®

Check for
updates

A Low-Cost BRAM-Based Function
Reuse for Configurable Soft-Core
Processors in FPGAs

Pedro H. Exenberger Becker!®™) @, Anderson L. Sartor'®,

Marcelo Brandalero!®, Tiago Trevisan Jost'@®, Stephan Wong?,
Luigi Carro'®), and Antonio C. Beck!

! Institute of Informatics, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil
{phebecker ,alsartor,mbrandalero,ttjost,carro, caco}@inf .ufrgs.br
2 Computer Engineering Laboratory,
Delft University of Technology, Delft, The Netherlands
J.S5.5.M.Wong@tudelft.nl

Abstract. Many modern FPGA-based soft-processor designs must
include dedicated hardware modules to satisfy the requirements of a
wide range of applications. Not seldom they all do not fit in the FPGA
target, so their functionalities must be mapped into the much slower
software domain. However, many complex soft-core processors usually
underuse the available Block RAMs (BRAMs) when comparing to LUTs
and registers. By taking advantage of this fact, we propose a generic
low-cost BRAM-based function reuse mechanism (the BRAM-FR) that
can be easily configured for precise or approximate modes to acceler-
ate execution. The BRAM-FR was implemented in HDL and coupled to
a configurable 4-issue VLIW processor. It was used to optimize differ-
ent applications that use a soft-float library to emulate a Floating-Point
Unit (FPU), and an image processing filter that tolerates a certain level
of error. We show that our technique can accelerate the former by 1.23x
and the latter by 1.52x, with a Reuse Table that fits in the BRAMs (that
would otherwise be idle) of five tested FPGA targets with a marginal
increase in the number of slice registers and LUTs.

Keywords: FPGAs - Soft-core processors - Function reuse
Approximate

1 Introduction

The implementation of soft-core processors in Field-Programmable Gate
Arrays(FPGA) has known benefits such as architecture customization, hardware
acceleration, and obsolescence mitigation [1]. These processors have gained space
in solutions to specific purpose problems: by using modules that can be config-
ured at synthesis time, they combine the ease of high-level programming for end
© Springer International Publishing AG, part of Springer Nature 2018

N. Voros et al. (Eds.): ARC 2018, LNCS 10824, pp. 499-510, 2018.
https://doi.org/10.1007/978-3-319-78890-6_40

500 P. H. Exenberger Becker et al.

users with performance gains in dedicated tasks. Because many of them require
high performance for a wide range of applications, specific hardware like Float-
ing Point Units(FPUs), security and cryptography modules, and coders/decoders
for multimedia commonly surround the processor (e.g., Multiprocessor Systems
on Chip(MPSoCs)) [2]. However, FPGA designs require more area and energy
compared to Application Specific Integrated Circuits(ASICs) [3]. Therefore, in
many cases, the resources available in an FPGA will be a limiting factor. In case
specific hardware cannot fit inside the FPGA, its functionality must be mapped
into the software domain, which is significantly slower.

However, there is one class of resources in FPGAs that is often underuti-
lized when implementing complex logic driven designs: Block Random Access
Memories(BRAMsS). For instance, in the OpenSparc T1 (a single-issue, six-stage
pipeline that supports up to four concurrent threads), BRAMs are not utilized
in the same proportion as registers and Look-Up Tables(LUTs). This comes
from the observation that BRAMs usually present a limited number of ports
(in most cases, two for reading and one for writing). This feature may forbid
many possible uses for BRAMs: for example, the register file in multiple-issue
processors usually need multiple read ports to feed all the available functional
units adequately [4]. Hence, BRAMs are typically used only to implement mod-
erately sized caches, common in the scope of soft-cores running in embedded
environments.

Considering this scenario, this paper proposes BRAM-FR: a function reuse-
based technique that leverages those idle BRAMs, resulting in a low-cost and
generic hardware solution to speed up specific software parts without the need for
implementing dedicated hardware components. Each time a function executes,
its results are dynamically stored in a BRAM Reuse Table (RT) and, when the
same function with the same input arguments is called again, the output can be
directly fetched, avoiding re-calculation and improving performance. Going one
step further, we also show that, by tuning how the RT is accessed, it is possi-
ble to gracefully switch, by using the same hardware structure, from precise to
approximate reuse, which can significantly increase reuse rates and performance
at an expense of output quality in some specific classes of applications. There-
fore, the proposed reuse mechanism exploits BRAMs that would otherwise be
idle to optimize the execution of any given software library, avoiding its ASICs
counterpart implementation, which results in significant savings in design time,
LUTs and registers.

BRAM-FR was coupled to a complex configurable 4-issue Very Long Instruc-
tion Word (VLIW) soft-core at Hardware Description Language (HDL). We
investigate six applications that process a significant amount of Floating Point
(FP) operations in different scenarios, including one where implementing a FPU
in hardware would prevent the inclusion of any new dedicated hardware because
of the limited amount of available resources. In this case, BRAM-FR is used to
optimize a soft-float library that uses integer units to emulate double precision
FP operations. We also evaluate an image processing filter software that toler-
ates a certain error level, showing that one can switch to approximate mode and
trade-off performance and quality.

BRAM-Based Function Reuse for Configurable Processors in FPGAs 501

We demonstrate that an average speedup of 1.23x in the precise mode and
1.52x in the approximate one is achieved when considering an RT that fits in five
different test targets. For targets with larger BRAMS, this number can be as high
as 1.38x and 2.97x, respectively. Meanwhile, the usage of slice registers and slice
LUTSs by our generic reuse mechanism increases by 17% and 3% respectively,
compared to 140% and 48% for an FPU or 11% and 13% for a dedicated Sobel
filter. It is important to note that BRAM-FR is generic, so its cost in registers
and LUTs is fixed regardless the number of different applications that it can
optimize.

The upcoming sections are organized as follows. Related work about different
reuse approaches is covered in Sect. 2. Section 3 discusses the implementation and
the particularities of BRAM-FR. Results are presented and discussed in Sect. 4.
Section 5 states conclusions and future work.

2 Related Work

Many works have discussed reuse of computation [5]. Implementations vary from
software (also known as memoization [6]) to hardware-based solutions, covering
different granularities of code. In [7], dynamic instruction reuse is presented with
execution-driven simulation. The goal is to avoid re-execution of instructions
in an out-of-order processor. In this case, instructions’ source registers are the
inputs, and its result is the output. Authors in [8] proposed the reuse of FP
instructions focusing on multimedia applications, considering only those that
take more than one cycle to execute. Average speedup between 1.08x and 1.22x
is achieved. Despite a hardware scheme being discussed, the results are taken
from an instruction-level simulator.

Going a step further, [9] considers reuse of basic blocks, simulating with
SimpleScalar. The source operands (registers or memory) of each instruction
inside a basic block are considered as part of the input, while the values written to
any register or memory location are considered as part of the output. Their work
shows performance improvements of up to 1.14x. A similar system is proposed at
trace level (a set of sequential basic blocks) in [10]. In this case, less reusability is
found compared to instruction reuse, but more speedup is obtained since larger
chunks of code are involved.

The authors in [11] introduced the concept of dynamic function reuse. In
this case, only pure functions (which do not use global variables and make no
1/0 operations, so the global state of the program is not altered) can be reused,
so that the return value depends only on the function’s input parameters. The
study presented 10% to 67% of reusability on a variety of applications. Finally,
the authors in [12] implemented function reuse with a mechanism that inter-
cepts calls to the dynamically linked math library. This modified library verifies
reusability and returns the respective output value by reuse when available (oth-
erwise, the original math library is called to solve the function).

A few works have explored the concept of approximate function reuse under
distinct names. In [13], fuzzy memoization of FP instructions is presented. Sim-
ilarly to the work developed in [8], only multiplication and division operations

502 P. H. Exenberger Becker et al.

are saved in the table due to their high latency, and multimedia applications are
used for evaluation. Approximation is achieved by discarding some Least Signifi-
cant Bits(LSBs) from the input FP value’s mantissa, causing close enough values
to be grouped into the same table entry. The authors claim that 4x more energy
can be saved by using fuzzy memoization compared to the precise reuse app-
roach. Work in [14] presents the clumsy value cache, an instruction/block-level
reuse technique targeting (GPUs) fragment shaders. The authors investigate the
potential of dropping input bits to increase instruction reuse rates and show that
by doing so is the only viable way to implement block reuse. No speedup results
are presented in the work, but the technique reduces the amount of instruc-
tions executed, on average, by 13.5%. Dropping input bits is also assessed with
approximate function reuse in software [15], where the authors achieve 50% reuse
rate with less than 10% quality degradation in image benchmarks. The authors
in [16] use memoization to accelerate application-specific circuits synthesized
for FPGA using High-Level Synthesis(HLS), and show that it can achieve 20%
energy savings with less than 5% of area overhead.

Differently from previous works, BRAM-FR specifically considers FPGAs
and configurable soft-cores, taking into account their unique components, design
constraints and intrinsic characteristics, such as the fact that BRAMs are usually
underused. It can provide a generic solution for both precise and approximate
computation, delivering a low-cost and flexible technique so the design require-
ments can be achieved with the FPGA at hand. To the best of our knowledge,
this is the first hardware implementation of such technique targeted towards
soft-core processors. Through this, this work provides an in-depth analysis of
the area/resources consumption of the mechanism, and a level of accuracy that
only actual implementations can provide. Our hardware implementation is free
of any abstraction layers, leading to a solution independent of user space or
operating systems, which are unavailable in bare metal designs. By presenting
function reuse in FPGA for configurable soft-core processors, we open new pos-
sibilities for design space exploration and new tradeoffs for HW/SW co-design
in such devices. For instance, low-price FPGAs may regain space in project deci-
sion, since our approach provides performance gains with low overhead in LUTsS,
occupying, instead, BRAMs that would otherwise be idle.

3 Implementation

BRAM-FR is implemented through a function Reuse Unit (RU) composed of
the following:

— Reuse Table (RT): a direct mapped table implemented in BRAM that stores
dynamic information of reusable functions (frequently executed, likely-to-be-
reused pure functions defined at design time). Each entry (Fig.1) contains
the function’s address and the input (or a tag, in case it is approximate, as
it will be further explained) and output contexts. Its size is defined at design
time.

BRAM-Based Function Reuse for Configurable Processors in FPGAs 503

~ Functions Table: a small (one entry per reusable function) and fully asso-
ciative table with static information on the reusable functions. Each entry
contains the function’s address, execution mode (precise or approximate),
number of parameters of the function, and number of the input bits for qual-
ity control (in the case it is configured to be approximate).

— Reuse mechanism: implements the process of accessing the reuse table, which
involves the index calculation (using a hash); checking whether the entry in
the RT is valid or not; and reusing it, if it is the case.

Precise Reuse i Approximate Reuse
v Function|Input Registers|Output Registers § v Functio Ta Output Registers|
Address Values Values Address § Values
Compared Fields to Reuse | Compared Fields to Reuse

Fig. 1. Difference in RT structure between precise and approximate modes.

The RU is generic (can potentially be used with any application contain-
ing pure functions) and can switch between modes at runtime to perform both
precise and approximate reuse.

3.1 Baseline Processor

BRAM-FR was coupled to the p-VEX VLIW soft-core processor [17] (a 32-bit
five-stage pipeline, compatible with the VEX Instruction Set Architecture (ISA)
[18], described in VHDL and configurable at design time), even though there are
no restrictions whatsoever that would prevent its implementation to any other
soft-core processor. In this work, we used the default 4-issue version consisting
of 4 ALUs, 2 multipliers, 1 memory unit, and 1 branch unit (as shown in Fig. 2)
and 8 + 8 KB instruction and data caches. The VEX ISA defines that argument
and return values for function calls are passed through registers R3 to R10.
If more than eight input or output registers are required, the memory is used.
BRAM-FR considers only the first case (up to eight parameters) since we have
found that the number of functions that do not fit in this case is not significant.

3.2 Reuse Mechanism

Figure 2 details the p-VEX organization integrated with the RU. Three phases
are highlighted and correspond to (1) how the RU collects reuse information,
(2) verifies and stores reuse information, (3) and applies reuse (when possible).
Precise and approximate reuse use the very same hardware structure and differ
only in the way they access the RT during Phase 2. Algorithm 1 details the three
phases above implemented by the RU, which will be further discussed next.

Phase 1: When the pipeline decodes a call, the function and return addresses
are captured by the RU, which checks in the Functions Table if the function is
defined as reusable (I. 3-5 in Algorithm 1). If so, it also fetches reuse information

504 P. H. Exenberger Becker et al.

7 . . Function Return
% FRU Control Information CALL RETURN 4\ qyecs Address
- P 7zl o
VA [sranch Y @ WRITE Reuse Unit -=d
5> DECODE — > Back [~
ALU RT
F MUL
E %> DECODE [— MUL N \\RITE] ‘
ALU BACK Read Registers| | Write Registers
T H
C . MUL WRITE
H f—4> DECODE MUL M Back
ALU g
Ly, Register Flle
MEMORY .
Lol econe] | e
ALU BACK
TT
T |
1 |
[+—Next PCJ @
Program Counter »
[+—Return Addre:
Reuse Matclr

Fig. 2. Organization of a 4-issue p-VEX with a Reuse Unit.

(i.e., which input/output registers, whether the function was flagged for precise
or approximate reuse, and the number of input bits) and goes to Phase 2. If the
function is not reusable, the processor continues its regular operation.

Phase 2: In this phase, the current function’s input parameters (the input con-
text ctx) are collected by accessing the register file. The behaviour depends on
whether the function was flagged for precise or approximate reuse in the Func-
tions Table. In the former case, the RU generates a hash key (I. 11-12) by
XORing every 16-bit of data in the current input context and function address,
similarly to the approach in [12]. The resulting key’s LSBs are used as the RT
index to fetch a table entry (I. 13-15), which contains the fields shown in Fig. 1.
In case the fetched entry is valid, the entry’s function address and input param-
eters are compared with those of the current call (I. 22-23). If the comparisons
match, there is an RT hit and phase (3) starts.

If the function was flagged for approximate reuse, the process of generating
the hash key is almost the same, with one difference: some LSBs (given by the
fun.drop field) is dropped before computing the hash to group close enough values
(I. 8-9). With the resulting key generated, an entry in the RT is fetched (see
Fig.1). Then, the current call’s function address and hash key are compared
against the function address and hash key (tag) of the fetched RT entry (L
29-30). The trade-off between reuse rates and quality can be easily tuned by
changing the number of input bits to be discarded (I. 9).

For both cases (precise or approximate), a reuse miss happens if the valid
bit of the current entry is not set or if the function address and inputs/tag do
not match. In these cases, the RU waits for the function to execute regularly
and then, with the input context (or hash value, if approximate) and outputs
captured from the register file, stores a new entry (if the valid bit was not set,
I. 16-21) or replace an entry in the RT (in case of data mismatch, I. 26-28 and
33-35). Therefore, the RT is dynamically filled as the program executes.

It is important to highlight that the same hardware, controlled only by a small
set of multiplexers, and the same table (but with a slight change in how its data

BRAM-Based Function Reuse for Configurable Processors in FPGAs 505

is structured) are used for both precise and approximate implementations. The
way how RU is accessed from the Functions Table is what defines the mode, so
both are available during the execution.

Phase 3: A match was detected in the previous phase, so the result of the whole
function is available in the fetched RT entry. Therefore, the RU writes it to the
register file, skipping the actual execution (I. 24 and 31), and notifies the reuse
detection to the processor. Then, the instructions in the pipeline are flushed, and
the return address (captured by the RU in Phase 1) is written to the program
counter (I. 25 and 32). Since reusability can be checked before the pipeline
commits any instruction, no rollback mechanism is required.

The register file was modified with the addition of extra reading ports (with
marginal area impact, as our results will show). With this modification, there are
no stalls in the pipeline when fetching the input parameters or the output values.
The number of additional ports can be tuned according to the target functions:
the more parameters, the more ports are needed to ensure no pipeline stalls
(in our implementation, four reading ports were added). As already mentioned,
when the reuse is applied, the pipeline is flushed, and the result of the function
is written to the register file. The RU exploits the fact that the write ports of
the register file would be idle due to the pipeline flush and uses them to perform
this operation, so no additional write ports are necessary.

Algorithm 1. Algorithm Implemented by the Reuse Unit.

Require: Function address (addr), return 16: if e.valid = false then
address (raddr), function context (ctx). 17: octr «— Execute(fun)
18: if fun.precise then

1: while program is executing do 19: RT.update(fun,i,ictz, octx)
2: if function CALL instruction then 20: else if fun.appror then
3: fun «— FunctionsTable.srch(addr) 21: RT.update(fun,1i, h, octx)
4: if fun.reusable=false then 22: else if fun.precise then
5: continue 23: if e.addr=addr and e.ictx=ictx
6: if fun.precise then then
7 ictx «— ctx 24: ReuseFunction(fun,e)
8: else if fun.approx then 25: WritePC(raddr)
9: ictr «— ctx, dropping fun.drop 26: else

LSBs 27: octr «— Ezxecute(fun)
10: h 0 28: RT.update(fun,i,ictz, octx)
11: foreach 16-bit words w in 29: else if fun.approximate then

{addr,ictz} do 30: if e.addr=addr and e.h=h then
12: h—h®w 31: ReuseFunction(fun,e)
13: n « log, (RT.size) 32: WritePC (raddr)
14: i<« h[n —1:0] 33: else
15: e « RT.fetch(i) 34: octr «— Execute(fun)
35: RT.update(fun, i, h, octx)

4 Results

4.1 Methodology

The soft-float library (case-study for precise function reuse), which emulates
FP operations using integer hardware, was statically linked at compile time. We

506 P. H. Exenberger Becker et al.

considered the four basic operations (add, sub, mult, div) in double FP precision
as the reusable functions and evaluated the speedup of six benchmarks: five from
the WCET benchmark suite [19]: Ims, ludcmp, minver, qurt, st; and one from
the Powerstone suite [20]: fir. The sobel image-processing filter (case-study for
approximate function reuse) from the AxBench suite [21] was evaluated using
30 distinct images. In this case, only the convolutional kernel was considered as
reusable. The benchmarks were compiled with LLVM [22] using the -O3 flag and
cycle-accurate simulations were carried out using Mentor Graphics Modelsim 10.
To measure performance, we compared the execution cycles of the benchmarks
on p-VEX with and without the RU (either in precise or approximate mode),
experimenting with RT sizes varying from two to 32K lines. We collected FPGA
resource usage and timing information after synthesizing and mapping the VHDL
of the processor to five FPGA targets from Virtex 4 (xc4vlx40; xcdvsxb5), 5
(xchvsx50t; xcbvsx95t), and 7 (xcTvx690t) Series, optimizing for area and using
Xilinx ISE 14.7. Adding BRAM-FR to the design caused no changes in the
critical path. Finally, the error metric used to assess the sobel benchmark’s
output quality was the root-mean-squared (RMS) pixel difference between the
original and approximated computations, normalized to the range 0-100%, as
defined in the AxBench suite [21].

4.2 Performance

Precise Reuse - Soft-Float: Figure 3 presents the reusability of the soft-float
functions. Due to space limitations, we show only a subset of all RT sizes evalu-
ated, including extrapolated results for the best case (when the RT is increased
to a point when no replacements take place).

Grouped by benchmark, each column depicts the stacked RT hit rate of
add, sub, mul, and div functions, according to the number of RT lines (x-axis).
Naturally, reusability increases with the RT size, since more reuse information
is available so a match attempt succeeds. Cases with significant reusability of
div (e.g., fir) and mul (e.g., Ims and minver) have more potential for improv-
ing performance, since these operations take longer than add or sub. For these

80% I
|] mdi
60% add sub mul div
Function I I I
40% Reusability] =
0
- -m-m
20% ikl
il i
o DAl (i sl i
[= o ol o Q ol o o ol o Q ol O o ol O Qo
CR¥¥ME CR¥¥ME CS¥¥MEZ CS¥¥YMZ CR¥¥MEZ CR¥¥XE
=a 8 2838 =838 Za38 2838 =a 8
27 7] 27 7 27 7
23 i 23 L 23 0
M A M @A M M
Ims ludemp fir st qurt minver

Fig. 3. Reusability of FP functions.

BRAM-Based Function Reuse for Configurable Processors in FPGAs 507

2.50
2.00
=%
2 150
8 1.00
<050
0.00
ludemp fir qurt minver
RT Lines m32 256 4K u 16K 32K Best Case

Fig. 4. Speedup for different RT sizes compared to the baseline.

benchmarks, reusability can vary from almost none (st with 32 lines) to more
than 80% (fir in the best case).

Figure4 depicts the speedup for different RT sizes, also grouped by bench-
mark. For the largest RT tested (32K lines) significant speedups are achieved: in
ludemp (1.21x), Ims (1.28x) and fir (1.86x); and even in the worst cases (min-
ver, 1.12x and st, 1.13x). When the RT is reduced to only 32 lines, five out of
six benchmarks still improve by more than 1.1x (the only exception is st, given
its small reuse rates). Also, for most benchmarks, note how a 16K or even a
4K-line RT already improves performance near to the theoretical maximum (the
best case) of the technique. Comparing to a 4K-line RT, for example, the best
case brings no improvement in Jludcmp, and increases qurt and Ims performance
only marginally, by 2% and 7%, respectively. This fact highlights that function
arguments very often repeat during execution and present limited variability.
The exception is fir, in which the reuse rates increase significantly with larger
table sizes. In the best case, its performance improves by 2.44x compared to the
baseline (and 67% more than the 4K-line RT).

Considering the geomean speedup for the six benchmarks, considerable gains
in performance can be achieved with low resource overhead. For example, 32-
line and 256-line RTs can provide speedups of 1.12x and 1.18x, respectively. A
4K-line RT, which still fits in all five tested FPGAs (which will be discussed in
subsection Resource Usage) provides speedups of 1.23x.

Therefore, even resource-limited FPGAs can benefit from the BRAM-FR.
When it comes to high-end FPGA, the available BRAMs can be used to increase
even more the RT size and consequently get closer to the maximum speedup
possible for applications with high reusability rates.

Approximate Reuse - Sobel Image Filter: Figure 5 shows geomean speedup
and error rate considering 30 distinct images, in an approximation scenario where
4 LSBs are dropped from the inputs values in the sobel benchmark. Modifying
this value leads to distinct performance-error trade-offs, so we constrained our-
selves to only one representative spot in the vast design space available, chosen
after comprehensive experimentation.

The great benefit from approximate reuse is that speedup is achieved more
easily than with precise reuse. Note that a 2-line RT, in this case, improves
performance by 1.33x, with only 3% error. Error remains under 10% (common
error threshold for approximate sobel benchmark [21]) for every table up to 4K

508 P. H. Exenberger Becker et al.

3.00 20%

2.50 .

mmmmm Speedup eee+e¢ Error . 15%
2.00
1.50 10%
1.00

5%

0.50
0.00 0%

128 256 512 1K 2K 4K 8K 16K 32K
RT Lines

Geomean Speedup
Geomean Image
Error

Fig. 5. Speedup for approximate sobel image filter.

lines, where 8% error meets 1.52x speedup. Since higher speedups mean that
more reuse was possible, it also means that more errors will appear (since exact
values will be exchanged for approximated ones). If higher error rates can be
tolerated, the speedup can reach 2.25x with 14% of error (for a 16K line RT),
or even 2.97x with 17% of error (32K line RT).

Resource Usage: We collected the usage of BRAM, Slice Registers, and Slice
LUTSs in four scenarios: baseline (p-VEX), p-VEX with RU, p-VEX with a dou-
ble precision FPU [23], and p-VEX with a hardware sobel filter. They all were
synthesized following the methodology explained before, with exception of the
hardware implementation of Sobel, which data was taken from [24], covering Vir-
tex 5 FPGAs only. Table1 presents the comparison in the four scenarios with
distinct targets using the largest RT that fits in each design. For example, the
Virtex 5 - xchvsxb0t supports a maximum of 16K lines. Smaller tables, yet mea-
sured, were omitted. Although each table line for approximate reuse needs less
information (a tag instead of all the input values, see Fig. 1) the results consider
the size needed for the implementation of both modes (i.e., it considers the size
for precise reuse), since it is possible to switch between them at run-time.

All targets can support an RT with at least 4K lines. In the Virtex 4 FPGA
(the smallest available device), using the 4-issue p-VEX processor with an FPU
would occupy nearly all FPGA resources (97% of the available Slice LUTSs) and

Table 1. Usage of resources for different designs and targets

Series | Model Design Used Slice | % Used Slice Used Slice | % Used Slice | Used | % Used
Registers Registers LUTs LUTs BRAM | BRAM
= & p-Vex 3,015 0% 14,675 3% 16 1%
£ «f p-Vex + RU (32K lines) 3,494 0% 15,176 4% 242 16%
> < p-Vex + FPU 7,275 1% 19,926 5% 16 1%
p-Vex 3,012 5% 15,200 26% 16 7%
4\9‘7\ p-Vex + RU (32K lines) 3,516 6% 15,717 27% 242 99%
- .\;:* p-Vex + FPU 7,061 12% 23,349 40% 16 7%
5 p-Vex + Sobel 3,351 6% 17,127 29% 16 7%
p-Vex 3,012 9% 15,200 47% 16 12%
%pQ‘ p-Vex + RU (16K lines) 3,516 11% 15,717 48% 129 98%
*;?\ p-Vex + FPU 7,061 22% 23,349 72% 16 12%
p-Vex + Sobel 3,351 10% 17,127 52% 16 12%
o [p-Vex 3,008 6% 23,986 49% 32 10%
- <& [p-Vex+ RU (16K lines) 3,511 7% 24,820 50% 258 81%
% & p-Vex + FPU 7,403 15% 35,888 73% 32 10%
-;—: N p-Vex 3,008 8% 23,986 65% 32 33%
& |p-Vex + RU (4K lines) 3,511 10% 24,820 67% 89 93%
+ p-Vex + FPU 7,403 20% 35,888 97% 32 33%

BRAM-Based Function Reuse for Configurable Processors in FPGAs 509

restrict the addition of other hardware accelerators or even the modification of
the issue-width (e.g., increase to the 8-issue version). As the original p-VEX uses
a minimal amount of the available BRAMs, the RT can occupy the remaining
ones as much as possible, leveraging these idle components which neither the
FPU nor the Sobel hardware could exploit. In some cases, even an RT larger
than 3K lines could be used (e.g., it only occupies 15% of the Virtex 7’s BRAMS).

As for the logic resources that are usually scarce (slice registers and LUTSs),
we introduce a small overhead of 17% and 3%, respectively. In contrast, adding
an FPU to p-VEX more than doubles the number of registers (140% overhead)
and significantly increases LUTs usage (48%). The sobel hardware, likewise,
increases by 11% the slice registers and 13% the slice LUTs. However, while
these units are application-specific and are incremental in terms of resources
(i.e. more LUTs and registers are necessary for each new application-specific
hardware that is integrated), the overhead in LUTs and registers of our generic
design is fixed, being only the RT variable (and thus BRAM usage). Therefore,
costs can be amortized as the BRAM-FR encompasses more system features,
enabling performance gains when any new robust hardware module does not fit.

Therefore, BRAM-FR can benefit both low and high-end FPGAs: in the
former, the reuse mechanism allows performance improvements with minimum
hardware overhead. In the latter, not only more hardware accelerators but also
extra processors could be integrated into the system. For instance, three cores
of the p-VEX processor could be instantiated alongside the RU in the Virtex 5 -
xcHvsx95t. This would not be possible if a FPU was implemented in hardware.

5 Conclusions and Future Work

This work proposed a new function reuse approach as an alternative to logic-
costly specific hardware in soft-core designs. We showed that it is possible to
improve software libraries that substitute specialized hardware, using highly
available BRAMSs. Our scheme is able to perform precise and approximate reuse
using much less logic than specific hardware, making low-cost targets to regain
space in the design space. As future work, we will consider a multi-core environ-
ment, providing reusability for multiple programs at similar hardware cost.

Acknowledgments. This work was supported in part by CNPq, CAPES and
FAPERGS.

References

1. Fletcher, B.H.: FPGA embedded processors. In: Embedded Systems Conference.
p. 18 (2005)

2. Beck, A.C.S., Lisboa, C.A.L., Carro, L.: Adaptable Embedded Systems. Springer,
New York (2012). Springer-Link: Biicher

3. Kuon, I., Rose, J.: Measuring the gap between FPGAs and ASICs. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 26(2), 203-2015 (2007)

510

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

P. H. Exenberger Becker et al.

Xilinx, Inc.: 7 Series FPGAs Memory Resources User Guide (UG473) (2016)
Sastry, S.S., Bodik, R., Smith, J.E.: Characterizing coarse-grained reuse of com-
putation. In: Feedback Directed and Dynamic Optimization, pp. 16-18 (2000)
Hall, M., McNamee, J.P.: Improving software performance with automatic memo-
ization. Johns Hopkins APL Tech. Dig. 18(2), 255 (1997)

Sodani, A., Sohi, G.S.: Dynamic instruction reuse. In: Proceedings of 24th Sym-
posium on Computer Architecture (ISCA), vol. 25, no. 2, pp. 194-205 (1997)
Citron, D., Feitelson, D., Rudolph, L.: Accelerating multi-media processing by
implementing memoing in multiplication and division units. ACM SIGPLAN Not.
33(11), 252-261 (1998)

Huang, J., Lilja, D.J.: Exploiting basic block value locality with block reuse. In:
Proceeedings of Symposium on High-Performance Computer Architecture, pp.
106-114. IEEE (1999)

Gonzélez, A., Tubella, J., Molina, C.: Trace-level reuse. In: International Confer-
ence on Parallel Processing, pp. 30-37. IEEE (1999)

Kavi, K.M., Chen, P.: Dynamic function result reuse. In: Proceedings of Conference
on Advanced Computing, pp. 17-20 (2003)

Suresh, A., Swamy, B.N., Rohou, E., Seznec, A.: Intercepting functions for mem-
oization: a case study using transcendental functions. ACM Trans. Archit. Code
Optim. (TACO) 12(2), 18 (2015)

Alvarez, C., Corbal, J., Valero, M.: Fuzzy memoization for floating-point multime-
dia applications. IEEE Trans. Comput. 54(7), 922-927 (2005)

Keramidas, G., Kokkala, C., Stamoulis, I.: Clumsy value cache: an approxi-
mate memoization technique for mobile GPU fragment shaders. In: Workshop On
Approximate Computing, P. 6 (2015)

Brandalero, M., da Silveira, L.A., Souza, J.D., Beck, A.C.S.: Accelerating error-
tolerant applications with approximate function reuse. Sci. Comput. Program.
(2017)

Sinha, S., Zhang, W.: Low-power FPGA design using memoization-based approxi-
mate computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(8), 2665—
2678 (2016)

Wong, S., van As, T., Brown, G.: p-VEX: a reconfigurable and extensible softcore
VLIW processor. In: Conference on Field-Programmable Technology, pp. 369-372
(2008)

Hewlett-Packard Laboratories: VEX Toolchain (2009)

Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The Malardalen WCET bench-
marks: past, present and future. In: WCET, vol. 15, pp. 136-146 (2010)

Scott, J., Lee, L.H., Arends, J., Moyer, B.: Designing the low-power M*CORE™
architecture. In: Power Driven Microarchitecture Workshop, pp. 145-150 (1998)
Yazdanbakhsh, A., Mahajan, D., Esmaeilzadeh, H., Lotfi-Kamran, P.: AxBench: a
multiplatform benchmark suite for approximate computing. IEEE Des. Test 34(2),
60-68 (2017)

Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of Symposium Code Generation and Opti-
mization: Feedback-Directed and Runtime Optimization, p. 75. IEEE Computer
Society (2004)

Lungdren, D.: FPU Double VHDL (2014)

Chaple, G., Daruwala, R.D.: Design of Sobel operator based image edge detection
algorithm on FPGA. In: International Conference on Communications and Signal
Processing, pp. 788-792. IEEE (2014)

