantum processor.  

 
Figure 1. Overview of the quantum computer system stack. 

In this article, we present a quantum microarchitecture, QuMA, for a superconducting quantum 
processor based on the circuit model that bridges the gap between quantum software and quan-
tum hardware (see Figure 2). 

QUMA 
A quantum computer can be seen as a coprocessor acting as an accelerator. QuMA is a heteroge-
neous architecture, which includes a classical CPU as a host and a quantum coprocessor as an 
accelerator.  

The input of QuMA is a binary file generated by a compiler infrastructure where classical and 
quantum code are combined. The classical code is produced by a conventional compiler such as 
the GNU compiler collection (GCC) and executed by the classical host CPU. Quantum code is 
generated by a quantum compiler and executed by the quantum coprocessor. The quantum code 
contains auxiliary classical instructions and quantum instructions. Auxiliary classical instructions 
perform basic arithmetic and logic operations and program flow control. Quantum instructions 
describe when and which quantum operations will be applied on which qubits. 

As shown in Figure , the host CPU fetches quantum code from the memory and forwards it to 
the quantum coprocessor. In the quantum coprocessor, in general, executed instructions flow 
through modules from left to right. The execution controller performs register updates and pro-
gram flow control, as well as streams quantum instructions to the physical execution layer. The 
physical microcode unit translates quantum instructions into microinstructions using the Q con-
trol store. These are further decomposed into micro-operations by the quantum microinstruction 
buffer (QMB). The timing of each micro-operation is also determined by the physical microcode 
unit. Based on the output of the QMB, the timing control unit triggers micro-operations at a de-
terministic timing. The analog-digital interface converts digitally represented micro-operations 
into corresponding analog pulses with precise timing that perform quantum operations on qubits, 
as well as analog signals containing measurement information of qubits into binary signals. Re-
quired modulation and demodulation with radio-frequency carrier waves are also carried out in 
the quantum-classical interface. 
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Three key mechanisms are at the core of QuMA:  

• A multilevel instruction decoding scheme, which successively decodes a quantum in-
struction into microinstructions at the Q control store, micro-operations at the QMB, 
and, finally, codeword triggers at the micro-operation unit ( -op unit). 

• The queue-based event timing control scheme is implemented by the timing control unit, 
which issues event triggers with precise timing at nanosecond scale to the measurement 
discrimination unit (MDU) and the -op unit.  

• The codeword-based event control scheme is implemented by the codeword-triggered 
pulse generation unit (CTPG), which produces analog input to the quantum processor 
based on the received codeword triggers, and the MDU converting the analog output 
from the quantum processor into binary results.  

 
Figure 2. Overview of QuMA. 

Multilevel Instruction Decoding 
Quantum instructions are translated into a sequence of microinstructions in the physical micro-
code unit based on the microprograms uploaded into the Q control store. The timing for each 
quantum operation is also determined at this stage. In the QMB, quantum microinstructions for 
quantum gates are decomposed into separate micro-operations with timing labels and are pushed 
into the queues in the timing control unit. The timing control unit then emits the micro-
operations at the expected timing. At the -op unit, each micro-operation is translated into a 
sequence of codeword (index) triggers with predefined latency, which further makes associated 
CTPGs generate primitive operation pulses. The microcode unit and the -op unit can be config-
ured by the user, which enables QuMA to flexibly support instructions with explicit quantum 
semantics, which can be as independent as possible of a particular technology and its current 
state of the art. 

Queue-Based Event Timing Control 
The timing control unit implements the queue-based event timing control. It divides the microar-
chitecture into two timing domains: non-deterministic and deterministic (which are on the left 
and right side of the timing control unit, respectively). In the non-deterministic timing domain, 
instructions are executed in an as-fast-as-possible fashion, which assigns events, or micro-
operations, on various timing points of a timeline. In the deterministic timing domain, micro-
operations are emitted to the analog-digital interface with deterministic and precise timing. 
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The timing control unit consists of a timing queue, multiple event queues, and a timing controller. 
The timing queue buffers the time points with corresponding timing labels. The location of the 
time points can be designated in the timeline, such as by specifying the intervals between con-
secutive time points. Each event queue buffers a sequence of events with a time point at which 
the event is expected to take place. The time point is indicated by the aforementioned timing 
label. An event can be a quantum gate, a measurement, or any other operation.  

The timing controller maintains the clock of the deterministic timing domain TD, which can be 
started by an instruction or another source such as an external trigger. When TD reaches the as-
signed time point, the timing controller broadcasts the timing label. The timing label signals the 
queues to fire the events matching that time point and emits them to the analog-digital interface. 

Codeword-Based Event Control 
The codeword-based event control scheme is implemented by the analog-digital interface. After 
uploading all the required primitive pulses into the memory, an index called codeword is as-
signed to each of the pulses, as well as to the measurement operation. 

Digital-format micro-operations are first converted into codewords at the -op unit. These code-
words trigger the CTPGs to generate analog pulses, or the customized MDU that translates ana-
log qubit measurement waveforms into binary results. The CTPG and MDU should have a short 
and fixed latency. 

In this way, the analog-digital interface abstracts the complex analog waveform generation and 
puts forward the responsibility of codeword control with precise timing to the upper digital lay-
ers. Therefore, it enables controlling analog pulse generation using instructions. Fast and flexible 
feedback control is also possible in principle because the CTPG scheme does not require the 
waveform to be uploaded at runtime, and codeword triggers with precise timing can be efficient-
ly generated dynamically.  

VALIDATION 
In view of running physics experiments, we implemented the mentioned mechanisms in the 
quantum control box with two slight differences: 

• Writing measurement results from the MDU to the exchange register file have not been 
implemented yet.  

• Only the timing management part of the physical microcode unit has been implemented, 
and the conversion from quantum instructions to quantum microinstructions is yet to be 
supported.  

Hence, a combination of auxiliary classical instructions and quantum microinstructions is ac-
cepted by the QuMA core. For now, the microinstruction set, QuMIS, consists of the following 
instructions (see Table 1):  

• The Wait instruction used to specify the interval between consecutive time points,  
• The Pulse instruction used to apply quantum gates on qubits,  
• The MPG instruction used to generate the measurement pulse, and  
• The MD instruction used to trigger the measurement discrimination process.  

We validated QuMA by performing several single-qubit experiments on a superconducting quan-
tum processor. These experiments include measurement of the relaxation time T1 and dephasing 
time T2 of the qubit, a standard gate-characterization experiment called AllXY,2 and a gate error 
estimation experiment called randomized benchmarking.3 
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Table 1. QuMIS instructions.  

Assembly Format Description 

Wait Interval Wait for the number of cycles indicated by the immedi-
ate value Interval. 

Pulse (QAddr0, Op0) [, 
(QAddr1, Op1), …] 

Apply the micro-operation Opi on each of the qubits 
specified by the address QAddri. 

MPG QAddr, D 

Generate the measurement pulse for the qubits speci-
fied by the address QAddr.  
D indicates the duration of the measurement pulse in 
number of cycles. 

MD QAddr, $rd Discriminate the measurement results of the qubits 
specified by QAddr and store the result into register $rd. 

POTENTIAL IMPACT 
QuMA fills the gap between quantum compilers and quantum hardware by providing a control 
system that translates quantum code into low-level analog signals that operate on the qubits. In 
addition, QuMA makes a move towards the first definition of an executable QISA. In our recent 
research, we improved the microcode unit by enabling the translation from a single instruction to 
multiple operations on different qubits. An executable QISA, named eQASM, is also defined on 
top of QuMIS. With certain low-level information exposed in eQASM, such as timing, the quan-
tum compiler can generate executable instructions for real devices. 

Some quantum algorithms for near-term devices ask for quantum-classical mixed computation, 
such as a variational eigenvalue solver.4 Because data can be gathered into the register file in 
QuMA, it is natural to construct a heterogeneous computing platform with a classical host and a 
quantum coprocessor by adding extra data exchange instructions to interact with the host CPU 
and the main memory. 

The verification of quantum software design creates a challenge. QuMA can assist the verifica-
tion of quantum software and the estimation of their performance by simulating the generated 
instructions targeting QuMA. To this end, an architecture simulator for QuMA is required, which 
can simulate the execution of the instructions respecting hardware constraints and generate oper-
ations for each qubit with timing information. These timed operations can then be fed to a qubit 
state evolution simulator, such as QX5 or QuantumSim.6 In this way, the correctness of quantum 
software can be checked at both the architecture level and the qubit state level. Our previous 
work on the Quantum Platform Development framework (QPDO)7 is a step towards building the 
required architecture simulator. 

Programmable AWGs became available recently in industry.8-9 In these devices, the analog 
channels are coupled to a processor with a large memory. Instead of instructions with explicit 
quantum semantics, low-level instructions are used to generate the output, such as the waveform 
instruction, which takes a physical memory address as parameter. A distributed architecture with 
a synchronization mechanism is assumed to provide more analog channels. The required hard-
ware resources go up almost linearly to the number of qubits. In contrast, QuMA is a centralized 
architecture with quantum semantics and timing of operations explicitly defined at the instruc-
tion level. It does not depend on an external synchronization mechanism and can scale up to 
control tens of qubits. By adopting the codeword-triggered pulse generation scheme, the AWG 
complexity can be reduced, which costs modest hardware. Also, the requirement for multiple 
control processors can be eliminated, making a simple compilation model and again asking for 
less hardware resources. 

In recent years, quantum processors with more qubits are being produced. More qubits, in gen-
eral, ask for more operations per unit time on average, which requires more operations to be fed 
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into the queues. Only one instruction stream in QuMA results in a limited instruction issue rate, 
just as in classical processors. The limited instruction issue rate might be insufficient to issue all 
instructions in time that describe the required operations, which forms a bottleneck of QuMA. It 
is possible to make use of conventional processor design methods to optimize the non-
deterministic timing domain without affecting the deterministic timing of the output. Inspired by 
conventional processor design techniques, such as the Intel Streaming SIMD Extensions (SSE), 
we proposed a Single-Operation-Multiple-Qubit (SOMQ) execution fashion for QuMA in our 
recent research. Together with a very-long-instruction-word architecture (VLIW) update, we 
implemented the digital part of the improved QuMA in a device capable of controlling seven 
qubits. With a slight change to the configuration, such as VLIW width, the device can be, in 
principle, extended to control at least 49 qubits, which can form a distance-5 surface code logical 
qubit.10  

To further scale up the system, a tiled architecture consisting of multiple QuMA nodes with each 
node controlling tens of qubits would be a potential solution. In such a tiled architecture, the 
mechanisms in QuMA are still valid, but a communication protocol among nodes and a compila-
tion model for a tiled system requires investigation. 

Current methods allocate most electronics at room temperature, and coaxial cables are used to 
send analog signals to qubits that are in the cryogenic environment. The number of cables grows 
roughly linearly to the number of qubits. The footprint and the thermal conductance of the cables 
forms a challenge for a large number of qubits.11 Addressing this issue, some research12 investi-
gates allocating part of the electronics, such as waveform generators, in the 4K environment. 
Whether a part of QuMA can be allocated in the 4K environment highly depends on the availa-
ble power budget and the power consumption of each component of the QuMA implementation. 

CONCLUSION 
Various quantum technologies are being developed for quantum computing, including supercon-
ducting qubits and trapped ions. However, it is still unknown which quantum technology will be 
used to build future quantum computers. Though QuMA originally targets superconducting 
qubits, it can also be adapted to operate on different quantum technologies; some changes are 
required, including the microcode unit, the number and width of queues, and the quantum-
classical interface. Our recent experiment demonstrates that QuMA is capable of controlling spin 
qubits. 

We expect QuMA to spark a new line of research on a flexible and scalable approach to control 
near-term and future quantum chips. Building a quantum control microarchitecture and defining 
the required QISA can help the design of the control hardware, as well as the quantum software. 
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