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Abstract—Graphene, due to its wealth of remarkable electronic
properties, emerged as a potent post-Si forerunner for nanoelec-
tronics. To enable the exploration and evaluation of potential
graphene-based circuit designs, we propose a fast and accu-
rate Verilog-A physics-based model of a 5-terminal trapezoidal
Quantum Point Contact (QPC) Graphene Nano-Ribbon (GNR)
structure with parametrizable geometry. The proposed model
computes the GNR conductance based on the Non-Equilibrium
Green’s Function (NEGF)-Landauer formalism, via a Simulink
model called from within the Verilog-A model. Furthermore,
model accuracy and versatility are demonstrated by means of
Simulink assisted Cadence Spectre simulation of a simple test
case GNR-based circuit and a GNR-based 2-input XOR gate.

Index Terms—Graphene, GNR, Verilog-A, Spice Model, NEGF,
Carbon-Nanoelectronics.

I. INTRODUCTION

As CMOS scaling approaches atomic dimensions, unjustifi-
able static power, decreased reliability and yield, and increased
IC production costs are aggravating [1], prompting for research
and development towards new materials, devices, structures,
and computation paradigms. One of the potent contender
to Si-based nanoelectronics is graphene [2], [3] due to its
unique properties, e.g., flexibility, biocompatibility, ultimate
thinness, high thermal conductivity, thermal stability, mechan-
ical strength, optically transparent and so on [4]. Graphene, as
one of the post-Si forerunners, has enjoyed the research surge
during the past decade, paving the road for graphene-based
applications, e.g., flexible electronics, biological engineering,
optical electronics, ultrafiltration, composite materials, ultra-
sensitive sensors, energy storage and conversion, and spin-
tronics.

Graphene is a 2-dimension, carbon atom honeycomb mono-
layer lattice with a lot of remarkable electronic properties,
such as high electron mobility (10× larger than Si), low
effective electron masses, high current density, as well as
ballistic carrier transport with long carrier mean-free paths
[5]. These unique properties provide a strong dive to inves-
tigate graphene’s potential as a replacement of Si, and open
a promising avenue for carbon-based nanoelectronics. Since
fabrication technology of graphene-based logic and circuits
is still in an early stage, modeling and simulation has been
playing an important role for providing a physical insight into
futuristic graphene-based circuits, and a proper evaluation on
its potential performance. Numerical simulations for Graphene
Nano-Ribbon Field-Effect Transistors (GNRFETs), based on
non-equilibrium Green’s function (NEGF) formalism have

been published [6], which are accurate, but are too complex.
Another simulator for GNRFETs tries to take the advantage
of a look-up-table to speed up the simulation process, but
with the design parameters increase and change, the simulator
needs to rebuild the model, such that its complexity increases
[7]. Analytical models that simulate Schottky-Barrier-Type
graphene nanoribbon field-effect transistor (SB-GNRFETs)
and graphene nanoribbon tunnel field effect transistors (GNR-
TFETs) are published in [8], [9], respectively. The simulator
presented in [10], [11] provide a SPICE-compatible model for
GNRFETs simulation, also enabling circuit-level delay and
power analysis under process variation.

In order to bring Graphene Nano-Ribbon specific phenom-
ena from the physics to the circuit-level, to allow for graphene-
based circuit design and optimizations, a fast and parame-
terized model that enables electrical simulation is required.
However, since GNRs behavior and potential benefit in the cir-
cuit context are not fully comprehended, such a model should
preserve the physical simulation accuracy degree. To this end,
in this paper we focus on the graphene nanoribbon simulation
and introduce a Verilog-A SPICE-compatible generic model
based on NEGF formalism, which builds upon an accurate
physics formalization, by computing GNR specific variables,
e.g., conductance, via internally called Simulink code. In
this way, the proposed GNR model symbiotically exploits
accurate (in perfect agreement with physics results) Simulink
results and optimized SPICE circuit solvers (e.g., Spectre,
HSPICE). As discussion vehicle, we consider a 5-terminal
trapezoidal Quantum Point Contact (QPC) GNR topology,
whose conductance map can mirror basic Boolean functions
[12], and develop a generic 8-parameter Verilog-A model
able to capture the behavior of any QPC topology instance.
To illustrate the proposed model applicability, we consider a
simple test case circuit and the GNR-based 2-input XOR gate
introduced in [13], and simulate the afferent I-V characteristic,
via Cadence Spectre and Matlab Simulink. The simulation
results indicate that our proposed physics-based Verilog-A
GNR model is accurate and enables the proper evaluation of
graphene-based circuits potential performance.

The remaining of this paper is structured as follows: Section
II entails an overview of the physics-based Verilog-A GNR
model. Section III presents the simulation results and com-
ments on the practical applicability of our proposed Verilog-A
GNR model. Finally, some concluding remarks are given in
Section IV.
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Fig. 1: Trapezoidal QPC Topology and Associated SPICE
Symbol.

II. VERILOG-A GNR MODEL

In this section, we present the GNR model SPICE interface
and its parameters, and describe the mathematical formalism
underlying the GNR behavior. Further, in Section II-C, we
outline the simulation flow for a transient nodal analysis.

A. GNR model specification

The proposed Verilog-A model captures the behavior of a
generic trapezoidal QPC (with zig-zag atomic edge alignment)
structure [14], as depicted in Fig. 1, in which we make use
of the GNR as a conduction channel. In this structure, the
current flow is induced by applying a bias voltage Vd − Vs
between the two end-point contacts above the graphene sheet
and is further modulated by the input voltages Vg1, Vg2,
which are applied via the two top gates contacts. On the
back of GNR, we apply a back-bias potential Vback, which
in manufactured devices, usually, is a small fraction of the
back gate voltage, i.e., Vb, (because of the significant potential
drop on the dielectric layer, e.g., SiO2, residing underneath the
GNR sheet). Consequently, the Verilog-A model has 5 pins and
8 parameters (presented in Fig. 2) capturing: (i) the nanoribbon
geometry, i.e., width W , length L, constriction width Wc, and
constriction length Lc and (ii) the top gates topology, i.e.,
position PVg1, PVg2 (the distance between the two top gate
contacts and the source/drain contacts, respectively) and width
WVg1, WVg2 (the top gate contacts width). We note that all
values are expressed in terms of a (0.142 nm), the distance
between two graphene lattice adjacent carbon atoms. In this
way, the model is generic and can accommodate a wide range
of GNR shapes and topologies.

B. GNR model formalism

For modelling the GNR electronic transport, we employ the
Non-Equilibrium Green Function quantum transport model,
the semi-empirical Tight Binding (TB) computations to obtain
the system Hamiltonian, and the Landauer-Buttiker formalism
to derive the GNR current and conductance [15], [16].

In particular, we derive the conductance for the graphene-
based structure with respect to the 2-input top gate voltages,
as depicted in Fig. 1, where the GNR channel is described by
a Hamiltonian matrix H , which incorporates all internal and
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Fig. 2: GNR Geometry and Parameters: W , L, Wc, Lc,
PVg1, g2, WVg1, g2.

external potentials (e.g., top gate voltages and back gate volt-
age). H is constructed using semi-empirical TB computations,
as:

H =
∑
i,j

ti,j |i〉 〈j| , (1)

where ti,j =

{
0, if atoms i and j are not adjacent
τ, otherwise,

(2)

and in our simulation we set τ = −2.7 eV. On the channel end
sides, the drain and source contacts with different electrochem-
ical potentials sustain the channel conduction. In addition, the
contact channel interactions are modelled via the contact self-
energy matrices Σ1 and Σ2, respectively. After H and Σ1,2

are derived, the transmission function T (E), which models
the probability of one electron being transmitted between the
source and the drain contacts, is computed as a function of
energy as:

T (E) = Trace
[
Γ1 GR Γ2 G

†
R

]
(3)

where

GR(E) = [EI −H − Σ1 − Σ2]−1, (4)

Γ1,2 = i[Σ1,2 − Σ†1,2]. (5)

The channel current is then derived based on Landauer
formula, as:

I =
q

h

∫ +∞

−∞
T (E) · (f0(E − µ1)− f0(E − µ2)) dE, (6)

where f0(E) denotes the Fermi-Dirac distribution function
at temperature T , and µ1,2 represent the source and drain
contacts Fermi energy. Finally, the conductance, when the
GNR is exposed to the bias voltage V = Vd − Vs, writes
as:

G =
I

Vd − Vs
. (7)
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Fig. 3: Cadence-Simulink-Based Verilog-A GNR Simulation
Framework.

C. Simulation flow

Let us assume a SPICE circuit description which also
contains one or more GNR components, for which a tran-
sient nodal analysis is desired. At time steps automatically
chosen by the SPICE solver (e.g., Cadence Spectre; Synopsys
HSPICE), the Verilog-A GNR model samples the 5 voltages
(afferent to the 5 pins depicted in Fig. 1).

The simulation flow we utilize in the proposed Verilog-
A GNR model is presented in Fig. 3. In order to compute
the conductance G, the Simulink code makes use of the
GNR Hamiltonian, which is geometry dependent. Thus the
Hamiltonian matrix H , and matrices Γ1,2, Σ1,2 are computed
only once during the first-time step (t = 0, initial step)
of the transient simulation, and saved for latter uilization in
subsequent simulation steps.

Further, throughout the subsequent simulation iteration pro-
cess, every time a voltage variation larger than a certain value
is detected, the Verilog-A GNR model triggers the Simulink
module that receives as input the GNR 5 voltages and 8
parameters (W , L, Wc, Lc, PVg1,2, WVg1,2). Subsequently,
based on these voltages and parameters the Simulink module
computes the actual and accurate GNR conductance G. Once
the Simulink evaluated conductance value G is known to the
Verilog-A model, the current through the GNR is updated via:

I(d, s) = V (d, s) ·G. (8)

III. SIMULATION RESULTS

To exemplify and evaluate the Verilog-A GNR model prac-
tical applicability, we consider a test case circuit depicted in
Fig. 4, composed of a capacitor of C = 1 fF, a resistor R, and
a GNR with geometry specified by W = 29 a; L = 19

√
3 a;

Wc = 17 a; and Lc = 10
√

3 a. In addition, the gate topology is
given by PVg1 = PVg2 = 2

√
3 a, and WVg1 = WVg2 = 3

√
3

a. The GNR structure thus defined is subjected to the following
voltages: Vd = 0.2 V; Vb = 0 V; Vg1 = 0.2 V; and Vg2 which
is varied from 0 V to 0.2 V. The circuit is simulated with
Cadence Spectre [17] and Matlab Simulink [18]. As example
of simulated characteristics, we present in Fig. 5, the curves
for the input voltage Vg2, and the resulted voltage Vs at the
GNR’s terminal, as well as the current through the GNR,
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Fig. 4: One GNR-based Circuit Simulation Setup.
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Fig. 5: One GNR-based Circuit Simulation Results.

Ids, for 2 simulation scenarios: R = 10 kΩ (case 1), and
R = 30 kΩ (case 2). The simulation results correctly capture
the expected Vs and Ids modifications induced by Vg2 changes.
Furthermore, we also observe the fact that the R value has a
clear impact on the maximum Ids value. We note that based on
the obtained simulation results, one could easily measure the
input-to-output propagation delay, and/or the power consumed
by the circuit.

Further, we take as another test case circuit the GNR-based
2-input XOR gate introduced in [13], as depicted in Fig. 6.
The XOR gate is constructed in a complementary way with a
pull-up GNR (GNRup) and a pull-down GNR (GNRdn). The
two GNRs perform complementary functions, i.e., they are
designed in such a way that GNRup maps the XOR function-
ality onto its conductance, while GNRdn conductance reflects
the XNOR functionality. The XOR gate GNRup geometry and
contacts topology are specified by W = 41 a; L = 25

√
3

a; Wc = 8 a; Lc = 4
√

3 a, PVg1 = PVg2 = 1
√

3 a, and
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Fig. 6: GNR-based XOR Gate Simulation Setup.
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Fig. 7: GNR-based XOR Gate Simulation Results.

WVg1 = WVg2 = 3
√

3 a. The XOR gate GNRdn dimensions
and contacts topology are specified by W = 29 a; L = 25

√
3

a; Wc = 5 a; Lc = 7
√

3 a, PVg1 = PVg2 = 6
√

3 a, and
WVg1 = WVg2 = 3

√
3 a. In order to simulate this test case

circuit, we apply two gate inputs (Vg1, Vg2), and start with
Vg1 = Vg2 = 0 V followed by (Vg1, Vg2) = (0.2 V, 0.2 V) →
(0 V, 0.2 V) → (0.2 V, 0 V) → (0 V, 0 V), as depicted in the
right plot of Fig. 7, where the simulation duration is 800 ps.

The left plot in Fig. 7 captures the GNR-based XOR circuit
output voltage response. We observe that the GNR-based XOR
circuit exhibits the expected functionality and, based on this
simulation, we derive the input to output propagation delay
and power consumption of this GNR-based XOR gate as: (i)
7.48 ps delay, i.e., 18.4% smaller than that of CMOS XOR
gate in 7 nm technology (9.168 ps); and (ii) 1.734 nW power
consumption, i.e., 2 orders of magnitude smaller than that of
7 nm CMOS XOR gate (5.923× 102 nW) [19].

As final remarks, we note that: (i) by computing the GNR
conductance in Matlab Simulink, we benefit of accurate,
physics-based results, which allows for a closer to reality
assessment of the GNR-based circuits potential performance,
when compared to, e.g., CMOS-based counterparts; (ii) a
compact Verilog-A only model which directly embeds the
NEGF-Landauer formalism would be prohibitively complex
and most likely slower as it requires complex numbers ma-
trices multiplication and inverse operations, and last but not

least (iii) our proposal can be easily extended to reflect the
behaviour of other multi-gate GNR-based structures and/or to
capture more GNRs into one Verilog-A model.

IV. CONCLUSIONS

In this paper we proposed an accurate physics-based
Verilog-A GNR model, which enables the proper evaluation of
graphene-based circuits potential performance. Our simulation
results confirm its accuracy and capability to capture the
behaviour of GNR based circuits, i.e., XOR gate, and to allow
for performance comparison with CMOS counterparts. The
development of compact Verilog-A only models, which trade
accuracy for faster simulation, may constitute future work,
once GNR behavior is properly understood and characterized
from the circuit prospective.
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