
cQASM v1.0
Towards a Common Quantum Assembly Language

N. Khammassi1, G.G. Guerreschi2, I. Ashraf1, J. W. Hogaboam2,
C. G. Almudever1, K. Bertels1

1 QuTech, Delft University of Technology, The Netherlands
2 Intel Labs, USA

Abstract— The quantum assembly language (QASM) is a
popular intermediate representation used in many quantum
compilation and simulation tools to describe quantum circuits.
Currently, multiple different dialects of QASM are used in
different quantum computing tools. This makes the interaction
between those tools tedious and time-consuming due to the
need for translators between theses different syntaxes. Beside
requiring a multitude of translators, the translation process
exposes the constant risk of loosing information due to the
potential incompatibilities between the different dialects.
Moreover, several tools introduce details of specific target
hardware or qubit technologies within the QASM syntax
and prevent porting the code to other hardwares. In this
paper, we propose a common QASM syntax definition, named
cQASM, which aims to abstract away qubit technology details
and guarantee the interoperability between all the quantum
compilation and simulation tools supporting this standard. Our
vision is to enable an extensive quantum computing toolbox
shared by all the quantum computing community.

I. INTRODUCTION

Building quantum computers requires implementing
multiple functional layers. At the most abstract level,
algorithm designers formulate quantum algorithms in a high-
level language that requires one or more compilation steps to
translate the algorithm description into a set of instructions
that can be executed by quantum hardware. Compilers
can internally use different intermediate representations to,
for example, perform optimizations, instruction scheduling
or qubits mapping, but it is desirable, for portability and
flexibility, that the outcome of the compilation is a hardware-
independent quantum assembly code (QASM). An additional
translation process, possibly including further compilation
and optimization steps, is then used to generate the hardware-
specific micro-code. The micro-code can then be executed on
the target micro-architecture which provides the hardware-
based control logic needed to execute the instructions on the
target quantum processor.

The quantum assembly language (QASM) is a hardware-
independent instruction set which aims to provide a compact
and expressive intermediate representation to describe

quantum circuits. This representation is intended to be
used not only by quantum compilers, but also quantum
computer simulators, reversible circuit synthesis frameworks
or microcode synthesis backends and other tools that needs
to represent quantum circuits in a straightforward way.
Algorithm designers can also benefit from a comprehensive
QASM during the design and test of relatively small quantum
circuits, algorithms and protocols.

QASM first appeared in 2005 in a set of software tools
from MIT [1] and in [2]. Since then, many different custom
QASM dialects have been defined and used by various
tools either as input or as an intermediate quantum circuit
representation. This makes the interaction between the
different tools difficult and time-consuming since it requires
translations between different dialects with the constant risk
of loosing information in the translation process when two
dialects do not offer the same features or have different
focus. With this paper, we propose the first version of a
common QASM language (cQASM) to help bringing the
quantum computing community together and trigger the effort
of a standardized QASM language. Our goal is to provide
a common ground for all the tools that have been or will
be developed to compile, simulate and ultimately execute
quantum circuits.

In the definition of the cQASM syntax, we took particular
care to include the user experiences and expectations from
different parts of the quantum community. We discussed and
included ways to describe the recent variational quantum
algorithms and sampling tasks proposed for pre-error corrected
devices, while we also defined compact commands to express
active feedforward and error-correction related instructions.
We expect that novel algorithmic solutions and the continuous
progress in hardware architectures will continue to drive the
development and adoption of new features.

Defining a common QASM guarantees the compatibility
of the different tools and offers access to a large toolbox that
includes tools for quantum compilation and simulation for

ar
X

iv
:1

80
5.

09
60

7v
1

 [
qu

an
t-

ph
]

 2
4

M
ay

 2
01

8

Fig. 1: Compilation of Quantum Algorithms : an algorithm written in high-level language can be optimized and compiled into
a common technology-independent cQASM code then into hardware specific executable QASM (eQASM) code.

the quantum computing community.

The work is organized as follows: in the next section we
give a brief overview of some QASM variants discussed in
the relevant literature of the past few years, while in section
III we present the cQASM language. Its syntax definition is
organized by topic according to:

• Qubit Definition and Addressing
• Measurement Register
• Quantum Gates
• Quantum Circuit Definition
In section IV, we introduce special features that are optional

extensions of the cQASM syntax addressing the requirements
of specialized, but important, quantum computing tools or
algorithms. Finally, Section V and IV give an overview of
future extensions and draw our conclusions.

II. RELATED WORKS

Over the last few years, several QASM variants have been
defined and used in various quantum computing tools. The

initial version of QASM was first introduced by Nielsen and
Chuang to make the required illustrations for their book [3]
and by Andrew Cross through a set of tools in [1]. QASM is
now being used in different tools as the underlying quantum
assembly language layer that translates the high level quantum
algorithms in low level quantum operations which can then be
executed either on quantum simulation platforms such as QX
[4] and QHipster [5] or on actual quantum processors such as
demonstrated by QuTech and Intel on Superconducting and Si-
Spin qubits [6] or by IBM on the quantum experience platform
[7]. Different QASM dialects has been used by the different
compilation and simulation tools such as the QASM defined
by [4] as input for QX or the OpenQASM defined by [8].

As visually illustrated in Fig. 1, we define cQASM as a
hardware-independent language that is produced by quantum
compilers as output of the translation process from a code
written in high-level language into a quantum assembly code.
Examples of compilation tools are ScaffCC [9], ProjectQ
[10], LIQUi |〉 [11] and OpenQL [12]. These compilers

1 version 1.0
2 # define a quantum register of 2 qubits
3 qubits 2
4

5 # create a Bell pair via a Hadamard rotation
6 h q[0]
7 # followed by a CNOT gate
8 # q[0]: control qubit, q[1]: target qubit
9 cnot q[0],q[1]

10

11 # measure both qubits to test correlations
12 measure q[0]
13 measure q[1]

Code Example 1: Creation of Bell state.

can include a back-end pass to generate the technology-
independent cQASM.

The cQASM instructions can then be used as input to
a quantum computer simulator or as input to a lower-level
compiler which generates hardware-specific instructions, or
executable QASM (eQASM), suitable for execution by the
target quantum processor. As a concrete example, the OpenQL
compiler developed at QuTech supports multiple backends and
generates different types of eQASM, such as the QuMis code
introduced in [13] and executable on a dedicated microarchi-
tecture controlling superconducting qubits.

III. QASM DEFINITION

A. Case sensitivity and Comments

The cQASM syntax is not case-sensitive, i.e. upper case
letters are equivalent to lower case ones. To make the code
more readable, the quantum programmer can add comments
in his code. Comments start with “#” and can be added either
in a separate line or at the end of a line containing code as
shown in Code Example 1.

B. Qubit Definition

1) Qubit Register
Qubits can be grouped into a simple quantum register and

addressed by their index. A qubits register can be created by
specifying the number of qubits as shown in Code Example 1
at Line 2.

2) Qubit Addressing
Once the number of qubits is defined, the qubits can be

addressed individually through its default identifier “q[i]”
where “i” is the identifier of the target qubit: if the quantum
register contains N qubits, then i ∈ {0, . . . , N − 1} and the
qubit identifiers are q[0], q[1], . . . , q[N − 1]. As an example,
observe line 5 of Code Example 1 where the Hadamard gate
is applied to qubit 0.

3) Measurement Register
By default, a measurement register (binary register) is

associated to the quantum register. It is mainly used to store
the outcome of measurements: after measuring a qubit q[0],
the result of the measurement is automatically stored into bit
b[0]. The outcome b[0] can be the final result of some quantum
computation or can be used to apply binary-controlled gates
to other qubits.

1 version 1.0
2 # define a quantum register of 3 qubits
3 qubits 3
4

5 # rename qubits
6 map q[0],data
7 map q[1],ancilla
8 map q[2],output
9

10 # address qubits via their names
11 prep_z data
12 prep_z ancilla
13 prep_z output
14 cnot data,ancilla
15 cnot data,extra
16

17 # rename classical bit
18 map b[1],error_syndrome
19 measure ancilla
20

21 #apply binary controlled Pauli-X gate
22 c-x error_syndrome,q[2]

Code Example 2: Renaming qubits and measurement
outcomes and using binary controlled operations.

4) Naming Qubits and Measurement Outcomes
In order to give a meaningful name to each qubit and

make the quantum program more readable, it is possible to
name qubits using the keyword “map”. The instruction ‘map”
renames a single qubit according to its two arguments: the
first is the current qubit identifier, the second is the additional
name. The syntax is presented at line 5 of Code Example 2 in
which qubit q[0] is named “data” according to the role played
in the algorithm. Once the qubit has been renamed, “data” is
equivalent to “q[0]” and can be used interchangeably.

Similarly to the qubits, the measurement bits can be re-
named using the “map” instruction to improve code readabil-
ity. In Code Example 2, qubit q[1] is renamed “ancilla”. When
q[1] is measured, the outcome is stored by default in b[1]. Such
bit was previously renamed as “error syndrome” (at line 6).
Its value can be used to (classically) control a Pauli-X gate
which we apply to q[2] at the end of the circuit.

C. Quantum Gates

The QASM syntax supports an overcomplete, universal set
of quantum gates which includes single-, two- and three-qubits
gates, as listed in TABLE I. It provides support to commonly
adopted controlled gates such as CNOT and Toffoli gates.
The syntax is common to all gates: the QASM instruction
is followed by a space and a list of arguments separated by
commas. The first arguments are the identifiers of the qubits
involved in the gate (one identifier for single-qubit gates,
two for two-qubit gates, . . .). Certain gates require additional
parameters: for example, single-qubit arbitrary rotations need
to specify the value in radiant of the rotation angle.

The set of gates is extended by allowing each gate to
be binary-controlled. By prepending “c-” to the gate name,
the quantum operation is executed if and only if a specific
measurement outcome is equal to 1. In this case, the first
parameter after the instruction name will not be the qubit
identifier, but the identifier of the classical bit. Any gate
defined in TABLE I can be extended in the way just described.

TABLE I: Supported Quantum Gates

Quantum
Gate Description Example

I Identity i q[2]
H Hadamard h q[0]
X Pauli-X x q[1]
Y Pauli-Y y q[3]
Z Pauli-Z z q[7]
Rx Arbitrary x-rotation rx q[0], 3.14
Ry Arbitrary y-rotation ry q[3], 3.14
Rz Arbitrary z-rotation rz q[2], 0.71
X90 X90 x90 q[1]
Y90 Y90 y90 q[0]
mX90 mX90 mx90 q[1]
mY90 mY90 my90 q[0]
S Phase s q[6]
Sdag Phase dagger sdag q[6]
T T t q[1]
Tdag T dagger tdag q[3]
CNOT CNOT cnot q[0],q[1]

Toffoli Toffoli toffoli
q[3],q[5],q[7]

CZ CPHASE cz q[1],q[2]
SWAP Swap swap q[0],q[3]

CRK Controlled Phase Shift
(π/2k) crk q[0],q[1],k

CR Controlled Phase Shift
(arbitrary angle) cr q[0],q[1],angle

c-X Binary-Controlled X c-x b[0],q[2]
c-Z Binary-Controlled Z c-z b[1],q[2]

TABLE II: Supported State Preparation and Measurement

Instruction Description Example
prep x State preparation in x basis prep x q[0]
prep y State preparation in y basis prep y q[1]
prep z State preparation in z basis prep z q[1]
measure x Measurement in x basis measure x q[0]
measure y Measurement in y basis measure y q[1]
measure z ,
measure Measurement in z basis measure q[2]

measure all Measurement of all qubits in
z basis measure all

measure parity Measurement of the product
of Pauli matrices

measure parity
q[0],x,q[2],z

D. Measurements

1) Partial Measurement (Single Qubit)
As shown in the previous examples, each qubit can be mea-

sured in the z-basis individually using the keyword “measure”
followed by the target qubit, for instance “measure q[0]”. By
default, the qubit is measured in the z-basis, the outcome is
binary (either +1 or -1) and the probability of each of the two
possibility is related to the probability of qubit q[0] being in
state |0〉 or |1〉 respectively. At the end of the measurement,
the state of qubit q[0] collapses into the corresponding z-
basis state. Single qubit measurement in all three basis (x-
, y-, z-basis) are allowed by using the dedicated instruction
measure_x, measure_y or measure_z.

2) Register Measurement (All Qubits)
Alternatively, one can measure the entire quantum register at

once using same keyword measure_all without specifying
any target qubit.

1 h q[0]
2 measure_z q[0] # measurement outcome in b0
3 # simple binary-contolled gate
4 c-x b[0],q[1] # apply Pauli-X to q[1] if b[0]=1
5 measure_z q[2]
6 measure_z q[3]
7 measure_z q[4]
8 # multi-binary controlled gate
9 c-x b[2],b[3],b[4],q[5] # apply pauli-x to q4 if b2=1

and b3=1 and b4=1
10 # binary controlled gate using an arbitrary mask :
11 # we want to apply a Pauli-X to q[4] if b[0]=0 and b

[1]=1
12 not b[0] # negate b0
13 c-x b[0],b[1],q[4] # multi-bits controlled X gate
14 not b[0] # restore the measurement register

Code Example 3: Multi-binary-controlled quantum gate.

E. Feedback Support : Binary-Controlled Quantum Gates

Binary-controlled gates are quantum gates which are con-
trolled by measurement outcomes. The programmer can use a
binary measurement outcome to control a quantum operation.
The latter will be executed only if that binary value is 1. In the
following example we put the state of the first qubit q[0] into
superposition, then we measure it and use the measurement
outcome b[0] to conditionally apply the Pauli-X gate on qubit
q[1].

Multiple measurement outcomes can be used to control a
quantum operation, in this case all the control bits are placed
before the qubits used in that quantum operation.

Sometimes, the programmer might need to use an arbitrary
binary mask where some measurement outcomes are ones and
others are zeros. In this case the programmer can use the not
classical operation to invert a bit before using it to control an
operation.

F. Display Results

In section III-D we introduced the description of the
measurement operations. After a measurement is performed,
the outcome must be accessible to the user. This feature is
implemented through the command “display b[i]” that returns
the outcome value of the latest measurement involving the i-th
qubit.

In addition, when the QASM code describes a simulation
and not an actual experiment, more information about the
quantum state may be readily accessible depending on the
simulation tools. For example, simulators that represent
quantum states as dense vectors store all the quantum
amplitudes at each step of the algorithm. In this situation, the
command display can be used to inspect the quantum state
by printing all computational-basis amplitudes to the screen.

Later, Section IV will introduce special features like the
“measurement averaging”. The command “display” is com-
patible with these extensions and should print the average
measurement outcome of a qubit (a double precision float
in [0..1]) along with the overall number of measurements
(integer), the number of +1 and -1 measurements. The later
information allows for more flexibility when post-processing
the results.

1 version 1.0
2 # define a quantum register of 3 qubits
3 qubits 4
4

5 # apply a short sequence of gates
6 h q[0]
7 h q[1]
8 h q[2]
9 cnot q[2],q[3]

10

11 # measure the Pauli string Z0Z2

12 measure_parity q[0],z,q[2],z
13 # the outcome is stored in both b[0] and b[2]
14

15 # measure the Pauli string X1Y3

16 measure_parity q[1],x,q[3],y
17 # the outcome is stored in both b[1] and b[3]

Code Example 4: Parity-like multi-qubit measurements.

IV. SPECIAL FEATURES

A. Parity Measurements (Pauli String Observables)

Measurements do not always involve a single qubit at a
time, in fact several important algorithms require multi-qubit
measurements. This situation is fundamentally different from
cases in which each qubit is measured independently. Here, we
consider observables that are constituted by products of single-
qubit Pauli matrices on a subset of qubits. In general, any
observable can be described as a Pauli string after appropriate
extra gates are applied.

When the measurement takes place at the end of the
algorithm, as is the case for the important class of variational
algorithms (see Code Example 7), two options are available.
The simplest strategy is to separately measure all qubits
involved in the Pauli string and then multiply the measurement
outcomes.

However, this strategy is not viable when the measurement
must not extract more information then the single outcome
bit. This is the case when parity measurements are performed
during error correction codes or to extract information about
stabilizer states. The keyword “measure parity” is introduced
to describe the latter scenario. It is followed by an even number
of arguments: each pair of arguments are constituted by the
qubit identifier and the specification of the corresponding mea-
surement axis (chosen among X, Y, and Z axis). The number of
qubits involved is automatically defined by (half) the number
of arguments following the instruction. The outcome is a single
bit that will be copied in all bit registers associated with the
qubits involved in the measurement. See Code Example 4 for
the explicit use.

B. Demolition Measurement

In certain hardware architectures, measuring one or more
qubits not only collapses their state, but also removes the
qubits from the register. Consider, for example, quantum
linear optics setup with dual rail encoding: the qubit state is
determined by a single photon being in one of two modes
and the photon detection removes it from both modes leaving
them empty. While it is important to properly describe this
feature at the level of eQASM, for the scope of the current
instruction set it is sufficient to assume that an extra qubit is

1 { prep_z q[0] | prep_z q[1] | prep_z q[2] }
2 h q[0, 1, 2]
3 h q[0:2]
4 cnot q[0], q[3]
5 cnot q[1], q[3]
6 { measure q[0] | measure q[1] | measure q[2] }
7 c-x b[0:2],q[0]

Code Example 5: Parallelism Specification.

added to substitute the demolished one. It is implicit in the
instruction set that this extra qubit is renamed accordingly to
the demolished one and that its state corresponds to the usual
result of projective measurements.

C. Parallel Quantum Gates

A set of quantum gates can be scheduled to start in parallel
using the syntax shown in Code Example 5. Gates between
brackets and separated by “|” are scheduled to be executed in
parallel. The brackets allow the expression of parallelism of
a set of gates over multiple lines and avoid having verbose
single lines. For instance, prep_z gates on q[0], q[1] and
q[2] in Code Example 5 are parallel gates. Similarly, the
measurements are scheduled to be executed simultaneously.

D. Single Gate Multiple-Qubits (SGMQ)

In many cases, addressing many qubits at once can be very
useful when applying a single quantum operation to a set of
qubits similarly to SIMD (Single Instruction Multiple Data)
fashion in classical computing. The following notations aim
to simplify the addressing of a set of qubits:

• Contiguous range of qubits: a set of qubits within a
contiguous range can be addressed as “q[i:j]”, in this case
the qubits {i,i+1,. . . ,j} are included in the qubit set.

• Arbitrary set of qubits: alternatively, an arbitrary set of
qubits can be addressed as “q[i,j,k,l]” where i, j and k
are arbitrary index within a valid range of qubits.

• Arbitrary set of qubit ranges: finally the two pre-
vious addressing modes can be combined to match
a set of contiguous ranges of qubits, for instance
“q[i:j,k:l,m:n] designates a set of 3 qubit ranges forming
{i,i+1,. . . ,j}∪{k,. . . ,l}∪{m,. . . ,n}.

In Code Example 5, Line 2, a Hadamard gate is applied
simultaneously to qubits 0, 1, 2. In case the indices are
contiguous, the list can be abbreviated with ellipsis, e.g. h
q[0:2] such as in Line 3 which is equivalent to line 2.

Similarly to the qubits, multiple measurement outcomes can
be addressed simultaneously using the list notation the same
way as the qubits, for instance, at the end of the previous, the
measurement outcomes of qubits 0, 1 and 2 are used to control
a Pauli-X quantum operation on a qubit 0. This addressing
mode reduce the verbosity of the code, improve its readability
and offers a compact way to express parallelism.

E. Sub-circuit Definition

For better readability, a QASM circuit can be split into a
set of functional sub-circuits. The list of QASM instructions

1 version 1.0
2

3 # define a quantum register of 9 qubits
4 qubits 9
5

6 map q[4],oracle
7

8 # sub-circuit for state initialization
9 .init

10 x oracle
11 { h q[0] | h q[1] | h q[2] | h q[3] | h oracle }
12

13 # core step of Grover’s algorithm
14 # loop with 3 iterations
15 .grover(3)
16

17 # search for |x> = |0100>
18

19 # oracle implementation
20 x q[2]
21 toffoli q[0],q[1],q[5]
22 toffoli q[1],q[5],q[6]
23 toffoli q[2],q[6],q[7]
24 toffoli q[3],q[7],q[8]
25 cnot q[8],oracle
26 toffoli q[3],q[7],q[8]
27 toffoli q[2],q[6],q[7]
28 toffoli q[1],q[5],q[6]
29 toffoli q[0],q[1],q[5]
30 x q[2]
31

32 # Grover diffusion operator
33 { h q[0] | h q[1] | h q[2] | h q[3] }
34 { x q[0] | x q[1] | x q[2] | x q[3] }
35 h q[3]
36 toffoli q[0],q[1],q[5]
37 toffoli q[1],q[5],q[6]
38 toffoli q[2],q[6],q[7]
39 cnot q[7],q[3]
40 toffoli q[2],q[6],q[7]
41 toffoli q[1],q[5],q[6]
42 toffoli q[0],q[1],q[5]
43 h q[3]
44 { x q[0] | x q[1] | x q[2] | x q[3] }
45 { h q[0] | h q[1] | h q[2] | h q[3] }
46 display
47

48 # final measurement
49 .measure
50 h oracle
51 measure oracle
52 display

Code Example 6: Grover Algorithm.

forming a sub-circuit is provided, after the name of the sub-
circuit itself, starting with a dot. Code Example 6 partition
the circuit in 3 parts: the initialization starting at line 5, the
single iteration of a Grover-step from line 17, and finally the
measurements after line 37.

In addition, the definition of sub-circuits allow the specifi-
cation of loops over each sub-circuit as detailed in the next
paragraph and already included in example mentioned above.

F. Static Loops

The loop control structure is an essential component of
many quantum algorithms such as the Grover’s algorithm. For
now, QASM provides support for the FOR-loop by simply
adding the number of times a sub-circuit needs to be executed
right after the name of the sub-circuit such as at line 10 of the
Grover’s algorithm example given in Figure 10.

TABLE III: Supported Code Constructs

Statement Description Example

{gate args | gate args} Apply set of gates in
parallel {h q[0] | h q[1] }

gate qubitlist Single gate multiple
qubits operation h q[0,2,3]

.function Functional sub-circuit (see Code
Example 6)

.function(iterations) Static loops (see Code
Example 6)

G. Quantum Gate Scheduling

Instruction scheduling in the VLIW fashion requires the
specification of “bundles” which can be expressed using a
wait instruction (example: wait 5 specifies that an execution
unit should wait 5 time units before executing the next
instruction). Together with the parallelism specification, the
wait instruction provides accurate time specification without
changing the structure or the syntax of the QASM language.

Beside setting the starting time of each instruction in a
scheduled QASM code, the “wait” instruction effectively
sets the duration of each instruction. This possibility allows
the user to determine by hand the duration of each kind of
gate and, in simulation mode, allows to tailor the simulation
to different qubit technologies characterized by different
gate durations. The gate duration is a critical information
in many cases such as noise simulation where qubits suffer
decoherence over time or quantum computer architecture
simulation where the overall execution time of a quantum
program needs to be calculated.

Should be noted that the simulators or tools which do not
support the notion of the time information can ignore the
“wait” instruction, the duration of each instruction is then a
single cycle. The number of cycles is an integer equal to or
greater than 1.

H. Measurement Averaging

In many quantum algorithms, the measurement outcomes
of the qubits are not directly used as raw binary values, but
collected and post-processed. One common form of post
processing consists in computing the average measurement
outcome of a given qubit. For instance, a programmer might
need to evaluate the robustness of an error correction code
through characterizing the physical vs logical error rate,
for that the quantum circuit is executed several times under
quantum noise and the average measurements are collected
and used to compute the actual error rate. Another example
is the execution of experiments to observe Rabi oscillations.

The ubiquitous necessity of this feature makes it an
attractive candidate for implementation in simulation tools
and in actual hardware. In such case the measurement
outcomes for each qubit are accumulated and the average
ground state measurement is stored and returned when

1 version 1.0
2 # define a quantum register of 3 qubits
3 qubits 3
4

5 # reset the counters for the average procedure
6 reset_averaging
7

8 # prepare and measure the quantum state 1000 times
9 # to accumulate a large outcome statistics

10 .average(1000)
11 # state preparation
12 prep_z q[0:3]
13 { rx q[0] 3.14 | ry q[1] 0.23 | h q[2] }
14 rx q[2] 3.14
15 cnot q[2],q[1]
16 { z q[1] | rx q[2] 1.57 }
17

18 # measure of Z_1
19 measure_z q[1]
20 # the corresponding average is automatically

updated
21

22 # measure of $X_0 X_2$
23 measure_parity q[0],x,q[2],x
24 # the corresponding average is automatically

updated
25

26 # estimate the observable A
27 .result
28 # show the average of $X_0 X_2$ together with its

latest outcome
29 display b[0]
30 # show the average of Z_1 together with its

latest outcome
31 display b[1]
32

33 # the expectation value of \hat{A} follows
34 # from a straightforward postprocess

Code Example 7: Central routine of a typical variational
quantum algorithm. Here we prepare a certain quantum state
and then measure the expectation value of the observable
Â = αZ1 + βX0X2.

requested. For instance, a programmer can execute a loop
with several thousands of iterations and the measurement
are collected and made available at the end of this loop.
The available information includes the number of +1 and
-1 measurements for each qubit and by extension the
average measurement in the ground or excited state. The
display command described in section III-F can display
this information at any point of the quantum circuit.

In order to accommodate such use cases, one syntax el-
ement allowing the resetting of the average measurement
for each qubit when needed is required: a command named
reset_averaging can be used to reset the averaging
engine whenever needed. The syntax of the later command is
as follows: reset_averaging q[i] where q[i] is one or
more qubits identifier such as specified in the qubit addressing
Section III-B.

I. Expectation Value of Observables

Recently, a novel class of quantum algorithms emerged
that is particularly relevant to near term devices due to its
intrinsic robustness to systematic noise. These algorithms are
commonly called variational quantum algorithms [14]–[16]
and alternate short quantum computations with classical post-

process of the outcomes: the basic idea is that a short quantum
circuit suffices to prepare an approximate solution of the
problem at hand, but the specific form of the quantum gates
is a priori unclear and must be determined by try-and-fail
approach guided by a classical optimizer. To implement this
kind of hybrid algorithms, one needs to 1) compute expectation
values of several, possibly non-commuting, observables, 2)
compute the quality of the approximate solution, 3) provide
this information to a classical optimizer that suggests how
to modify the quantum circuit to improve the approximate
solution, and 4) reprogram the quantum computer before start
the next iteration from point 1).

While the development of instructions for a natural ex-
ecution of the quantum-to-classical-to-quantum iteration is
outside of the scope of the current work, we believe that it
is important to illustrate how one can perform the steps 1)
and 2) above using the instructions already introduced. Code
Example 7 uses static loops to prepare and measure 1000 times
the relevant terms of observable Â. The average is obtained
through the dedicated command introduced in the previous
subsection.

V. FUTURE EXTENSIONS

The proposed QASM syntax specification allows the
description of quantum circuits in a relatively compact way
while remaining at the quantum gate level and abstracting
away low-level hardware details. Despite being an assembly
language, several features such as SGMQ instructions allows
the expression of gate-level parallelism in a relatively compact
way and allowing simulation tools and compiler to specify the
execution timing and the gate scheduling in a straightforward
way.

Despite the expressiveness that can be provided by the
proposed cQASM syntax, several limitations worth to be
mentioned and addressed in future versions:

• Control flow and conditional branching.
• Interleaving classical and quantum instructions: this re-

quires classical registers and a classical instruction set.
• Sub-circuit reuse: currently, the sub-circuits cannot be

recalled many times, the reuse of a sub-circuit as a
recallable function can offer make algorithm specifica-
tion even more compact, promote code reuse and save
instruction space.

• Along with classical instructions, a classical memory can
offer a storage space for intermediate classical computa-
tions which can be needed in some quantum algorithms.

VI. CONCLUSION

In this paper we proposed the common Quantum Assembly
language (cQASM) to pave the way toward a hardware-
agnostic language that is shared by the quantum computing
community and implemented by the many tools required
to achieve large-scale quantum computation. We described
the cQASM syntax and the semantic behind it and we
distinguished two main parts of the syntax, one minimal

syntax required to express basic quantum circuits, and a set
of extensions to offer different features such as parallelism
expression, loop constructions or special measurements.

The first version of cQASM allows the intuitive description
of quantum circuits, but its current syntax does not address
the interaction between quantum and classical computation
in a completely satisfactory way. These important features,
like branch support, conditional loops or dynamic rotation
angle computation, will be introduced in future version where
classical instructions can be interleaved with quantum ones
and interact together. We hope for a large participation in
the definition of the instruction set regulating the interface
between quantum and classical aspects of quantum algorithms
and their execution.

ACKNOWLEDGMENT

The authors would like to thank Prof. F. Chong, Y. Ding
and A. Holmes (University of Chicago), Dr. A. J. Abhari
(IBM), Prof. M. R. Martonosi (Princeton University) for their
contributions and valuable discussions in defining the syntax
of the common quantum assembly language v1.0.

REFERENCES

[1] A. Cross, “QASM tools,” https://www.media.mit.edu/quanta/
quanta-web/projects/qasm-tools/, published: 2005.

[2] T. Metodi, D. Thaker, A. Cross, F. Chong, and I. Chuang, “A quantum
logic array microarchitecture: Scalable quantum data movement and
computation,” in MICRO. IEEE Computer Society, 2005, pp. 305–
318.

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition, 10th ed. New York, NY, USA:
Cambridge University Press, 2011.

[4] N. Khammassi, I. Ashraf, X. Fu, C. Almudever, and K. Bertels, “Qx: A
high-performance quantum computer simulation platform,” IEEE 2017
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 464–469, March 2017.

[5] M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik, “qhipster:
The quantum high performance software testing environment,”
arXiv:1601.07195, 2016. [Online]. Available: http://arxiv.org/abs/1601.
07195

[6] “Qutech and intel demonstrate full stack implementation of pro-
grammable quantum computer prototype,” Hipeac Compilation Archi-
tecture Info N 50, April, 2017.

[7] IBM, “IBM Quantum Experience,” https://www.research.ibm.com/
ibm-q/.

[8] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
Quantum Assembly Language,” arXiv:1707.03429, 2017. [Online].
Available: https://arxiv.org/abs/1707.03429

[9] A. J. Abhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and
M. Martonosi, “Scaffcc: Scalable compilation and analysis of quantum
programs,” 2015.

[10] D. S. Steiger, T. Hner, and M. Troyer, “Projectq: An open source
software framework for quantum computing,” 2016.

[11] K. M. S. Dave Wecker, “Liqui|〉: A software design architecture and
domain-specific language for quantum computing,” February 2014.

[12] “OpenQL : A Quantum Programming Language for Quantum Acceler-
ators (to appear in Jul. 2018).” 2018.

[13] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi,
I. Ashraf, R. F. L. Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N.
Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, “An experimen-
tal microarchitecture for a superconducting quantum processor,” 2017.

[14] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv:1411.4028, pp. 1–16, 2014. [Online].
Available: http://arxiv.org/abs/1411.4028

[15] A. Peruzzo, J. R. McClean, P. J. Shadbolt, M.-H. Yung, X.-
Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, “A
variational eigenvalue solver on a photonic quantum processor,” Nature
Communications, vol. 5, no. May, p. 4213, jul 2014. [Online].
Available: http://www.nature.com/doifinder/10.1038/ncomms5213

[16] D. Wecker, M. B. Hastings, and M. Troyer, “Towards practical quantum
variational algorithms,” 2015.

https://www.media.mit.edu/quanta/quanta-web/projects/qasm-tools/
https://www.media.mit.edu/quanta/quanta-web/projects/qasm-tools/
http://arxiv.org/abs/1601.07195
http://arxiv.org/abs/1601.07195
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://arxiv.org/abs/1707.03429
http://arxiv.org/abs/1411.4028
http://www.nature.com/doifinder/10.1038/ncomms5213

	I Introduction
	II Related Works
	III QASM Definition
	III-A Case sensitivity and Comments
	III-B Qubit Definition
	III-B.1 Qubit Register
	III-B.2 Qubit Addressing
	III-B.3 Measurement Register
	III-B.4 Naming Qubits and Measurement Outcomes

	III-C Quantum Gates
	III-D Measurements
	III-D.1 Partial Measurement (Single Qubit)
	III-D.2 Register Measurement (All Qubits)

	III-E Feedback Support : Binary-Controlled Quantum Gates
	III-F Display Results

	IV Special Features
	IV-A Parity Measurements (Pauli String Observables)
	IV-B Demolition Measurement
	IV-C Parallel Quantum Gates
	IV-D Single Gate Multiple-Qubits (SGMQ)
	IV-E Sub-circuit Definition
	IV-F Static Loops
	IV-G Quantum Gate Scheduling
	IV-H Measurement Averaging
	IV-I Expectation Value of Observables

	V Future Extensions
	VI Conclusion
	References

