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Abstract—In this paper, we propose a novel reverse converter for
the moduli set {2n + 1, 2n, 2n − 1}. First, we simplify the Chinese
Remainder Theorem in order to obtain a reverse converter that uses mod-
(2n−1) operations. Next, we present a low complexity implementation
that does not require the explicit use of modulo operation in the con-
version process and we prove that theoretically speaking it outperforms
state of the art equivalent converters. We also implemented the proposed
converter and the best equivalent state of the art converters on Xilinx
Spartan 3 FPGA. The results indicate that, on average, our proposal is
about 14%, 21%, and 8% better in terms of conversion time, area cost,
and power consumption, respectively.

Index Terms—Code converters, Field programmable gate arrays,
Residue Arithmetic

I. INTRODUCTION

The attractive carry-free property of Residue Number Systems
(RNS) gives room for RNS implementations in a variety of spe-
cialised high-performance Digital Signal Processing (DSP) applica-
tions. RNS is mostly applied in addition and multiplication dominated
DSP applications such as Digital Filtering and Convolutions [1].
Moduli selection and data conversion are the two most important
issues that determine the RNS hardware performance and may limit
the utilization of RNS in DSP applications [2]. Moduli sets of length
three have been extensively studied [2]. While the most popular
length three moduli set is {2n+1, 2n, 2n−1}, the advantages of uti-
lizing the moduli set {2n+1, 2n, 2n−1} over the {2n+1, 2n, 2n−1}
moduli set have been extensively discussed in [3], [4], [5].

Several data conversion techniques have been proposed based on
either the Chinese Remainder Theorem (CRT) [6], [7], [5], [8], or on
the Mixed Radix Conversion (MRC) [9]. The major CRT problem is
the complex and slow modulo-M operation (M = m1m2m3 being
the system dynamic range, thus a rather large constant).

In this paper, a novel reverse converter for the moduli set {2n +
1, 2n, 2n − 1} is proposed. First, we simplify the CRT to obtain a
reverse converter that utilizes mod-(2n − 1) operations instead of
mod-(2n + 1)(2n − 1) and (2n)(2n − 1) operations required by
the converters in [3] and [6], respectively. Next, we present a low
complexity implementation that does not require the explicit use of
the modulo operation in the conversion process as it is normally the
case in the traditional CRT and some other state of the art equivalent
converters.

II. PROPOSED ALGORITHM

For the sake of completeness of this work, we briefly re-state
without proof the following theorem, which has been presented in
[6] before introducing our approach.
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Theorem 1: Given the RNS number (x1, x2, x3) with respect to
the moduli set {m1,m2,m3} in the form {2n+1, 2n, 2n− 1}, the
decimal equivalent of this RNS number is computed for (x1 + x3)
even and odd, respectively, as follows:

X = −m2x1 +m1

∣∣∣m2

2
(x1 + x3)−m3x2

∣∣∣
m2m3

, (1)

X = −m2x1

+m1

∣∣∣m2m3

2
+

m2

2
(x1 + x3)−m3x2

∣∣∣
m2m3

. (2)

Next, we propose to simplify (1) and (2) in order to obtain a
converter that only utilizes modulo-(2n− 1).

Theorem 2: Given the RNS number (x1, x2, x3) with respect to
the moduli set {m1,m2,m3} in the form {2n+1, 2n, 2n− 1}, the
decimal equivalent of this RNS number is computed for (x1 + x3)
even as follows: {

X = y, y ≥ 0

X = y +M, y < 0
(3)

where

y = m2(x2 − x1) + x2 +m1m2

∣∣∣∣ (x1 + x3)

2
− x2

∣∣∣∣
m3

. (4)

Proof: To prove this theorem we use the following lemma
presented in [10]:

|am1|m1m2
= m1 |a|m2

. (5)

To be more accurate and since (1) may occassionally produce
negative result, X is represented as

X =

∣∣∣∣−m2x1 +m1

∣∣∣m2

2
(x1 + x3)−m3x2

∣∣∣
m2m3

∣∣∣∣
M

.

Substituting m3 = m2 − 1 and applying (5) we get

X =

∣∣∣∣∣m2(x2 − x1) + x2 +m1m2

∣∣∣∣ (x1 + x3)

2
− x2

∣∣∣∣
m3

∣∣∣∣∣
M

. (6)

Equation (6) is the general expression of (4), valid for both y positive
and negative. The next stage of the proof is to demonstrate that at
most one corrective addition is required for the calculation of the
mod-M . We demonstrate that by considering the most positive value
one may get in (6).

• Most positive value: in order to get the most positive value in
(6), the following must hold true:

∣∣∣ (x1+x3)
2

− x2

∣∣∣
m3

= m3−1,

x1 = m1 − 1, x2 = 1, x3 = m3 − 1. Substituting all these
values in (6), we obtain

X = |M − 2m1m2 + 2m2 + 1|M . (7)

Since 0 < M−2m1m2+2m2+1 < M , no corrective addition
of M is required in order to obtain the desired result.

On the other hand, for y < 0, the following must hold true:∣∣∣ (x1+x3)
2

− x2

∣∣∣
m3

= 0, x1 > x2. We demonstrate that only one

corrective addition is required in order to compute the correct result.
This is achieved by computing the most negative result one may have
in (6).

• Most negative value: in order to get the most negative
value in (6), we substitute x1 = m1 − 1, x2 = 0, and∣∣∣ (x1+x3)

2
− x2

∣∣∣
m3

= 0 in (6), obtaining

X = |−m1m2 + 1|M . (8)
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Since 0 < −m1m2+1+M < M , only one corrective addition
is therefore required in order to obtain the correct result if y < 0.

Thus, (3) holds true.
Thus, given that M = m1m2m3, for the case when y < 0, the

correct result can be computed as follows:

X = m2(x2 − x1) + x2

+m1m2

(∣∣∣∣ (x1 + x3)

2
− x2

∣∣∣∣
m3

+m3

)
. (9)

Theorem 3: Given the RNS number (x1, x2, x3) with respect to
the moduli set {m1,m2,m3} in the form {2n+1, 2n, 2n− 1}, the
decimal equivalent of this RNS number is computed for (x1 + x3)
odd as follows: {

X = y, y ≥ 0

X = y +M, y < 0
(10)

where

y = m2(x2 − x1) + x2 +m1m2

∣∣∣∣m3

2
+

(x1 + x3)

2
− x2

∣∣∣∣
m3

. (11)

Proof: Similarly, in order to be more accurate and also since
(2) may occassionally produce negative result, X is represented as

X =

∣∣∣∣−m2x1 +m1

∣∣∣m2m3

2
+

m2

2
(x1 + x3)−m3x2

∣∣∣
m2m3

∣∣∣∣
M

.

By substituting m3 = m2 − 1 and applying (5) we get

X =

∣∣∣∣∣m2(x2 − x1) + x2

+m1m2

∣∣∣∣m3

2
+

(x1 + x3)

2
− x2

∣∣∣∣
m3

∣∣∣∣∣
M

. (12)

Again, from (11), it can be seen easily that (12) is the same as |y|M .
Just as earlier described, we need to demonstrate that at most one
corrective addition is required for the calculation of mod-M . We
demonstrate that by considering the most positive value one may get
in (12).

• Most positive value: in order to get the most positive value in
(12), the following must hold true:

∣∣∣m3
2

+ (x1+x3)
2

− x2

∣∣∣
m3

=

m3 − 1, x1 = 1, x2 = 1, x3 = m3 − 1.
Substituting the above values in (12), we obtain

X = |M −m1m2 + 1|M . (13)

Since 0 < M − m1m2 + 1 < M , no corrective addition is
required for the calculation of mod-M .

Again, for y < 0, the following must hold true:∣∣∣m3
2

+ (x1+x3)
2

− x2

∣∣∣
m3

= 0, x1 > x2. We demonstrate that

only one corrective addition is needed in order to obtain the correct
result in (12). This is achieved by considering the most negative
value one may get in (12).

• Most negative value: in order to get the most negative
value in (12), the following must hold true: given that∣∣∣m3

2
+ (x1+x3)

2
− x2

∣∣∣
m3

= 0, x1 = 1, x2 = 0, and x3 =

m3 − 1. Substituting these values in (12), we obtain

X = |−m2 + 1|M . (14)

Since 0 < −m2 +1+M < M , only one corrective addition is
required in order to obtain correct result.
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Figure 1. Hardware Structure of Our Proposal

Thus, for the case when y < 0, the correct result can be computed
as follows:

X = m2(x2 − x1) + x2

+m1m2

(∣∣∣∣m3

2
+

(x1 + x3)

2
− x2

∣∣∣∣
m3

+m3

)
. (15)

III. HARDWARE REALIZATION

The hardware realization of the proposed scheme, depicted in
Fig. 1 is based on the equations in Theorems 2 and 3. In adder
A, residue x1 is subtracted from x2 and next the result is multiplied
by m2. The 3-input adder B computes (x1+x3

2
− x2) and can be

implemented as a 3:2 Carry Save Adder (CSA) followed by a Carry
Propagate Adder (CPA). We prove later in this section that only
one corrective addition or subtraction is required to compute the
modulo-m3 operation and this can be combined with the possible
additions of m3

2
and m3 terms. The above mentioned operations

are implemented by adder C with a selectable input. The hardware
implementation removes the fractions by shifting left all the operands
involved in adder B and C, thereby extending the two adders with
one bit. Finally, the output of adder C, without the rightmost bit to
account for the previous shift, is multiplied by m1m2 and the result
is summed together by adder D with the one from the multiplier
m2. The extra input x2 for adder D can be embedded in the m2

multiplier according to the principle of merged arithmetic, thus D
can be actually implemented as a standard 2:1 adder.

Next, we demonstrate that no explicit mod-m3 operation
is required for the computation of

∣∣∣ (x1+x3)
2

− x2

∣∣∣
m3

and∣∣∣m3
2

+ (x1+x3)
2

− x2

∣∣∣
m3

by analyzing the four possible extreme

cases as follows:
Case 1: (x1 + x3) = 0 and x2 = 2n− 1. This results in the most

negative value one may get. In this case the modulus in (4) reduces
to | − x2|m3 . To perform the modulo m3 operation we need to do
corrective additions. Given that m3+(−x2) = (2n−1)−(2n−1) =
2n− 1− 2n+1 = 0, for any positive integer n, only one corrective
addition with m3 is required to compute the modulo.



Case 2: (x1 + x3) is even and has the maximum possible value
and x2 is zero. This is the largest positive value one may get and the
modulus in (4) reduces to | (x1+x3)

2
|m3 . Given that m3− (x1+x3)

2
=

(2n− 1)− (2n+2n−2)
2

= 2n− 1− 2n+1 = 0 the maximum sum in
the modulo adder cannot exceed m3, thus one subtraction with m3

is required.
Case 3: (x1+x3) = 1 and x2 = 2n−1. In this case the modulus

from (11) reduces to |m3
2

+ 1
2
−x2|m3 . Given that in this case m3

2
+

1
2
− x2 is always negative and that m3 +

m3
2

+ 1
2
− x2 = 2n− 1 +

n− 1
2
+ 1

2
− 2n+1 = n > 0, for any integer n, only one corrective

addition with m3 is required to compute the modulo.
Case 4: (x1 +x3) odd has the maximum possible value and x2 is

zero. The modulus from (11) reduces to |m3
2

+ (x1+x3)
2
|m3 . Given

that 2m3−(m3
2

+ (x1+x3)
2

) = 2(2n−1)−( 2n−1
2

+ (2n+2n−2)−1
2

) =
4n− 2− 3n+2 = n > 0, for any positive integer n, one corrective
subtraction of m3 is required to compute the modulo.

This means that the modulo m3 operation can be implemented
with at most one corrective addition or subtraction. In the following,
we prove that the addition of the m3

2
term can be actually postponed

and embedded into the correction step required for the modulo-m3

operation without any delay overhead. Thus, we remove m3
2

as adder
C input and revisit the 4 correction cases analyzed above.

If (x1 + x3) is even, the term m3
2

is not part of the calculation
and the correction can be done as usual. If (x1 + x3) is odd, the
tentative sum at the output of adder B is (x1+x3)

2
− x2 instead of

m3
2

+ (x1+x3)
2
−x2, thus it is smaller with m3

2
than it should actually

be. Taking that into consideration, the correction rules change to:
1) (x1 + x3) even:

• if tentative sum is smaller than 0 add m3;
• if tentative sum is equal or larger than m3 subtract m3;
• otherwise do nothing;

2) (x1 + x3) odd:
• if tentative sum is smaller than −m3

2
add 3m3

2
;

• if tentative sum is greater than or equal to m3
2

subtract
m3
2

;
• otherwise add m3

2
.

As indicated by (9) and (15), the final modulo-M also does not
require explicit implementation. The scheme is simplified by moving
this addition before the m1m2 multiplication, hence transforming it
into a corrective m3 addition. As mentioned in the previous section,
this correction must be applied when both of the following statements
hold true:

x1 > x2 (16)
∣∣∣ (x1+x3)

2
− x2

∣∣∣
m3

= 0 (x3 + x1) even∣∣∣m3
2

+ (x1+x3)
2

− x2

∣∣∣
m3

= 0 (x3 + x1) odd
(17)

We now combine the modulo-m3 operations by revisiting the
correction rules:

1) (x1 + x3) even:
• if tentative sum is smaller than 0 add m3;

(17) holds true when the tentative sum is equal to −m3,
but we can see from Case 1 that (16) does not hold true,
hence the extra m3 addition is not needed;

• if tentative sum is zero and (16) is true (the sign bit of
adder A is 1) add m3;

• otherwise do nothing;
(17) holds true when the tentative sum is equal to m3

and we can see from Case 2 that this happens when x2

is zero and x1 = 2n, hence (16) also holds true. But
the required m3 addition cancels out the previous m3

corrective subtraction for the modular-m3 adder;

2) (x1 + x3) odd:
• if tentative sum is smaller than −m3

2
add 3m3

2
;

From Case 3, it can be seen that the minimum value for
the tentative sum is 1

2
− x2 < − 3m3

2
, so (17) does not

hold true. Thus, no extra m3 addition is required;
• if tentative sum is larger than m3

2
subtract m3

2
;

(17) holds true when the tentative sum is equal to m3
2

.
Following this, x1 + x3 − 2x2 = 2m3 ⇒ x1 − x2 =
2m3−x3 +x2. Since 2m3−x3 > 0 (16) also holds true,
thus the correction becomes −m3

2
+m3 = m3

2
;

• otherwise add m3
2

.
In this way all modulo operations have been replaced by a single

corrective addition or subtraction greatly reducing the complexity of
the converter.

IV. PERFORMANCE EVALUATION

The converter in [3] for the moduli set under consideration has been
shown to outperform the one in [4]. Recently, the converter in [6] was
also shown to be better than the one in [3] through a detailed critical
path analysis, which takes the hardware implementation details into
consideration. In view of that, we compare our proposal with the
equivalent converters in [6] and [3].

On the critical path, our proposal requires one 3:1 adder, two 2:1
adders, one multiplier, one comparator and one multiplexer; converter
[3] requires one 4:1 adder, two 2:1 adders, and two multipliers,
while converter [6] requires one 3:1 adder, two 2:1 adders, and
two multipliers. Consequently, the newly introduced converter is less
complex and it is faster than state of the art equivalent converters.

Additionally, we also carried out experimental comparison by
describing the proposed converter, the ones [6] and [3] in VHDL,
and implementing them on Xilinx Spartan 3 xa3s200-4-ftg256 FPGA,
with Xilinx ISE 10.1.03. In order to properly evaluate the relations be-
tween these converters, several reverse converters were implemented
for a wide range of values of n, up to an equivalent dynamic range
of 64 bits. The converters performance evaluated in terms of area
(expressed as number of FPGA slices), and delay (ns obtained by
post-place & route static timing analysis) is depicted in Fig. 2 and
Fig. 3, respectively.

As expected, since all the three converters have somehow similar
architectures, all of them present roughly the same area and delay
profile. The downward spikes that all the converters present in both
area and delay graphs occur when n is a power of 2. For this special
values of n the logic synthesizer optimizes the design by replacing
the multipliers with simple shifters, thereby greatly reducing both the
occupied area and the time of conversion. Apart from these spikes,
we can observe some non-monotonic area and delay variations which
are also induced by logic optimizations made by the synthesizer, for
certain n values.

The obtained values suggest that, on average, the proposed con-
verter is capable of performing the reverse conversion 15.8% and
14% faster with 21% and 27% area decrease, when compared to the
reverse converters in [3] and [6], respectively.

Exact values of number of occupied FPGA slices, conversion time,
and average power consumption are presented in Table I, for some
common dynamic ranges. For this particular cases, our converter
consumes on average 8% and 18% less power than the one in [3]
and [6], respectively.

V. CONCLUSIONS

In this paper, we proposed a new reverse converter for the moduli
set {2n + 1, 2n, 2n − 1}. First, we simplified the traditional CRT
in order to obtain a reverse converter that utilizes mod-(2n − 1)
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Table I
IMPLEMENTATION RESULTS: AREA, DELAY, POWER

M n Our Converter [6] [3]

Area (slices) Delay (ps) Power (mW) Area (slices) Delay (ps) Power (mW) Area (slices) Delay (ps) Power (mW)
28 4 28 19857 15 49 31865 16 41 28575 15
216 21 90 36262 19 121 44718 20 126 44999 22
224 129 101 37599 19 136 42329 22 141 41312 24
232 813 251 45543 33 328 53556 37 305 55609 42
248 32769 177 39256 25 218 44896 28 253 47955 34
264 1321123 589 57261 65 749 65295 68 735 71930 95

operations instead of mod-(2n + 1)(2n − 1) and (2n)(2n − 1)
operations required by the converters in [3] and [6], respectively.
Next, we transformed the needed corrective addition of M into a
corrective m3 addition. We then presented a novel low complexity
implementation that does not require the explicit use of modulo
operation in the conversion process.

The performance of the proposed converter is evaluated both theo-
retically, in terms of the required number of arithmetic operations and
experimentally by FPGA implementation. On average, the proposed
converter outperforms the state of the art with about 14%, 21%, and
8% in terms of conversion time, area cost and power consumption,
respectively.
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