
A Polymorphic Register File for Matrix Operations
Cătălin Ciobanu, Georgi Kuzmanov, Georgi Gaydadjiev

Computer Engineering Laboratory,
Electrical Engineering Department,

Delft University of Technology, The Netherlands
{c.b.ciobanu, g.k.kuzmanov, g.n.gaydadjiev}@tudelft.nl

Alex Ramirez
Barcelona Supercomputing Center

Universitat Politècnica de Catalunya, Spain
alex.ramirez@bsc.es

Abstract—Previous vector architectures divided the available
register file space in a fixed number of registers of equal sizes
and shapes. We propose a register file organization which allows
dynamic creation of a variable number of multidimensional
registers of arbitrary sizes referred to as a Polymorphic Register
File. Our objective is to evaluate the performance benefits of the
proposed organization. Simulation results using real applications
(Floyd and CG) suggest speedups of up to 3 times compared to the
Cell SPU for Floyd and 2 times compared to a one dimensional
vectorized version of the sparse matrix vector multiplication.
Moreover, in the same experimental context, a large reduction
in the number of executed instructions of up to 3000 times for
Floyd and 2000 times for sparse matrix vector multiplication is
achieved.

Index Terms—Vector processors, Vector register file, Polymor-
phism, Cell, Vector ISA

I. INTRODUCTION

In classic vector architectures such as the IBM Sys-
tem/370 [3], all the vector registers were of equal sizes and
the number of data elements which can be stored in one
vector register is a micro-architectural parameter, termed as
the section size of the machine. The ISA did not impose
the value of the section size, which could be chosen as
any power of two between 8 and 512 at design time. This
allowed for high end and low end machines to share the
same architecture at different cost and performance levels.
More recently, the Single Instruction, Multiple Data (SIMD)
extensions of General Purpose Processors (GPP) used fixed
width vector registers (128-bit wide for Altivec) which can
store multiple data elements. This is also the case with the
Cell Broadband Engine processor [12], which is comprised
of one PowerPC Processor Unit (PPU) and eight Synergistic
Processor Units (SPUs): both the PPU and the SPU use
128-bit wide SIMD registers. The number of the available
vector registers is clearly defined in the architecture (16 vector
registers for the IBM/370, 32 Altivec registers for the Cell
PPU, 128 registers for the Cell SPU).

In this paper, we propose a register file organization referred
to as a Polymorphic Register File (PRF), which targets the
efficient processing of multidimensional data arrays. The total

This work was partially supported by the European Commission in the
context of the Scalable computer ARChitectures (SARC) integrated project
#27648 (FP6), the Dutch Technology Foundation STW, applied science
division of NWO, the Technology Program of the Dutch Ministry of Economic
Affairs (project DCS.7533) and the Consolider contract TIN2007-60625 from
the Ministry of Science and Innovation of Spain.

size of the register file amounts up to a fixed volume, while
the actual number of registers as well as their dimensions and
sizes can be defined by the programmer and adjusted during
runtime. As a result, multiple register sizes and dimensions can
be used simultaneously. Currently, only 1D and 2D rectangular
matrices are supported by the architecture but our proposal can
be extended for any number of dimensions and even for some
special data access patterns. In this paper, we do not analyze
any possible underlying micro-architectural implementations.
The main contributions of this paper are the following:

• Architectural definition of the Polymorphic Register File;
• Performance evaluation of the proposed Register File

(RF) organization using kernels from real applications;
• Significant reduction in the number of executed instruc-

tions: 3000 times for Floyd and 2000 times for sparse
matrix vector multiplication compared to a baseline Pow-
erPC scalar processor;

• Speedups of up to 3 times for Floyd compared to the Cell
SPU and up to 2 times compared to one dimensional vec-
torized version of the sparse matrix vector multiplication
kernel;

• Simplified programming interface, which allows poten-
tially lower programming efforts compared to traditional
methods.

The rest of the paper is organized as follows: in Section II,
we provide motivation for the Polymorphic Register File. The
proposed architecture is presented in Section III. In Section IV,
we present the targeted applications, and simulation data are
presented in Section V. Section VI describes other related
architectures. Finally, the paper is concluded in Section VII.

II. PROBLEM STATEMENT AND PROPOSED SOLUTION

In order to get an indication of the impact of the Register
File (RF) used in a processor architecture in terms of the
static code size and the number of executed instructions when
performing matrix multiplication, we analyze three different
cases: a scalar and two types of vector processors, one
equipped with one dimensional (1D) vector RF and the other
- with two dimensional (2D) RF. Furthermore, we illustrate
the need for a polymorphic RF.

Motivating example: Assume the product computation of
two double precision floating point matrices: A[2][4] and
B[4][3] with the result stored in C[2][3]. By compiling the C

code of this matrix multiplication for the Cell PPU, the scalar
PowerPC assembly code contains 41 instructions, as follows:

#Init, Addr gen & looping
- 9 instructions

.L1: #i-loop
#Addr gen & looping - 7 instructions

.L2: #j-loop
#Addr gen, memory & looping

- 10 instructions
.L3: #k-loop

lfd 13,0(10) #Memory (ld A[i][k])
lfd 0,0(8) #Memory (ld B[k][j])
fmadd 12,13,0,12 #Processing
stfdx 12,6,31 #memory (st C[i][j])
#Looping & Addr gen - 11 instructions

Total: 41 instructions / 269 committed

By performing a 1D vectorization of the above kernel using
the ijk form [7], the inner most loop can be replaced with a
vector dot product instruction, decreasing the static code to 26
instructions:

v.setvl 4 #set Vector Length
#Addr gen & looping - 7 instructions

.L1: #i-loop
#Addr gen & looping - 7 instructions

.L2: #j-loop
v.ld $V0, &A[i][0] #Memory

#(ld A[i][*])
v.ldstrided $V1, &B[0][j], 3 #Memory

#(ld B[*][j])
v.vdot 0, $V0, $V1 #Processing
stfd 0,0(10) #Memory (st C[i][j])
#Looping & Addr gen - 7 instructions

Total: 26 instructions / 72 committed

By storing each matrix in an assumed 2D register, we can
possibly replace all three loops with a matrix multiplication
instruction:

#Addr gen - 6 instructions
v.vdefvr $V0, 2, 4, 0 #def 2D reg A
v.vdefvr $V1, 4, 3, 4 #def 2D reg B
v.vdefvr $V2, 2, 3, 16 #def 2D reg C
v.setxvl 4 #set Vector Length
v.setyvl 4
v.ld2d $V0, 10 #memory (ld A)
v.setyvl 3
v.ld2d $1, 11 #memory (ld B)
v.mul2d $V2, $V0, $V1 #Processing

#(C = A * B)
v.st2d &C[0][0], $V2 #memory (st C)

Total: 16 instructions / 16 committed

Rough estimations suggest that for this simple matrix mul-

tiplication example, by using a 1D vector processor and a
1D-organized storage, the number of assembly instructions is
reduced by 1.5 times and by utilizing a 2D Polymorphic RF we
can further shrink the static code length required to perform
the same computation by a factor of 2.5. The difference is even
higher if we consider the committed instructions: the 1D vector
processor executes 3.7 times less instructions than the GPP
by eliminating the inner-most loop, while a 2D polymorphic
processor could execute 16 times less instructions than the
baseline scalar machine by replacing all three loops with a
single matrix multiplication instruction. This indicates that by
using a 2D vector register file, we can vectorize the code on a
second axis and therefore eliminate two or more nested loop
levels. Code size is potentially reduced as well as the number
of executed instructions.

(a) Predefined partitioning (b) Using Polymorphism

Fig. 1. Storing the three matrices in a 2D RF

Traditionally, all the vector registers defined by an archi-
tecture are of the same size. With the preceding example we
illustrated how a 2D RF and appropriate code vectorization
can potentially improve performance. Hereafter, we further
investigate the possibilities for optimization in terms of RF
space utilization. The minimum size of the two dimensional
registers needed to store the three matrices of 2x4, 4x3 and
2x3 elements from the motivating example is 4x4 elements.
Figure 1(a) suggests how a two dimensional register file of
eight by eight elements can be statically partitioned into fixed
size registers to store the two operands and the result from
our example. The shaded portions indicate the unused space
in the registers: 50% of register A, 25% of register B and
62.5% of register C do not contain any useful data. The result
of the illustrated example is a waste of more than 45% of the
allocated register file capacity if 2D registers with fixed size
are used.

Problem statement: Based on the motivating example
above, three problems can be identified, which we address
in this paper, namely:

1) Performance is limited by the memory transactions and
by the additional address arithmetic required from the
programmer when a scalar architecture is employed for
2D matrix operations.

2) Operations on 2D matrices require excessive number
of committed instructions when a scalar register file
organization is implemented. When 1D and 2D register
files are assumed, a potential reduction of the static code
size and the number of committed instructions can be
achieved.

3) Fixed size 2D register files can potentially alleviate
problems 1 and 2, but they impose inefficient utilization
of the storage space.

Proposed solution: We address the above problems and
propose a so-called Polymorphic Register File to solve them
at the architectural level.

Definition: a Polymorphic Register File is a parameteriz-
able register file, which can be logically reorganized by the
programmer or the runtime system to support multiple register
dimensions and sizes simultaneously.

An illustration of how a polymorphic register file with
the same total storage capacity, as the one in the motivating
example, can be repartitioned is provided in Figure 1(b). The
programmer’s target is that each matrix fits perfectly into the
logical register, so that the storage waste is minimized and
hence more registers can be instantiated. It is further proposed
that the dimensions of the logical registers can be changed
during runtime therefore all the vectors and matrices stored
in the polymorphic register file can fit and be processed more
efficiently.

Based on the motivation example above, we can clearly
identify several potential benefits from using a 2D polymor-
phic register file:

• Advantages of a 2D register file:

– Potential performance gain - reduced number of
committed instructions. For the motivation example,
the reduction by a factor of 4.5 of the committed
instructions compared to the 1D vector processor,
which in turn further reduces the Flynn bottle-
neck [9].

– Static code compression - the assembly code using
the 2DPRF consists of less instructions compared to
a vector processor with 1D register organization and
even lesser compared to a machine with a scalar RF;

• Advantages of a polymorphic register file:

– Storage efficiency - the registers were defined to
contain exactly as many elements as required, com-
pletely eliminating the potential storage waste of or-
ganizations with fixed register sizes and maximizing
the available space for subsequent use;

– Variable number of registers - unlike the tradi-
tional fixed set of registers of predefined size, the
unallocated space can be further partitioned into an
arbitrary number of registers of arbitrary dimensions.

We envision the occurrence of data fragmentation problems
in the register file, which could be handled dynamically by
the Operating System, or statically by the compiler. The
problem is similar to ordinary memory fragmentation, with
the additional complexity for a 2D space, rather than for a
linear 1D case.

In the rest of this paper we will focus on evaluating the
potential performance benefits due to the use of the 2D
Polymorphic Register File for matrix operations.

III. THE POLYMORPHIC REGISTER FILE ARCHITECTURE

Figure 2 illustrates the organization of the register file,
assuming that the dimension of the physical register file is
128x128 elements. The logical registers are defined using the
Register File Organization (RFORG) Special Purpose Regis-
ters (SPR). When defining a logical register, we need to specify
the Base, the Horizontal Length and the Vertical Length of the
register. The Base of a register can be computed from the 2D
coordinates of the upper-leftmost element of the register. The
D flag indicates whether a logical register has been defined
and RN is the total number of available logical registers.
The power-on organization can, for example, partition the
available storage in 16 logical registers containing 32x32 64-
bit elements. A special instruction restores the configuration
of the register file to the initial state.

Fig. 2. The Polymorphic Register File

Both 1D and 2D register operations are supported si-
multaneously, using the same binary instructions. The mi-
croarchitecture checks if the dimensions of the operands are
compatible with the semantics of the instruction (for example,
the number of columns of the first register must be equal to the
number of rows of the second register when performing matrix
multiplication). A Bit Mask register is implicitly defined for
each logical register, offering support for conditional pro-
cessing. A special instruction enables or disables the masked
execution mode, therefore the same instruction opcodes are
used for both masked and non-masked mode. By adding
3 additional bits to each entry of the RFORG table, we
can also specify the data type stored in the logic register
(32/64-bit floating point or 8/16/32/64-bit integer), avoiding
the duplication of the instructions for each data type.

We have defined the following instruction formats concern-
ing the Polymorphic Register File: Vector Register to Memory
(VR-M), Vector Register to Vector Register (VR-VR), Vector
Register to Scalar reg (VR-SR), Vector Register to Bit Vector
(VR-BV) and Scalar Register to Special Purpose Register (SR-
SPR).

The VR-M format is used by the memory instructions
such as load and store, and the instruction prototype is
Vmem <dest> <src> <offset>. The memory address and

the offset are provided in scalar registers, while the third
argument is a logical vector register defined in the PRF.
The VR-VR format is used by the arithmetic instructions
such as add or multiply, with an instruction prototype Varith
<dest><src1><src2>. All arguments are logical registers
defined in the PRF. The VR-SR format is used by reduction
operations (such as compute the maximum value). The format
is Vreduction <dest>, <src>, where the first argument is a
scalar register and the second is a PRF register. The VR-BV
format is used by the operations which produce a bit vector as
a result, such as comparing two vector registers. The format
is Vbit <dest>, <src1>, <src2> where the first argument is
the destination bit vector PRF register and the others are PRF
vector registers. The SR-SPR format is used by instructions
which write in the special purpose registers. The format is
Vspr [<src1>, <src2>, <src3>, <src4>]. A subset of the
supported instructions is presented in Table I.

TABLE I
POLYMORPHIC RF - A SUBSET OF THE SUPPORTED INSTRUCTIONS

Instruction Format
ld2d VRT, RA, RB VR-M
st2d RT, VRA, RB VR-M
add2d VRT, VRA, VRB VR-VR
mul2d VRT, VRA, VRB VR-VR
max2d RT, VRA VR-SR
vcompare2d gt BVT, VRA, VRB VR-BV
set 2dmask RT SR-SPR
resetconf SR-SPR
vdefvr RT, RC, RA, RB SR-SPR
setxvl RT SR-SPR
setyvl RT SR-SPR
update2d RT, VRA, RB SR-SPR

One important aspect of vector architectures is the reduced
number of address generation instructions required to process
data of any size and allow the same code to be executed
on machines sharing the same architecture but constructed
with different section sizes. Sectioning is a technique used for
processing vectors which are larger than the section size of the
machine in batches equal in size to the number of elements
which can be stored into a vector register, called sections.
The last section may be shorter if the size of the data is not a
multiple of the section size.

We have extended the sectioning mechanism presented in
the IBM/370 vector architecture [16] in order to support two-
dimensional vector registers of arbitrary sizes. The polymor-
phic nature of our proposal implies that there is no unique
section size defined for an implementation of the architecture.
Since at the moment the proposed Polymorphic Register
File architecture supports unidimensional and bi-dimensional
vectors, we define the notion of horizontal and vertical section
sizes corresponding to the dimensions of a logical vector
register in the X and Y directions.

In order to define the dimensions of the data, which are
being processed from the external memory, the Polymorphic
Register File Architecture defines two SPRs, the X Vector
Length(XVL) and Y Vector Length (YVL) registers. The
setxvl and setyvl instructions are used to set the values in

those registers. The Horizontal Size (HSIZE) and Vertical
Size (VSIZE) registers limit the number of elements which
are processed by each vector instruction when sectioning is
employed.

The update2d instruction is placed at the end of a sectioning
loop and has three parameters: 1) the number of instructions,
which comprise the sectioning loop; 2) a logical vector register
(the model register), which is used as a reference to how
many elements are processed in the current section in each
dimension; and 3) a scalar offset register, which is used to
keep track of the position of the current section in the two-
dimensional data being processed as well as being used by
the load and store instructions as an offset to the memory
addresses. The update2d instruction performs three tasks:

• Increment the offset register so that, by being added to
the memory pointers, the result points to the first element
of the next section;

• Update HSIZE and VSIZE taking into account how much
data has been already processed in the X and Y directions.
This is done by comparing the dimensions of the model
register with the difference between XVL, YVL and the
offset register;

• Decide if the current sectioning loop is completed by
comparing the current offset with the XVL and YVL. If
the loop is not done, branch to the first instruction of
the sectioning loop. The number of instructions needed
to jump is a parameter of the instruction.

IV. TARGET ALGORITHMS

We consider two target algorithms for our evaluation,
namely Floyd and the Conjugate Gradient (CG) Method.

Floyd: This algorithm finds the shortest paths between
all pairs of vertices in a weighted, directed graph [8], [6].
Given a graph G = (V,E) with N nodes and a NxN weight
matrix W, the algorithm computes the cost matrix d, where dij
represents the shortest path from node i to node j and path,
the predecessor matrix.

The algorithm uses a dynamic programming approach in
which the result is refined over N steps. For each step of the
algorithm, the two inner loops update each element of the
weight matrix d at most once. The algorithm compares the
current cost (dij) with the cost of using k as an intermediate
node in the path (dik + dkj).

In order to update all the cost matrix d at step k, we only
need to use the k-th line and the k-th column of d - the pivot
row and column. For line k, ∀j, dkj = min(dkj , dkk + dkj)
and for column k, ∀i, dik = min(dik, dik + dkk). Because
dkk is always 0, the pivot row and column are not updated in
step k and therefore the code doesn’t have read after write
dependencies for the two inner loops and vectorization is
possible on both dimensions of the cost matrix.

Figure 3 presents the reduction in the number of steps
required to compute the two inner loops of the algorithm,
assuming no data segmentation is required. When executed
on the scalar processor, each step requires N2 iterations to
complete the algorithm. When we vectorize the code on a 1D

vector machine, each line of the cost matrix can be processed
with one set of vector instructions. In the third case, we can
store the whole cost matrix in a 2D register and we only need
one iteration to complete a step of the algorithm.

Fig. 3. 1D and 2D vectorization of Floyd

When the cost matrix doesn’t fit in the 2D register, we can
process it in blocks [10]. Figure 4 presents the data required
to process a block of the cost matrix. Apart from the block
itself, we also access the corresponding part of the pivot row
and column.

Fig. 4. Floyd: cost matrix segmentation. The data required to process the
block is shaded

CG: This algorithm is part of the NAS Parallel Bench-
marks [2]. CG is one of the most commonly used iterative
methods used for solving systems of linear equations whose
matrix is symmetric and positive definite [20]. Because CG is
an iterative method, it can be applied to sparse systems that
are too large to be handled by direct methods.

The main computational kernel in CG is Sparse Matrix -
Dense Vector multiplication, accounting for 87.32% of the
execution time in the scalar version of CG. The format used to
store the sparse matrices is Compressed Sparse Row (CSR).
Two dimensional vectorization is possible in this case by either
processing multiple rows of the input matrix with the same
instruction (which is useful especially when the number of
non zeros per row is small) or by splitting a long row of the
input matrix into multiple lines of a 2D register.

The polymorphism of the Register File is useful in this
kernel, because we have the ability to resize the logical
registers during runtime. Unlike Floyd, where each row had
a constant number of elements, the number of non zeros in
each row of the sparse matrix is not constant. We added
two specialized instructions to the ISA in order to facilitate
2D vectorization: a zero padding instruction which is able
to map a 1D register containing multiple rows of the sparse
matrix to a dense 2D register by zero padding, and a row
dot product instruction which performs the dot product of the
input registers row by row.

One particularity of this kernel is that the register file has
to accommodate multiple data types at the same time: the

sparse matrix and the dense vector contain 64-bit floating point
numbers, but the CSR format is composed of two extra vectors
storing the index of the non-zeroes as well as the length of
each row of the matrix, which are stored as 32-bit integers.

V. EXPERIMENTAL RESULTS

We have implemented the Polymorphic Register File as
part of a Scientific Vector Accelerator (SVA) within the
SARC architecture using a cycle accurate simulator written
in Unisim [1], an extension of SystemC. Figure 5 presents a
block diagram of the simulator, where: P = scalar Processor,
LS = Local Store, LSC = LS Controller, SVA = Scientific
Vector Accelerator.

The Processor module implements the instruction set of the
PowerPC Processor Unit (PPU) in the Cell processor [14] and
it is based on the PPU model found in CellSim [4]. Because
the Processor can access both cacheable and non cacheable
data, it uses a dedicated connection to the Arbiter Bus when
accessing the LS, which only contains non cacheable data. We
assume each scalar instruction is executed in one cycle. We
further assume perfect Instruction and Data caches having one
cycle latency.

The Vector Accelerator is designed as a loosely coupled
coprocessor. The communication between the Processor and
the Accelerator is facilitated by a number of memory mapped
control and data exchange registers which are accessed via
the Arbiter Bus. At this moment, we do not support parallel
execution of the Processor and the SVA modules. The proces-
sor is responsible for starting the SVA when the vectorized
section of code is reached. The SVA assumes that all data are
available in the Local Store, and the performance results do not
measure the data transfer overhead between the main memory
and the Local Store. The execution model assumes that two
fully pipelined arithmetic units, with 5 stages for the addition
operations and 12 stages for multiplication, are available for
each vector lane. When accessing the vector register file, we
assume that the address generation is done in a single cycle,
but in a general case it could be pipelined in more cycles.
We further assume that the number of ports available to the
register file is sufficient to provide data to all vector lanes.

The SVA sends complex memory requests such as 1D/2D
contiguous and strided accesses to the LSC, which is re-
sponsible for splitting these requests into smaller, simpler
ones, which are then sent to the LS as well as modeling the
appropriate latencies, which occur when performing complex
memory accesses.

The latency of a memory access from the vector accelerator
to the Local Store was set to 16 cycles in order to take into
account the overhead incurred by the 2D memory accesses.
Because all the modules connected to the Arbiter Bus must
have the same bus width of 4 bytes, the SVA bypasses the
Arbiter Bus when accessing the LS by using a dedicated 16
bytes wide link to the LSC, equal to the bus width used in the
Cell processor between the SPU and the LS.

We have simulated the matrix multiplication example pre-
sented in Section II in order to quantify the number of extra

Fig. 5. The simulator block diagram

instructions required to send the parameters from the GPP to
the Vector Accelerator as well as the reduction of the number
of executed instructions when using the 2D PRF compared to
the baseline scalar processor. In section II, we have estimated
that by using a 2D Polymorphic RF, the exemplary matrix mul-
tiplication can be performed with 16 instructions, out of which
6 performed address generation. As it can be observed in
Table II, sending the required parameters from the GPP to the
co-processor requires 12 address generation, 16 initialization
and 2 co-processor control instructions, so the total number
of instructions becomes 40. The static code size including the
parameter passing overhead is then similar to the static code
size for the GPP, but the number of committed instructions
is more than 6 times lower. The reason is that the looping
instructions are completely eliminated and the vectorization
on the second axis allowed us to encode the loading, storing
and the matrix multiplication as just one instruction each.

Because our proposal mainly targets high performance
execution of scientific workloads in which the amounts of data
processed are significantly higher compared to the small data
set used in our matrix multiplication example, we consider that
our choice of a loosely coupled co-processor is feasible. For an
embedded design, a tightly coupled or completely integrated
approach might be more suitable.

TABLE II
STATIC CODE SIZE AND COMMITTED INSTRUCTIONS FOR THE MATRIX

MULTIPLICATION EXAMPLE

ISA PowerPC PowerPC PowerPC PowerPC
+ 2D PRF + 2D PRF

Category (static) (committed)
Memory 6 3 72 3

Processing 1 1 24 1
Address 21 12 108 12generation
Looping 11 0 63 0
Initialize 2 16 2 16
Setup RF 0 6 0 6
Control 0 2 0 2coprocessor

Total 41 40 269 40
Compression rate - 1X - 6.7X

In the Floyd benchmark, the data type for the cost matrix
is 32-bit integer. The instruction compression rates without
taking into consideration the initial parameter passing and the

outer loop overhead are presented in Table III(a).

TABLE III
CODE COMPRESSION RATES

(a) Floyd 64x64
2D Code
Reg. comp.
Size rate
1x8 6
1x16 13
1x32 27
1x64 55
2x64 110
4x64 219
8x64 434
16x64 853
32x64 1646
64x64 3073

(b) 1D SMVM
2D Code
Reg. comp.
Size rate
1x8 11
1x16 18
1x32 26
1x64 34
1x128 37
1x256 37

The number of instructions committed by the vector accel-
erator is significantly lower compared to the same benchmark
running on the PPU, with estimated compression rates of more
than 3000 times. Figure 6 presents the speedups obtained
by using the 2D polymorphic register file compared to the
PowerPC processor. Speedups of up to 16 times can be
achieved when 16 vector lanes are used and the vector registers
can store up to 64x64 elements. This provides additional
scaling when comparing with the maximum speedup obtained
by only using a 1D register - 9X in the case of the 1x64
register. It can be observed that 4 vector lanes are sufficient
to sustain 89% of the peak performance. The scalability of
the vector accelerator is limited mainly by the available Local
Store bandwidth.

Fig. 6. Speedup of the 2D vectorized Floyd over the scalar implementation

Benchmark results against the Cell SPU using a Playstation3
(PS3) indicate that our register file architecture is around
3 times faster when running Floyd 64x64 with 16 vector
lanes (Figure 7) compared to the Cell SPU. We assumed
equal clock frequency and we limited the total size of the
Polymorphic Register File and the Local Store used by our
Scientific Accelerator to 256KB - the Local Store size in the
SPU. We note that 4 vector lanes x 32 bits require the same
throughput as the Cell 128-bit SPU interface. Thus, assuming
identical bandwidth for our proposal and a Cell SPU, we

obtain 2.7 times higher performance. The PS3 SPU code runs
the benchmark 4.33 times faster compared to the 32-bit scalar
PS3 PPU, without considering the DMA transfer time to the
Local Store.

Fig. 7. Speedup of the 2D vectorized Floyd over the Cell SPU

TABLE IV
CODE COMPRESSION RATES FOR 2D SMVM

(a) Group short rows

2D Code
Reg. comp.
Size rate
1x16 6
2x16 7
3x16 9
4x16 11
5x16 13
6x16 13
8x16 13

12x16 13
16x16 13

(b) Split long rows
2D Code

Reg. comp.
Size rate

1x128 16
2x128 32
4x128 65
8x128 131
16x128 260
32x128 518
64x128 1029

128x128 2024

By performing a one dimensional vectorization of the
Sparse Matrix Vector Multiplication (SMVM) kernel of CG,
we can obtain a speedup of approximately 4.9 times compared
to the scalar processor for the CG class S test (Figure 8). The
experiments indicate that 94% of the peak performance can
be obtained by using just 4 vector lanes. The SVA allows us
to switch off the unused lanes, therefore saving power. The
performance saturates for a section size of 128 elements or
more. The reason is that the average row length is 56, with
a minimum of 8 and a maximum of 127. Figure 9 presents
the distribution of the row lengths in the sparse matrix. The
one dimensional vectorization leads to committed instructions
compression rates of up to a factor of 37 (Table III(b)).

Our first strategy to perform 2D vectorization is to split a
long row of the matrix into multiple lines of the 2D register.
As it can be observed in Figure 10, this doesn’t improve the
performance over the 1D vectorization. The executed code
compression rates are also smaller (Table IV (a)). The main
reason is that there are not sufficient long rows to compensate
for the number of overhead instructions needed to fit the long

Fig. 8. CG SMVM Speedup 1D vs. scalar, class S

Fig. 9. CG SMVM: Distribution of the row lengths, class S

rows into the 2D registers. In order to get similar performance
as the 1D vector accelerator with a section size of 16 we need
to have a register with 5 lines of 16 elements each and use
4 vector lanes, which can sustain around 94% of the peak
performance.

Fig. 10. CG SMVM 2D Speedup vs. scalar, hsize=16, class S

The second strategy is to store multiple consecutive rows
of the sparse matrix in a two dimensional vector register. As
it can be seen in Figure 11, we can increase the performance
of our PRF-enabled vector accelerator to around 10.6 times,
twice as fast as the 1D vector implementation. Using 4 vector

lanes is sufficient to sustain 80% of the peak performance.
The instruction compression rates are also significantly higher,
reaching more than a factor of 2000 (Table IV (b)). Even if the
number of independent elements, which can be processed with
a single instruction, is significantly increased by using a 2D
register file, the overhead operations required to arrange the
data in rectangular registers (the zero padding instructions)
partially offset the potential reduction in execution time. In
Figure 11, it can be observed that this algorithm scales up 16
vector lanes which deliver up to 96% of peak performance,
which is a substantial improvement compared to the 1D
vectorized version or the strategy which splits long rows into
multiple lines of the 2D register file.

Fig. 11. CG SMVM 2D Speedup vs. scalar, hsize=128, class S

VI. RELATED WORK

A memory-to-memory architecture is used for the Bur-
roughs Scientific Processor (BSP) [15], [11]. The machine
is optimized for the Fortran programming language, having
the ISA composed of vector forms, which are very high level
vector instructions with a large number of parameters. A single
vector form is capable of expressing four operations performed
on scalar, 1D or 2D arrays of arbitrary lengths. In order to store
intermediate results, each arithmetic unit of the BSP includes
a set of 10 registers, but they are not directly accessible by
the programmer, being allocated by the vector forms. Our
proposal also creates the premises for a high level instruction
set. However, while BSP has a limited number of automatically
managed registers which can be used for storing intermediate
results, our approach can reuse data directly within the register
file. This offers more control and flexibility to the programmer
and to the compiler and potentially improves performance.

The Complex Streamed Instructions (CSI) approach doesn’t
use data registers at all[13]. CSI is another memory-to-memory
architecture which allows the processing of two-dimensional
data streams of arbitrary length. One of the main motiva-
tions behind CSI is to avoid having the section size as an
architectural constraint. Our proposal allows us to arbitrarily
chose the best section size for each workload by resizing the

vector registers, greatly reducing the disadvantages of a fixed
section size. CSI has to rely on data caches to benefit from
data locality. As also noted for the BSP, our approach can
make use of the register file instead, reducing the need for
high speed data caches.

The concept of Vector Register Windows (VRW) [17] con-
sists of grouping consecutive vector registers to form register
windows by interpreting the most significant bits of the address
of a vector register as the window index. This offers a more
flexible way of accessing long vectors or consecutive rows
of matrices, as a register window is effectively a 2D vector
register. The programmer can arbitrarily choose the number
of consecutive registers which form a window, defining one
dimension of a 2D register. However, contrary to our proposal,
the second dimension is fixed to the Section Size, all the
register windows must contain the same number of vector
registers, and the total number of windows cannot exceed
the number of vector registers. The latter severely limits the
granularity to which the register file can be partitioned. These
restrictions are not present in the Polymorphic Register File
Architecture, giving the programmer a much higher degree
of freedom when partitioning the register file. Therefore, the
instructions can operate on matrices of different dimensions,
reducing the overhead for reconfiguring the register windows.

Two dimensional register files have been used in other
architectures, such as Matrix Oriented Multimedia (MOM),
a matrix oriented ISA targeted at multimedia applications [5].
MOM also uses a two dimensional register file in order to
exploit the available data level parallelism. The architecture
supports 16 vector registers, each containing 16 64-bit el-
ements. By using sub-word level parallelism, each MOM
register can store a matrix containing at most 16x8 elements.
The Polymorphic register file which we propose also uses
sub-word level parallelism, but doesn’t restrict the number or
the size of the two dimensional registers, bearing additional
flexibility.

Another architecture which also uses a two dimensional
vector register file is Modified MMX (MMMX) [19]. This
extension of MMX supports 8 96-bit wide multimedia registers
and special load and store instructions which provide single-
column access to the subwords of the registers. Our proposed
Polymorphic Register File architecture does not constrain the
matrix operations only to loads and stores and allows the
definition of multi-column matrices of arbitrary sizes.

The Register Pointer Architecture (RPA) [18] focuses on
providing additional storage to a scalar processor thus reducing
the overhead associated with the updating of the index registers
while minimizing the changes to the base instruction set. The
architecture extends the baseline design with two extra register
files: the Dereferencible Register File (DRF) and the Register
Pointers (RP). The DRF increases the number of available
registers to the processor. The RP provide indirect access to
the DRF and are composed from three fields: a DRF index
and two addresses (Begin and End) for wrap around circular
addressing. The RP may be automatically incremented when
used in an instruction. RPA is similar to our proposal as it

also facilitates the indirect accessing to a dedicated register
file by using dedicated indirection registers. However, the
parameters stored in the indirection registers are completely
different given the distinct target application domains. While
using RPA it would map to a scalar element, in our proposal,
one indirection register maps to a matrix in the register file,
being more suitable for vector processing by better expressing
the available data level parallelism.

A VLIW processor which is able to use a variable number of
registers depending on the workload is presented in [21]. In
their approach, the number of available registers is adjusted
by modifying the size of the physical register file using
partial reconfiguration on the FPGA. However, the width of
each individual register remains fixed. Our proposal considers
that the total size of the physical register file is fixed, but
the the number of registers as well as their shapes and
dimensions can be set arbitrarily, offering a higher level view
of the available storage and possibly reducing the number of
instructions required to process the data. This in turn may
improve performance as many overhead instructions can be
eliminated.

Besides the improved performance and storage space utiliza-
tion efficiency, the proposed Polymorphic RF provides easier
programming interface compared to related works. By cus-
tomizing the register dimensions and location during runtime,
the programmer can potentially improve the RF utilization on
one hand, but can also reduce the number of address arith-
metic instructions at the other. The low overhead sectioning
mechanism and the possibility to access the data in the register
file in arbitrary shaped blocks can be automatically handled by
the microarchitecture thus hiding the complexity of pointers
and index manipulation. The productivity of a programmer
writing vector code is further improved by defining a minimal
instruction set extension with a small number of extra opcodes.
This can be achieved as as the same binary instructions can
be used regardless the dimensions and the data type of the
registers. Such an approach holds both for normal vector
instructions execution but also for selective data processing
during conditional execution using bit vectors. We believe that
such techniques and mechanisms can potentially reduce the
time and effort required to transform a mathematical linear
algebra formula into a high performance vector program.

VII. CONCLUSIONS

We proposed a polymorphic register file architecture, which
provides the system programmer with powerful means to
organize the internal machine storage efficiently. Using cycle
accurate simulations we have performed an evaluation of the
proposed polymorphic register file in terms of performance
acceleration. For the Floyd 64x64 benchmark, simulation
results suggest a potential performance gain of up to 16
times compared to an idealized scalar processor and up to
3 times compared to the Cell SPU as well as a significant
reduction in the number of executed instructions. For the
sparse matrix vector multiplication kernel, simulation results
suggest that by performing a two dimensional vectorization

we can achieve a speedup of up to 11 times compared to the
scalar reference processor and up to 2 times compared to a one
dimensional vector machine. In the future, we plan to analyze
the performance of the proposed register file organization on a
wider range of real-life applications. Furthermore, we shall in-
vestigate the most efficient microarchitectural implementations
in terms of hardware complexity, performance and power.

REFERENCES

[1] David August and Jonathan Chang et al. UNISIM: An Open Simulation
Environment and Library for Complex Architecture Design and Collab-
orative Development. IEEE Comput. Archit. Lett., 6(2):45–48, 2007.

[2] D. Bailey, J. Barton, T. Lasinski, , H. Simon, and eds. The NAS Parallel
Benchmarks. Technical Report Technical Report RNR-91-02, NASA
Ames Research Center, Moffett Field, CA 94035, 1991.

[3] W. Buchholz. The IBM System/370 vector architecture. IBM Systems
Journal, page 51, 1986.

[4] CellSim: Modular Simulator for Heterogeneous Multiprocessor Archi-
tectures. Online. http://pcsostres.ac.upc.edu/cellsim/doku.php.

[5] Jesus Corbal, Roger Espasa, and Mateo Valero. MOM: a Matrix
SIMD Instruction Set Architecture for Multimedia Applications. In
Proceedings of the ACM/IEEE SC99 Conference, pages 1–12, 1999.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

[7] J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing Linear
Algebra Algorithms for Dense Matrices on a Vector Pipeline Machine.
SIAM Review, 26(1):91–112, 1984.

[8] Robert W. Floyd. Algorithm 97: Shortest Path. Commun. ACM, 5(6):345,
1962.

[9] M.J. Flynn. Very High-speed Computing Systems. Proceedings of the
IEEE, 54:1901–1909, December 1966.

[10] Ian Foster. Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[11] G.T. Gray and R.Q. Smith. After the B5000: Burroughs Third-
Generation Computers 1964 - 1980. Annals of the History of Computing,
IEEE, 31(2):44 –55, april-june 2009.

[12] IBM. Cell Broadband Engine Programming Handbook Including the
PowerXCell 8i Processor, 1.11 edition, May 2008.

[13] B.H.H. Juurlink, D. Cheresiz, S. Vassiliadis, and H. A. G. Wijshoff.
Implementation and Evaluation of the Complex Streamed Instruction
Set. Int. Conf. on Parallel Architectures and Compilation Techniques
(PACT), pages 73 – 82, 2001.

[14] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the Cell Multiprocessor. IBM J. Res. Dev.,
49(4/5):589–604, 2005.

[15] D.J. Kuck and R.A. Stokes. The Burroughs Scientific Processor (BSP).
Computers, IEEE Transactions on, C-31(5):363 –376, may 1982.

[16] Brian Moore, Andris Padegs, Ron Smith, and Werner Buchholz. Con-
cepts of the System/370 Vector Architecture. In ISCA ’87, pages 282 –
288, 1987.

[17] D.K. Panda and K. Hwang. Reconfigurable Vector Register Windows for
Fast Matrix Computation on the Orthogonal Multiprocessor. In Applica-
tion Specific Array Processors, 1990. Proceedings of the International
Conference on, pages 202 –213, 5-7 1990.

[18] JongSoo Park, Sung-Boem Park, James D. Balfour, David Black-
Schaffer, Christos Kozyrakis, and William J. Dally. Register Pointer
Architecture for Efficient Embedded Processors. In DATE ’07: Pro-
ceedings of the conference on Design, Automation and Test in Europe,
pages 600–605, San Jose, CA, USA, 2007. EDA Consortium.

[19] A. Shahbahrami, B.H.H. Juurlink, and S. Vassiliadis. Matrix Register
File and Extended Subwords: Two Techniques for Embedded Media
Processors. In Proceedings of the 2nd ACM Int. Conf. on Computing
Frontiers, pages 171–180, May 2005.

[20] Jonathan R Shewchuk. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain. Technical report, Carnegie Mellon
University, Pittsburgh, PA, USA, 1994.

[21] S. Wong, F. Anjam, and M.F. Nadeem. Dynamically Reconfigurable
Register File for a Softcore VLIW Processor. In Proceedings of the
Design, Automation and Test in Europe Conference (DATE 2010), March
2010.

