

THEME ARTICLE: Top Picks

A Microarchitecture for a
Superconducting Quantum
Processor

This article proposes a quantum microarchitecture,

QuMA. Flexible programmability of a quantum

processor is achieved by multilevel instructions

decoding, abstracting analog control into digital

control, and translating instruction execution with non-

deterministic timing into event trigger with precise

timing. QuMA is validated by several single-qubit

experiments on a superconducting qubit.

To construct a fully programmable quantum computer
based on the circuit model, a system stack1 composed of
several layers is required (see Figure 1). Quantum algo-
rithms are formulated and then described using a high-level
quantum programming language. Depending on the choice

of quantum error correction code, such as surface code, the compiler takes that description as
input, performs optimization, and generates a fault-tolerant implementation of the original quan-
tum algorithm. Next, it implements the algorithm using instructions belonging to a quantum
instruction set architecture (QISA). Just like in classical architectures, the QISA is the interface
between software and hardware. A control microarchitecture is needed to decode the quantum
instructions into microcode. The microcode can represent the required control signals with pre-
cise timing, as well as real-time quantum error detection and correction. Finally, based on the
specific quantum technology—superconducting qubits, trapped ions, spin qubits, nitrogen-
vacancy centers, and so on—control signals are translated into required pulses and sent to the
quantum chip through the quantum-classical interface.

To date, research in quantum computer engineering has focused primarily on the top and bottom
layers of the system stack, leaving a gap between quantum software and hardware. On the one
hand, most of the existing quantum compilers mainly focus on efficiently describing and opti-
mizing the application for a large number of qubits and pay little attention to low-level con-
straints of controlling physical qubits, such as the complex analog waveforms or the precise
timing of operations on the nanosecond timescale. On the other hand, current popular methods of

X. Fu, M. A. Rol, C. C.
Bultink, J. van Someren, N.
Khammassi, I. Ashraf, and
R. F. L. Vermeulen
QuTech, Delft University of
Technology

J. C. de Sterke

Topic Embedded Systems

W. J. Vlothuizen

Netherlands Organization for
Applied Scientific Research

R. N. Schouten, C. G.
Almudéver, L. DiCarlo, and
K. Bertels
QuTech, Delft University of
Technology

40
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEEMay/June 2018

 IEEE MICRO

controlling qubits are mainly based on autonomous arbitrary waveform generators (AWG) and
data collection units. These methods introduce high resource consumption, long configuration
times, and control complexity, all of which scale poorly with the number of qubits. Hence, a
conversion from the compiler output to the control medium accepted by the quantum processor
is required to enable operating a quantum processor.

Figure 1. Overview of the quantum computer system stack.

In this article, we present a quantum microarchitecture, QuMA, for a superconducting quantum
processor based on the circuit model that bridges the gap between quantum software and quan-
tum hardware (see Figure 2).

QUMA
A quantum computer can be seen as a coprocessor acting as an accelerator. QuMA is a heteroge-
neous architecture, which includes a classical CPU as a host and a quantum coprocessor as an
accelerator.

The input of QuMA is a binary file generated by a compiler infrastructure where classical and
quantum code are combined. The classical code is produced by a conventional compiler such as
the GNU compiler collection (GCC) and executed by the classical host CPU. Quantum code is
generated by a quantum compiler and executed by the quantum coprocessor. The quantum code
contains auxiliary classical instructions and quantum instructions. Auxiliary classical instructions
perform basic arithmetic and logic operations and program flow control. Quantum instructions
describe when and which quantum operations will be applied on which qubits.

As shown in Figure , the host CPU fetches quantum code from the memory and forwards it to
the quantum coprocessor. In the quantum coprocessor, in general, executed instructions flow
through modules from left to right. The execution controller performs register updates and pro-
gram flow control, as well as streams quantum instructions to the physical execution layer. The
physical microcode unit translates quantum instructions into microinstructions using the Q con-
trol store. These are further decomposed into micro-operations by the quantum microinstruction
buffer (QMB). The timing of each micro-operation is also determined by the physical microcode
unit. Based on the output of the QMB, the timing control unit triggers micro-operations at a de-
terministic timing. The analog-digital interface converts digitally represented micro-operations
into corresponding analog pulses with precise timing that perform quantum operations on qubits,
as well as analog signals containing measurement information of qubits into binary signals. Re-
quired modulation and demodulation with radio-frequency carrier waves are also carried out in
the quantum-classical interface.

41May/June 2018 www.computer.org/micro

 TOP PICKS

Three key mechanisms are at the core of QuMA:

• A multilevel instruction decoding scheme, which successively decodes a quantum in-
struction into microinstructions at the Q control store, micro-operations at the QMB,
and, finally, codeword triggers at the micro-operation unit (-op unit).

• The queue-based event timing control scheme is implemented by the timing control unit,
which issues event triggers with precise timing at nanosecond scale to the measurement
discrimination unit (MDU) and the -op unit.

• The codeword-based event control scheme is implemented by the codeword-triggered
pulse generation unit (CTPG), which produces analog input to the quantum processor
based on the received codeword triggers, and the MDU converting the analog output
from the quantum processor into binary results.

Figure 2. Overview of QuMA.

Multilevel Instruction Decoding
Quantum instructions are translated into a sequence of microinstructions in the physical micro-
code unit based on the microprograms uploaded into the Q control store. The timing for each
quantum operation is also determined at this stage. In the QMB, quantum microinstructions for
quantum gates are decomposed into separate micro-operations with timing labels and are pushed
into the queues in the timing control unit. The timing control unit then emits the micro-
operations at the expected timing. At the -op unit, each micro-operation is translated into a
sequence of codeword (index) triggers with predefined latency, which further makes associated
CTPGs generate primitive operation pulses. The microcode unit and the -op unit can be config-
ured by the user, which enables QuMA to flexibly support instructions with explicit quantum
semantics, which can be as independent as possible of a particular technology and its current
state of the art.

Queue-Based Event Timing Control
The timing control unit implements the queue-based event timing control. It divides the microar-
chitecture into two timing domains: non-deterministic and deterministic (which are on the left
and right side of the timing control unit, respectively). In the non-deterministic timing domain,
instructions are executed in an as-fast-as-possible fashion, which assigns events, or micro-
operations, on various timing points of a timeline. In the deterministic timing domain, micro-
operations are emitted to the analog-digital interface with deterministic and precise timing.

42May/June 2018 www.computer.org/micro

 IEEE MICRO

The timing control unit consists of a timing queue, multiple event queues, and a timing controller.
The timing queue buffers the time points with corresponding timing labels. The location of the
time points can be designated in the timeline, such as by specifying the intervals between con-
secutive time points. Each event queue buffers a sequence of events with a time point at which
the event is expected to take place. The time point is indicated by the aforementioned timing
label. An event can be a quantum gate, a measurement, or any other operation.

The timing controller maintains the clock of the deterministic timing domain TD, which can be
started by an instruction or another source such as an external trigger. When TD reaches the as-
signed time point, the timing controller broadcasts the timing label. The timing label signals the
queues to fire the events matching that time point and emits them to the analog-digital interface.

Codeword-Based Event Control
The codeword-based event control scheme is implemented by the analog-digital interface. After
uploading all the required primitive pulses into the memory, an index called codeword is as-
signed to each of the pulses, as well as to the measurement operation.

Digital-format micro-operations are first converted into codewords at the -op unit. These code-
words trigger the CTPGs to generate analog pulses, or the customized MDU that translates ana-
log qubit measurement waveforms into binary results. The CTPG and MDU should have a short
and fixed latency.

In this way, the analog-digital interface abstracts the complex analog waveform generation and
puts forward the responsibility of codeword control with precise timing to the upper digital lay-
ers. Therefore, it enables controlling analog pulse generation using instructions. Fast and flexible
feedback control is also possible in principle because the CTPG scheme does not require the
waveform to be uploaded at runtime, and codeword triggers with precise timing can be efficient-
ly generated dynamically.

VALIDATION
In view of running physics experiments, we implemented the mentioned mechanisms in the
quantum control box with two slight differences:

• Writing measurement results from the MDU to the exchange register file have not been
implemented yet.

• Only the timing management part of the physical microcode unit has been implemented,
and the conversion from quantum instructions to quantum microinstructions is yet to be
supported.

Hence, a combination of auxiliary classical instructions and quantum microinstructions is ac-
cepted by the QuMA core. For now, the microinstruction set, QuMIS, consists of the following
instructions (see Table 1):

• The Wait instruction used to specify the interval between consecutive time points,
• The Pulse instruction used to apply quantum gates on qubits,
• The MPG instruction used to generate the measurement pulse, and
• The MD instruction used to trigger the measurement discrimination process.

We validated QuMA by performing several single-qubit experiments on a superconducting quan-
tum processor. These experiments include measurement of the relaxation time T1 and dephasing
time T2 of the qubit, a standard gate-characterization experiment called AllXY,2 and a gate error
estimation experiment called randomized benchmarking.3

43May/June 2018 www.computer.org/micro

 TOP PICKS

Table 1. QuMIS instructions.

Assembly Format Description

Wait Interval Wait for the number of cycles indicated by the immedi-
ate value Interval.

Pulse (QAddr0, Op0) [,
(QAddr1, Op1), …]

Apply the micro-operation Opi on each of the qubits
specified by the address QAddri.

MPG QAddr, D

Generate the measurement pulse for the qubits speci-
fied by the address QAddr.
D indicates the duration of the measurement pulse in
number of cycles.

MD QAddr, $rd Discriminate the measurement results of the qubits
specified by QAddr and store the result into register $rd.

POTENTIAL IMPACT
QuMA fills the gap between quantum compilers and quantum hardware by providing a control
system that translates quantum code into low-level analog signals that operate on the qubits. In
addition, QuMA makes a move towards the first definition of an executable QISA. In our recent
research, we improved the microcode unit by enabling the translation from a single instruction to
multiple operations on different qubits. An executable QISA, named eQASM, is also defined on
top of QuMIS. With certain low-level information exposed in eQASM, such as timing, the quan-
tum compiler can generate executable instructions for real devices.

Some quantum algorithms for near-term devices ask for quantum-classical mixed computation,
such as a variational eigenvalue solver.4 Because data can be gathered into the register file in
QuMA, it is natural to construct a heterogeneous computing platform with a classical host and a
quantum coprocessor by adding extra data exchange instructions to interact with the host CPU
and the main memory.

The verification of quantum software design creates a challenge. QuMA can assist the verifica-
tion of quantum software and the estimation of their performance by simulating the generated
instructions targeting QuMA. To this end, an architecture simulator for QuMA is required, which
can simulate the execution of the instructions respecting hardware constraints and generate oper-
ations for each qubit with timing information. These timed operations can then be fed to a qubit
state evolution simulator, such as QX5 or QuantumSim.6 In this way, the correctness of quantum
software can be checked at both the architecture level and the qubit state level. Our previous
work on the Quantum Platform Development framework (QPDO)7 is a step towards building the
required architecture simulator.

Programmable AWGs became available recently in industry.8-9 In these devices, the analog
channels are coupled to a processor with a large memory. Instead of instructions with explicit
quantum semantics, low-level instructions are used to generate the output, such as the waveform
instruction, which takes a physical memory address as parameter. A distributed architecture with
a synchronization mechanism is assumed to provide more analog channels. The required hard-
ware resources go up almost linearly to the number of qubits. In contrast, QuMA is a centralized
architecture with quantum semantics and timing of operations explicitly defined at the instruc-
tion level. It does not depend on an external synchronization mechanism and can scale up to
control tens of qubits. By adopting the codeword-triggered pulse generation scheme, the AWG
complexity can be reduced, which costs modest hardware. Also, the requirement for multiple
control processors can be eliminated, making a simple compilation model and again asking for
less hardware resources.

In recent years, quantum processors with more qubits are being produced. More qubits, in gen-
eral, ask for more operations per unit time on average, which requires more operations to be fed

44May/June 2018 www.computer.org/micro

 IEEE MICRO

into the queues. Only one instruction stream in QuMA results in a limited instruction issue rate,
just as in classical processors. The limited instruction issue rate might be insufficient to issue all
instructions in time that describe the required operations, which forms a bottleneck of QuMA. It
is possible to make use of conventional processor design methods to optimize the non-
deterministic timing domain without affecting the deterministic timing of the output. Inspired by
conventional processor design techniques, such as the Intel Streaming SIMD Extensions (SSE),
we proposed a Single-Operation-Multiple-Qubit (SOMQ) execution fashion for QuMA in our
recent research. Together with a very-long-instruction-word architecture (VLIW) update, we
implemented the digital part of the improved QuMA in a device capable of controlling seven
qubits. With a slight change to the configuration, such as VLIW width, the device can be, in
principle, extended to control at least 49 qubits, which can form a distance-5 surface code logical
qubit.10

To further scale up the system, a tiled architecture consisting of multiple QuMA nodes with each
node controlling tens of qubits would be a potential solution. In such a tiled architecture, the
mechanisms in QuMA are still valid, but a communication protocol among nodes and a compila-
tion model for a tiled system requires investigation.

Current methods allocate most electronics at room temperature, and coaxial cables are used to
send analog signals to qubits that are in the cryogenic environment. The number of cables grows
roughly linearly to the number of qubits. The footprint and the thermal conductance of the cables
forms a challenge for a large number of qubits.11 Addressing this issue, some research12 investi-
gates allocating part of the electronics, such as waveform generators, in the 4K environment.
Whether a part of QuMA can be allocated in the 4K environment highly depends on the availa-
ble power budget and the power consumption of each component of the QuMA implementation.

CONCLUSION
Various quantum technologies are being developed for quantum computing, including supercon-
ducting qubits and trapped ions. However, it is still unknown which quantum technology will be
used to build future quantum computers. Though QuMA originally targets superconducting
qubits, it can also be adapted to operate on different quantum technologies; some changes are
required, including the microcode unit, the number and width of queues, and the quantum-
classical interface. Our recent experiment demonstrates that QuMA is capable of controlling spin
qubits.

We expect QuMA to spark a new line of research on a flexible and scalable approach to control
near-term and future quantum chips. Building a quantum control microarchitecture and defining
the required QISA can help the design of the control hardware, as well as the quantum software.

ACKNOWLEDGMENTS
A previous version of this article appears in the Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. We thank M. Tiggelman, S. Visser, J. Som-
ers, L. Riesebos, E. Garrido Barrabés, and E. Charbon for contributions to an early version
of the control box; H. Homulle for rendering Figure 1; and L. Lao, H.A. Du Nguyen, R.
Versluis, and F.T. Chong for discussions. We acknowledge funding from the China Schol-
arship Council, Intel Corporation, an ERC Synergy Grant, and the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA),
via the U.S. Army Research Office grant W911NF-16-1-0071. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of the ODNI,
IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright annotation there-
on.

45May/June 2018 www.computer.org/micro

 TOP PICKS

REFERENCES
1. X. Fu et al., “A heterogeneous quantum computer architecture,” Proceedings of the

ACM International Conference on Computing Frontiers, 2016.
2. M. D. Reed, “Entanglement and quantum error correction with superconducting qubits,”

dissertation, Yale University, 2013.
3. J. M. Epstein et al., “Investigating the limits of randomized benchmarking protocols,”

Physical Review A, vol. 89, 2014.
4. A. Peruzzo et al., “A variational eigenvalue solver on a photonic quantum processor,”

Nature Communications, vol. 5, 2014, p. 4213.
5. N. Khammassi et al., “QX: A high-performance quantum computer simulation

platform,” 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pp. 464–469.

6. T. E. O’Brien, B. Tarasinski, and L. DiCarlo, “Density-matrix simulation of small
surface codes under current and projected experimental noise,” NPJ Quantum
Information, vol. 3, 2017, p. 39.

7. L. Riesebos et al., “Pauli frames for quantum computer architectures,” Proceedings of
the 54th Annual Design Automation Conference 2017 (DAC), 2017, p. 76.

8. “BBN technologies arbitrary pulse sequencer 2,” 2017;
libaps2.readthedocs.org/en/latest/.

9. M3202a PXIe arbitrary waveform generator, 1 GSa/s, 14 bit, 400 MHz, 2017;
www.keysight.com/en/pd-2747446-pn-M3202A/pxie-arbitrary-waveform-generator-1-
gs-s-14-bit-400-mhz.

10. A. G. Fowler et al., “Surface codes: Towards practical large-scale quantum
computation,” Physical Review A, vol. 86, 2012.

11. C. G. Almudever et al., “The engineering challenges in quantum computing,” 2017
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp.
836–845.

12. J. M. Hornibrook et al., “Cryogenic control architecture for large-scale quantum
computing,” Physical Review Applied, vol. 3, 2015.

ABOUT THE AUTHORS
Xiang Fu is a PhD student at QuTech in the Quantum and Computer Engineering depart-
ment at Delft University of Technology. His research interests include quantum computer
microarchitecture and quantum instruction set architecture. He has a master’s degree in
computer engineering from the National University of Defense Technology in China. He is
a student member of the IEEE. Contact him at X.Fu-1@tudelft.nl.

Adriaan Rol is a PhD student at QuTech in the faculty of Applied Science at Delft Univer-
sity of Technology. His research interests include novel methods to calibrate and character-
ize qubit operations, as well as finding the right abstractions to scale up these methods to
many qubit quantum systems in the context of demonstrating quantum fault tolerance. Be-
fore joining the superconducting transmon group, he worked on nitrogen vacancy centers in
diamond for his master’s degree, also at QuTech, Delft University of Technology. Contact
him at M.A.Rol@tudelft.nl.

Niels Bultink is a PhD student at QuTech in the faculty of Applied Physics at Delft Univer-
sity of Technology. His research interests include quantum information processing on su-
perconducting quantum processors and implementations of fault-tolerant quantum
computing. His PhD focuses on improving multi-qubit state measurement to achieve faster
and higher fidelity readout of increasing numbers of qubits. Bultink has a master’s degree in
applied physics. Contact him at C.C.Bultink@tudelft.nl.

Hans van Someren is a researcher at QuTech in the Quantum and Computer Engineering
department at Delft University of Technology, where he investigates computer system ar-
chitectures and supporting tools for quantum computing, especially specialized scheduling,
mapping and routing, and the semantics of the various architectural layers and interface rep-
resentations. Van Someren has a master’s degree in mathematics from Delft University of
Technology. Contact him at J.vanSomeren-1@tudelft.nl.

46May/June 2018 www.computer.org/micro

 IEEE MICRO

Nader Khammassi is a researcher at QuTech in the Quantum and Computer Engineering
department of Delft University of Technology. His works include the design of the QX
quantum computer simulator and the OpenQL quantum programming framework. He is in-
vestigating different layers of a scalable quantum computer architecture for different qubit
technologies being developed at QuTech in collaboration with Intel. He has a PhD (cum
laude) from the National Engineering School of Advanced Technology in Brittany, France,
where he researched high-performance computing for multicore architectures. Contact him
at N.Khammassi@tudelft.nl.

Imran Ashraf is a postdoctoral researcher at QuTech in the Quantum and Computer Engi-
neering department at Delft University of Technology. His recent research focuses on com-
pilation techniques for quantum computing. He has a PhD in computer engineering from
Delft University of Technology. The focus of his research was advanced profiling, code
parallelization, and communication-driven mapping of applications on multicore platforms.
He is a member of the IEEE. Contact him at I.Ashraf@tudelft.nl.

Raymond Vermeulen is an electronic instrumentation engineer at QuTech at Delft Univer-
sity of Technology, where he designs and builds electronics in support of ongoing and fu-
ture research into quantum computing. Vermeulen has a bachelor’s degree in electrical
engineering from Zuyd University of Applied Sciences. Contact him at
R.F.L.Vermeulen@tudelft.nl.

Jacob de Sterke is a senior hardware designer specializing in FPGA design at Topic Em-
bedded Systems. In support of the Applied Physics team at QuTech, he works on the elec-
tronics and FPGA development for ongoing and future research on many-qubit
superconducting quantum systems. He has a bachelor’s degree in electrical engineering and
information technology. Contact him at Jacob.de.sterke@topic.nl.

Wouter Vlothuizen is a senior systems architect at QuTech in the Radar Technology de-
partment of the Netherlands Organization for Applied Scientific Research. His research fo-
cusses on hardware/software co-design for real-time control and signal processing
applications. Vlothuizen has a master’s degree in electrical engineering from Delft Univer-
sity of Technology. Contact him at wouter.vlothuizen@tno.nl.

Raymond Schouten is a senior electronics engineer at QuTech at Delft University of
Technology, where he works on improving the research measurement results. He gives ad-
vice on measurement techniques and equipment, designs front-end electronics, evaluates
commercial measurement equipment, gives training, and troubleshoots. Designing for low-
noise analog and achieving low interference levels are main areas of interest. He has a
bachelor’s degree in electrical engineering. Contact him at R.N.Schouten@tudelft.nl.

Carmen G. Almudéver is an assistant professor at the Quantum and Computer Engineer-
ing Department at Delft University of Technology. Her research interests include scalable
quantum computer architecture and mapping of fault-tolerant quantum circuits. She has a
PhD in electrical engineering from Polytechnic University of Catalonia. She is a member of
the IEEE. Contact her at C.GarciaAlmudever-1@tudelft.nl.

Leonardo DiCarlo is an associate professor in the Department of Quantum Nanoscience
and a roadmap leader at QuTech at Delft University of Technology. His main research in-
terest is the development of a full-stack quantum computer based on superconducting quan-
tum circuits. DiCarlo has a master’s degree in electrical engineering from Stanford
University and a PhD in physics from Harvard University. Contact him at
L.Dicarlo@tudelft.nl.

Koen Bertels is a professor and the head of the Quantum and Computer Engineering de-
partment at Delft University of Technology. His research focuses on quantum computing,
specifically the overall system design and architecture aspects. He is a principal investigator
at QuTech, where he collaborates with experimental physicists on building prototype quan-
tum computers. He has a PhD from the University of Antwerp. He is a member of the IEEE
and ACM. Contact him at K.L.M.Bertels@tudelft.nl.

47May/June 2018 www.computer.org/micro

