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Abstract. To achieve energy savings while maintaining adequate per-
formance, system designers and programmers wish to create the best
possible match between program behavior and the underlying hard-
ware. Well-known current approaches include DVFS and task migrations
in heterogeneous platforms such as big. LITTLE processors. Addition-
ally, processors have been proposed in literature that are able to adapt
(parts of) their organization to the workload. These reconfigurations can
be managed using hardware monitors, profiling and other compile-time
information or a combination of both. Many current solutions are suit-
able for heterogeneous systems, as migration penalties pose a practical
limit to the maximum adaptation frequency, but not for dynamic pro-
cessors that can adapt much more fine-grained.

In this paper, we present two novel concepts to aid these low-penalty
reconfigurable processors - one requiring an ISA extension and one with-
out. Our experimental results show that our approaches enable a dynamic
processor to reduce the energy-delay product by up to 25% and on aver-
age 10% to 18% compared to the best performing static setups.

1 Introduction

With energy utilization as a new critical metric for computing systems, design-
ers have devised numerous ways of configuring systems to run in various per-
formance/power modes. The most notable examples are Dynamic Voltage and
Frequency Scaling (DVFS), Heterogeneous Multicore Processors (HMPs) such
as big.LITTLE, and polymorphic processors such as MorphCore [1]. In turn,
researchers try to match program behavior to processor configurations in order
to minimize both the energy utilization and the performance penalty associated
with low-power configurations.

The time it takes to move an ARM big.LITTLE core in or out of sleep modes
lies in the order of milliseconds and changing DVFS involves a latency of tens
of microseconds. Furthermore, migrating a task to another core will introduce
an additional penalty because of cold resources (cache, predictors) [2]. Because
of these properties, a granularity of context-switch level (10ms) is adequate,
as adapting to the workload any faster will only result in prohibitively large
penalties.
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In contrast to this, program characteristics can change at much higher fre-
quencies [3]. Therefore, designs have been proposed that greatly reduce these
penalties for heterogeneous systems [2,4], and adaptable processors have been
proposed that have very low adaptation penalties [1,5]. These processing plat-
forms have the potential of matching the program in a far more fine-grained way
(in the time domain). However, currently used monitoring-based approaches are
often based on measurement windows that are far too large to drive these high-
frequency adaptations.

This work aims to determine what evaluation frequency is needed to profit
from fine-grained adaptable processors. As sampling performance counters at
this rate will create excessive overhead, we argue that an automatic evalua-
tion circuit is required, moving the evaluation and adaptation control loop into
hardware. Next to sampling performance counters, we propose two additional
auto-adaptation approaches. In one approach, we modified the compiler to insert
instructions in locations that are likely to correspond with a phase boundary.
When encountering this instruction, the processor starts a measurement and
stores the results in a dedicated field in the same instruction word. The second
approach involves a branch target buffer. At every branch, a measurement is
started and results are stored in the buffer. When branching to the same target
address again, the code characteristics have already been measured and can be
retrieved. These two approaches aim to make adaptations more proactive.

We have applied the approaches to the p-VEX dynamic VLIW (very long
instruction word) processor that is able to change configurations with a penalty
of only 5 cycles (a pipeline flush). Results show that the p-VEX processor benefits
from monitoring windows of approximately 75 cycles. Using the auto-adaptation
approaches, the energy consumption of the adaptable processor can be reduced
by 10% to 18% on average compared to the best static setup. The branch-based
proactive approach slightly outperforms window-based solutions.

2 Approach

2.1 Target Processor

In this work, we target the p-VEX processor, an open-source reconfigurable
VLIW processor [6]. It can assign datapaths in pairs to one or multiple threads
or disable them to conserve energy (see Fig. 1). It has a reconfiguration penalty of
5 cycles, because it needs to flush the pipeline. The processor can switch between
a 2, 4, or 8-issue configuration without changing the binary it is executing,
because it utilizes generic binaries [7]. In short, generic binaries work by ensuring
that each VLIW bundle of 8 operations can also be executed in 2 or 4-issue mode,
by removing intra-bundle dependencies (see Fig.2 for a simplified depiction
of this).

VLIW architectures are widely adopted in embedded media and DSP applica-
tions, providing high energy efficiency (for example, in modem, audio and image
processing subsystems in mobile phone SoCs) [8]. Code for VLIWS is statically
scheduled by the compiler, decreasing hardware complexity. Instruction-level
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p-VEX adaptable VLIW processor

Disable datapaths Asssign datapaths
(save power) to other threads
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Fig. 1. Conceptual depiction of the fine-grained reconfigurable VLIW processor tar-
geted in this work. It consists of 8 datapaths that can be split or merged in pairs (i.e.,
each sub-block represents a 2-issue VLIW processor). These can be assigned to a thread
or powered down to conserve power (left-hand side). Multiple blocks can be assigned
to a single thread to exploit as much ILP as possible, or each block can be assigned to
its own thread to exploit thread-level parallelism (right-hand side - the colors represent
different threads).

Original Generic

1 1

mov r2 r3 mov rl = r2
mov r3 rd 9 mov r2 = r3 8
mov rl = r2 mov r3 = r4d

o o

Fig. 2. The p-VEX is able to switch configurations at any time, because the toolchain
makes sure the code can be executed in every possible configuration. It does this by
‘re-sequentializing’ the code after it has been compiled for 8-issue. Each bundle is
reordered such that the dependencies (shown as arrows) are met when executing the
operations one by one.

parallelism (ILP) is explicitly encoded in the binary. This makes it possible to
measure performance of different core configurations, as we will see in Sect. 3.
This makes the chosen VLIW platform very suitable to evaluate the proposed
techniques.

2.2 Proposed Auto-adapting Method

The main idea behind our approach is that program characteristics change during
the course of execution, but characteristics of code itself is fixed. In other words,
the changes are due to the control flow through the different code sections in
the binary. We propose to measure these characteristics once for every code
section, and store this information in such a way that we can easily retrieve it
whenever we revisit that section. For each section, a measurement only needs to
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be performed once for each core type (for HMPs) or configuration (for adaptable
processors), after which the results for both are stored in their own field.! We
are proposing two ways to store the measured code characteristics.

The first approach utilizes a structure that is similar to the branch target
buffer (BTB) that is widely used in modern processors. Normally, the BTB is
used to predict the branch target address early in the pipeline to reduce branch
penalties. Our ‘Branch Target Configuration Buffer’ (BTCB) is a cache that is
indexed by branch target addresses. Whenever a branch occurs, the BTCB is
accessed to determine if there is information about the code that is being jumped
to. If there is not, a measurement is triggered. When the next branch occurs,
the measurement results are stored in the buffer. If there is information in the
buffer, it can be used during the branch to reconfigure the processor to the most
energy efficient configuration.

Our second approach introduces a special instruction we named pchg (phase
change) that is added to the program by the compiler at certain locations that
are likely to correspond with a longer, more stable phase (compared to the
first approach, that operates on a basic block level). When encountering this
instruction, a lookup is performed in a configuration buffer similar to the BTCB.
This lookup can use the least significant bits of the PC (program counter) as
index, or the compiler can assign indexes to code sections and place their index
in the instruction.

(—— ) Core config before pchg Core config before pchg: (——_ ) Core config before pchg:
pehg nfo
0xas0: pehg T |29 31 33
i pehg info: \ i pehg info:
0xas0: pehg \ 0xas0: pehg T 29 31 33
. . | . »
i H /
i Core config after pchg: : , Core config after pehg: H Core config after pehg:
Encounter empty pchg: Encounter next pchg: Encounter
~Enable counters last pehg address -Update info at last pehg address populated pchg last pehg address
-store address in register. last pchg adress register “Reconfigure register:
last pchg register -Disable counters
-Reconfigure

Fig. 3. Overview of the pchg approach when encountering a loop, using the PC address
as configuration buffer index.

During runtime, when the processor encounters this instruction for the first
time, it keeps track of the index and starts the performance counters to evaluate
the program characteristics in that phase. When the measurement has completed
(when encountering the next pchg instruction), the results of the measurement

! On HMPs, measuring performance on one core type does not provide information
about the performance on the other core type (see [9, Sect. 6.3]). To monitor which
core type is the most efficient, the program needs to be migrated back and forth
continuously. The same holds for different configurations of an adaptable processor.
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are written back into the configuration buffer. Each time the processor encoun-
ters the instruction again, the information is available and the processor can use
it to perform a reconfiguration immediately. An overview of the pchg approach
is depicted in Fig.3. Both approaches have their merits. The first approach is
the most fine-grained but may trigger adaptations too often. The second app-
roach requires recompilation of binaries (note that, if this is not possible, old
binaries will still execute correctly but not trigger any adaptations) and results
in runtime overhead because of the added instructions.

3 Implementation

This section discusses the implementation of the different approaches in the
target platform. We start with the elements that the different approaches have
in common, then we discuss the window-based monitoring approach, followed by
the BTCB approach, and concluding with the phase change annotations.

3.1 Common

The target processor has a controller that handles reconfiguration requests.
These requests can be performed via a memory-mapped control register writable
by software (user or OS). Although the platform reduces adaptation overhead to
only 5 cycles, sampling and evaluating performance counters in software intro-
duces additional overhead. At the frequencies we are proposing in this paper,
this overhead becomes very significant. Therefore, we propose to use a hard-
ware circuit to perform the evaluation and reconfiguration request directly. This
section discusses this circuit.

We use a performance counter for each possible p-VEX core configuration.
Using a scheme similar to [10], we increment these counters based on the location
of a VLIW bundle marker. If a bundle is completely filled with 8 operations, the
counter for the 2-issue configuration will increase by 4 and the counter for the
4-issue configuration will increase by 2 (see Fig.4). This scheme is enough to
measure the performance of the configurations. However, we propose to estimate
energy utilization.

We have used the following energy estimation function:

E = Egatic + Edynamic where
Eaynamic = (SY L Egy) + (NOP % Ey,,,) and
Estatic = (CYOQ * Ecch) + (CYC4 * Ecyc4) + (CYSS * Ecyc8)-

Here, SY L is the number of execution syllables (individual operations of a VLIW
bundle), NOP is the number of unfilled syllable slots, and CY C' represents the
number of executed cycles in 2-issue, 4-issue and 8-issue mode. The energy values
depend on the hardware characteristics and should be set by the designer based
on power estimations or measurements. For our evaluation we have used the
values listed in Table 1. The dynamic part of the function is largely the same
between configurations, so we can use a single cost value for each configuration.
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Fig. 4. Measuring the performance for different configurations is done by decoding the
location of the stop bit (VLIW bundle boundaries shown as ;). This bundle requires
4 cycles to execute on the 2-issue configuration and 2 cycles on the 4-issue. The 8-issue
counter is equivalent to the bundle counter.

Table 1. Used values for the energy estimation function in the simulator

Esyl Enop Ecch Ecyc4 Ecyc8
4 1 2 3 4

Instead of multiplying the counter values with the energy estimation values
(which would be expensive in hardware), we propose to use prescaler counters.
The prescaler is increased using the configuration cycle count of the bundle
(as depicted in Fig.4). When a configuration’s prescaler exceeds its cost value,
its energy estimation counter is increased by 1 and the prescaler is reset. The
prescaler only needs enough precision to express the ratios between the cost val-
ues. The final energy estimation counters also needs limited precision, because
(1) we are measuring relatively short sections of code and (2) if two estimations
are very close to each other, both choices are equally suitable. In our current
implementation, we are using 7 bits per configuration for the energy estima-
tion counters. When any one of the counters overflows, all of them are right
shifted by 1 position (the ratios between them stay intact). The required storage
for the configuration buffer entries is 7 x 3 bits (one for each possible p-VEX
configuration).

3.2 Window-Based Monitoring

Window-based monitoring is not a novel approach proposed in this paper but
rather the current art to which we will compare. Using the hardware circuit from
the previous section, our window-based implementation evaluates the energy
estimation using a fixed period. The configuration with the lowest value is for-
warded to the reconfiguration request register, and the counters are reset.
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3.3 BTCB

For this approach we propose to add a buffer, the Branch Target Configuration
Buffer (BTCB) that stores code information about branch targets. In case the
processor already features a BTB, such as the Philips TriMedia VLIW [11],
this structure can be widened to include the desired information.? When the
processor executes a branch (conditional branches are only considered when
taken), it will perform a lookup in the buffer to see if there is an entry with valid
code information. If that is the case, it will perform a core adaptation.

If no such entry is found, the processor will start the performance counters.
A register keeps track of the index of the entry. When a new branch is taken,
this register is used to update the BTCB using the measured values. This can
be done one cycle later than the new branch’s BTCB lookup, to avoid requiring
an additional access port. In our implementation, the BTCB is direct-mapped.
Therefore, any collision (two branch addresses that map to the same BTCB
entry) results in an eviction.

3.4 Phase Change Annotations

In this approach, the compiler identifies locations that are likely to correspond to
a phase. In these locations, it adds an instruction, named pchg (phase change).
The processor performs a lookup in the configuration buffer when encountering
this instruction, instead of at every branch. We have modified the p-VEX com-
piler to add a pchg instruction at the top of every loop and every leaf function.
The compiler can choose to skip loops and functions that it estimates to have a
total execution time lower than a certain threshold.

4 Evaluation

4.1 Experimental Setup

To evaluate our approach, we have used the open source p-VEX polymorphic
processor as discussed in Sect.2.1. We have implemented our pchg approach
in the compiler as discussed in Sect.3 and modeled the monitoring hardware
in the simulator. To measure only the behavior of the processor core, caches
were disabled. Using this setup, the simulator is cycle-accurate regarding a p-
VEX core attached to single-cycle instruction and data memories, as the code is
completely statically scheduled. We will use MiBench [12] and SPECINT 2006
for our measurements. Not all programs could be used, as some are not supported
by the p-VEX toolchain or libraries. We will use the modes listed in Table 2.
Here, the static setups represent the supported p-VEX configuration modes,
without any runtime adaptations. The windowed modes utilize performance

2 Note that in that case, it is no longer indexed by the branch target but rather the
PC of the branch itself; the buffer will return the predicted branch target and we
propose to add the code information for that branch target to the entry.
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Table 2. Evaluated modes of execution.

Type Modes

Static core 2-issue, 4-issue, 8-issue

Dynamic core, windowed | 10,000, 1,000, 500, 250, 100, 75, 50
Dynamic core, pchg pchg-0, pchg-100

Dynamic core, BTCB BTCB-inf, BTCB-2048

monitoring with fixed windows of various sizes to perform core adaptations.
The pchg modes utilize the proposed phase change annotations, with loop anno-
tation thresholds of 0 and 100 cycles. BTCB uses the proposed branch target
configuration buffer. We have evaluated a buffer with infinite entries and one
with 2048 entries.

We will use the Energy-Delay Product (EDP) as metric and normalize to a
static 8-issue configuration which represents the highest performing setup. Note
that, due to the chosen values for the energy estimation function (see Table 1),
the outcome for all measurements cannot be lower than 0.5, because no setup
can execute faster than the 8-issue and the 2-issue energy estimation is 0.5x
that of the 8-issue.

4.2 Results

Overhead. Adding the pchg instructions into the programs results in runtime
overhead. We have measured this overhead by running all 3 version of the binaries
(not annotated, threshold 0, threshold 100 cycles) on a static 2-issue core. The
results are plotted in Fig. 5. On average, the runtime overhead is quite acceptable
at approximately 0.5% on average.

Window sizes. We evaluate windowed monitoring setups using various window
sizes between 50 and 10,000 cycles. The results are plotted in Fig.6. For both
benchmark suites, the disadvantage (overhead) surpasses the advantage of higher
frequency adaptations at approximately 75 cycles. Our measurements reveal that
using a window size of 75 compared to 1000 cycles improves EDP up to 20% (for
specrand and rijndael) and on average 6%, supporting our claim that code
can change very frequently and a fine-grained reconfigurable processor is able to
match these changes more closely.

Runlength thresholds. The energy estimation counters can use a minimum
runlength threshold for a measured code section. If this threshold is not reached
when the measurement is finished (because of a new pchg instruction, or because
of a branch), the core will not perform an adaptation. We have evaluated different
threshold values and the results are depicted in Fig.7. In case the BTCB is
limited in size to 2048 entries, there is a clear optimal threshold for MiBench of
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264 J. Hoozemans et al.

12 .
10}
08| B M E
& o6} | .
w 1 minlé
04} I . L || min32
@ min64
02f || min128
El min256
00
o E =]
El g S
— ~
z 3
O 3
m
(a) Mibench.
12
10}
1Y | SRS _— e
o 06} 4 :
o [ minlé
04 1|C min32
[ min64
02} | [ minl28
El min256
00
o o o0
" = 3
= ~
: :
o
2 o
m
(b) SPEC.

Fig. 7. EDP for different runlength thresholds.

64 instruction bundles and the relative loss in performance (compared to the best
performing setup with an infinite buffer) is in this case 6%. The other setups, as
well as the SPEC benchmarks, are not as strongly influenced by the threshold.
The loss can be attributed mostly to two outliers in the form of basicmath
in MiBench and specrand in SPEC, that may suffer from a high number of
collisions.
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Comparing the approaches. Using the best results for each approach as
reported in previous sections, we have plotted the averages of the different tech-
niques in Fig.8. The dynamic setups perform considerably better compared to
the static cores. The first observation is that the window-75 setup performs
relatively well, achieving 10% and 17% better EDP on average (for SPEC and
MiBench, respectively), compared to the best performing 4-issue static core. The
BTCB approach performs best, with on average 12% and 18% better EDP. The
pchg annotations perform up to 26% and on average 10% (SPEC) and 16%
(MiBench) better than the best performing static core.

8-issue

4-issue

2-issue
window75
pchg-0
pchg-0-min32
pchg-0-min64
pchg-100
BTCB-inf-min64
BTCB-inf-min128
BTCB-2048-min64

EDP

TIIIIL

Fig. 8. EDP for the best performing setups for each approach.

For many programs, ILP variability is quite low, and the EDP for the dynamic
approaches is not significantly lower than that of the best performing static
setup. The largest gains are measured for the program rawcaudio with all
approaches achieving approximately 25% better EDP than static setups. How-
ever, the window-1000 approach performs similarly for this program (indicating
that fine-grained approaches do not provide an advantage) In contrast, rijndael
does not show any improvement when using a 1000 cycle monitoring window,
while our proposed BTCB approach provides 20% lower EDP compared to the
best static core and 8% over the best window approach (75 cycles).

5 Related Work

The polymorphic processor used in our evaluations is discussed in more detail
in [5]. Other dynamic processors that could make use of our proposed scheme
are MorphCore [1], TRIPS [13] and CoreFusion [14]. Rodrigues et al. [15]
propose a dynamic processor that morphs by allowing one core to take con-
trol over a functional unit residing in a neighboring core. They introduce a
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dynamic phase classification scheme that uses a table to store and lookup phases.
Guo et al. [10] built a windowed counter scheme for the p-VEX that predicts
program phases and reconfigures the processor accordingly. Similarly, [16] tries
to predict phases using statistical and table-based predictors. Chi et al. [17] show
the advantage of combining static and dynamic profiling techniques to improve
performance/energy tuning, focusing on disabling some processor resources and
fetch throttling. Our approach uses compiler analysis instead of profiling as the
static component.

In addition to dynamic processors, the scheme can be used by single-ISA
heterogeneous multicore systems [18] such as ARM big.LITTLE processors [19],
particularly, systems that were designed to have low migration penalties such
as [2,4]. For schemes with similar objectives on HMPs see for example [3,9,20].
Related work in autotuning are for example [21,22], where hardware modules
are introduced that perform evaluation of power and performance on a softcore
processor. However, the purpose is to perform dynamic partial reconfiguration,
which is very different from how the p-VEX works.

Sherwood et al. [23] propose a similar technique of using an on-chip buffer to
store detected phases based on branches, but focusing on long, stable phases. In
addition, they evaluate “Dynamic Processor Width Adaptation” similar to the
p-VEX (but supporting only a 2-issue and 8-issue configuration). They perform
a short measurement in both configurations at every phase change, which is one
of the problems that our proposed solution aims to solve (see Sect.2.2).

6 Conclusions

When targeting a highly dynamic processor that has a low reconfiguration
penalty (in this work, the p-VEX with a penalty of 5 cycles), improvements
in energy efficiency can be gained by using very fine-grained automatic adapta-
tions. Evaluations of window-based autotuning of the configuration show that
using a window of 75 cycles results in the best EDP (up to 20% better than
a 1000 cycle window). This confirms that code characteristics can change very
rapidly, and that the dynamic processor is able to follow the changes more closely
than traditional autotuning schemes that use relatively large window sizes. Not
all programs show this highly dynamic behavior.

The proposed approaches open up the possibility of superscalar-based, single-
ISA heterogeneous or adaptable processors with low penalties. Using a window-
based approach is not possible in this case, because it would need continuous
migrations between core types to evaluate the code characteristics, negating
the advantages. Using our proposed methods to store information about code
sections, measurements need to be performed once in every configuration, after
which the information is stored and can be retrieved when revisiting the section.

Overall, the approaches enable the reconfigurable processor to achieve up to
25% and between 10% and 18% on average better EDP compared to the best
static platform. The proposed BTCB approach achieves the best results, slightly
outperforming window-based autotuning.
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