
ImpEDE: A Multidimensional Design-Space Exploration
Framework for Biomedical-Implant Processors

Dhara Dave, Christos Strydis, Georgi N. Gaydadjiev

Computer Engineering Lab, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
E-mail: C.Strydis@tudelft.nl, D.Dave@student.tudelft.nl, G.N.Gaydadjiev@tudelft.nl

Abstract—The demand for biomedical implants keeps in-
creasing. However, most of the current implant design method-
ologies involve custom-ASIC design. The SiMS project aims to
change this process and make implant design more modular,
flexible, faster and extensible. The most recent work within
the SiMS context provides ImpEDE, a framework based on a
multiobjective genetic algorithm, for automatic exploration of
the design space of implant processors. The framework pro-
vides the processor designer with a Pareto front through which
informed decisions can be made about specific implant families
after analyzing their particular tradeoffs and requirements. A
highly efficient, parallelized version of the genetic algorithm
is also used to evolve the front and has as its objectives the
optimization of power, performance and area. In addition, we
illustrate the extensibility of our framework by modifying it
to include a case study of a synthetic implant application with
hard realtime deadlines.

Keywords-Design-space exploration; simulation; optimiza-
tion; genetic algorithm; biomedical microelectronic implant

I. INTRODUCTION

From an engineering standpoint, medical implants con-

stitute a highly resource-constrained class of embedded

systems. A core component of an implant, its processor also

inherits these limitations. Given this fact, currently existing,

general-purpose processors are not ideal for implant appli-

cations. There is, instead, a need for new processors that are

better suited for use in a wide range of implant applications.

Accordingly, and as part of the ongoing SiMS project, effort

has been put on developing a novel biomedical-implant

processor. Optimal cache and branch-prediction subsystems

for this processor have already been studied in [1], [2]. These

studies have offered many design insights yet provide local

and, by necessity, biased optimizations.

It is well-known that the global optimization of multiple

design objectives – such as performance, power and area –

across all processor subsystems is a non-trivial task. One

must explore all possible processor configurations, compute

the corresponding design objectives and find the Pareto-
dominant solutions to be included in the final trade-off set.

Since, typically, the design parameters that affect a processor

are numerous, computing the behavior of all their possible

combinations is quite hard, if not impossible. For example,

by considering 13 processor design parameters represented

by 36 (binary) bits, if one were to simulate all combinations,

one would need to evaluate 236 = 68, 719, 476, 736 different

processor configurations to identify the true Pareto front –

an unrealistically high number. To make things worse, in

this new field of implant processors there is no established

set of processor characteristics that would allow meaningful

limiting of the above number of potential configurations.

To the best of our knowledge, none of the existing DSE

tools are explicitly concerned with implantable systems.

However, the field of biomedical, microelectronic implants

is new and fast-progressing and, calls for particular design

constraints such as ultra-low power consumption, high fault-

tolerance levels and tight execution deadlines. What is

needed is a fresh top-down approach to the field where

implant applications are extensively profiled in a properly

fine-tuned environment and the findings are used to drive

an (automated, if possible) design-exploration effort for a

suitable implant device. Setting up such an environment is

a non-trivial problem as its specific parameters are either

unknown or undisclosed, subject to tight proprietary con-

trols. Building on our previous knowledge, with this work,

we attempt to put together a multiobjective, DSE farme-

work, ImpEDE (Implant-processor, Evolutionary, Design-

space Explorer). This framework provides careful investiga-

tion of the processor design space through the use of a partic-

ular genetic-algorithm (GA) variant called NSGA-II, along

with cycle-accurate simulations, considering realistic design

constraints imposed by our prior knowledge of the field. The

implementation featured a very long computational time and,

therefore, a parallelized version of the algorithm has also

been implemented and described in the current document.

Also, we attempt to fine-tune this environment to the goal

at hand by providing the first – in our knowledge – tool to

offer bounded DSE. We have made this tool freely available

for further improvement, expansion and dissemination of

information. Concisely, the contributions of this work are:

• A first yet educated attempt towards the systematic,

automated and accurate design of implant processors;

• A fine-tuned toolset that delivers optimized implant-

processor configurations across multiple first-order (e.g.

performance, power) and second-order (e.g. hard real-

time deadlines) objectives; and

• A freely available parallelized version that can be

978-1-4244-6967-3/10/$26.00 c© 2010 IEEE 39 ASAP 2010

Legend

Software (C/C++)

Supporting Scripts (Perl)

Data

Software Calls

Data Transfer

Multiple Instances*

Simulators

XTREM

(Processor Simulator)

Wrapper Script

Implant Application

Input

Data

Benchmarks

Genetic Algorithm

Estimates

Area

*

Generates Processor Configuration

*

Used as

Input

Estimates

Power,

Performance

Parse

Power,

IPC

CACTI

(Cache Simulator)

Figure 1: Framework organization.

expanded with additional design objectives and con-

straints and extended to applications classes other than

implants.

The rest of the paper is organized as follows: section II

briefly discusses other DSE toolsets available and explains

the necessity for the current framework. Section III provides

the overview and organization of ImpEDE while section

IV discusses the performed customizations and selected

parameters for making the framework ideal for architectural

exploring of implant processors. Section V displays the

validity of ImpEDE by presenting actual DSE results for our

targeted implant processor and illustrates its flexibility by

extending it with exploration under hard realtime constraints.

Overall conclusions and future work are drawn in section VI.

II. RELATED WORK

A large number of design-space exploration tools have

been presented in the past, targeting generic DSPs [3]

to network processors [4] and, more recently, multicore

processors [5], [6]. For an extensive overview of different

approaches, the interested reader can refer to Matthias Gries

[7].

One of the proposed methods is to employ Genetic Al-

gorithms for design-space exploration purposes. Ascia et al.

[8] have attempted to optimize processor subsystems yet the

search-and-optimize algorithm they used is working only on

a single objective at a time. Ghali and Hammani [9], on the

other hand, have made use of a multiobjective setup, similar

to ours, but address the optimization of Turbo decoders.

Stijn et al. [10] have investigated various, automated, GA-

based, single- and multi-objective DSE methods for custom

processors, but focus on out-of-order flavors only.

III. FRAMEWORK ORGANIZATION

Before introducing the DSE framework, we first have to

identify the nature of the problem we attempt to solve: In

designing our implant processor, we have formulated our

problem as a multiobjective-minimization problem, with the

objectives being processor latency, average power consump-
tion and area cost. This is a set of first-order objectives

typically optimized for in digital design. As the framework

matures, we wish to add more objectives in our design effort

such as fault coverage and more constraints such as hard
realtime deadlines. In later sections, we will exemplify the

latter by imposing a hard deadline on execution time (i.e.

latency).

Since our objectives are minimizing area and power while

maximizing performance, in order to convert our problem to

a fully minimizing problem, we need to take the complement

of performance as the objective encoded in our framework.

We use IPC as the metric of performance. Therefore, we

can simply use IPC*(-1) as the objective to be minimized1.

For the rest, we use the metrics mm2 and mW as the

area and the power objectives, respectively. With these

objectives in mind, we have designed the multiobjective,

DSE framework shown in Fig. 1. At first, the selected GA

(NSGA-II) generates valid processor configurations (i.e. a

set of parameters) – encoded as ”chromosome” – that are

fed to a cycle-accurate, performance and power simulator

(XTREM) and to a cache-area simulator (CACTI). The

processor simulator also accepts as inputs implant-related

benchmarks and assorted datasets (ImpBench). Then, both

simulators execute and their resulting performance, power

and area figures are fed back into the waiting GA which uses

them to evaluate the optimality of the currently simulated

processor configuration. This process is repeated a number

of times equal to the preset chromosome population, then a

few best-performing chromosomes – based on their fitness

results – are selected, processed and propagated to the next

round of optimizations, also known as generation. With each

successive generation, increasingly better chromosomes are

found and promoted; that is, we are approaching the true

Pareto front for our DSE problem. Figure 2 shows the front

found for two particular runs of our framework2. In the

following subsections, we will describe in more detail the

components of the framework as well as the choices made on

the GA parameters such as the population size, the number

of generations and the chromosome-selection policy used3.

A. Genetic algorithm: NSGA-II

The classical single-objective optimization methods can

be used to perform multiobjective optimization by reformu-

lating the multiobjective optimization problem into a single-

objective one. However, these methods suffer from several

drawbacks such as requiring advanced knowledge of the

design space and inability to find solutions for problems

1Note that cycles per instruction (CPI) could have also been used: since
CPI is the inverse of IPC, it would give an identical relative ordering of
processor configurations as IPC*(-1).

2Note that the Area axes are on a Logarithmic scale in all the figures in
this paper.

3An extensive analysis can be found in [11].

40 ASAP 2010

−0.4

−0.2

0 50
100

150
200

10
0

10
5

PowerPerformance

A
re

a

10 KB

1 KB

Figure 2: Framework-generated Pareto solutions (i.e.

implant-processor instances) for two workload sizes.

having non-convex fronts. Therefore, we use an algorithm

specially designed for multi-objective problems.

NSGA-II [12] evolves Pareto fronts using an elitist ap-

proach and uses density and crowding distance metrics

to ensure well spread out points along the front, at the

same time having a lower computational complexity than

its predecessor, NSGA. Due to its superiority over other

algorithms, popularity, ease of use and availability, we use

it as our algorithm of choice.

B. Processor & cache simulators

In the current version of our DSE framework, evaluation

of the performance and power consumption of a given

chromosome (i.e. processor configuration) has been based on

the XTREM [13] simulator. XTREM simulator is a cycle-

accurate, microarchitectural, power and performance simu-

lator for the Intel XScale core [14]. It has been selected for

its straight-forward functionality but mostly for its accuracy

in performance and power modeling. It exhibits an average

performance error of 6.5% and an average power error of

4% compared to real hardware. We have extensively used

XTREM in our previous studies on the implant processor

and, in order to match our application field better, we had

disabled many of XTREM’s architectural parameters. In this

case, however, we wish to allow for some degree of freedom

in the processor design parameters so that the GA can

explore a wider range of possible configurations. We have,

thus, ended up with the (modified) XTREM characteristics

summarized in Table I4. Performance/power figures have

been checked and scaled properly with the changes. In the

next section IV, we shall go through the selected simulator

parameters and the way they have been encoded in the GA. It

should be noted that flexible wrapper scripts have been used

4Values denoted with ’VAR’ indicate adjustable parameters by the GA.

Table I: Architectural details of (modified) XTREM.

Feature Value

ISA 32-bit ARMv5TE-compatible
Pipeline depth / width 7/8-stage pipeline / 32-bit
RF size 16 registers
Issue policy in-order
Instruction window single-instruction
I/D Cache L1 (separ.) VAR size&assoc. (1-cc hit / 170-cc miss lat.)
BTB VAR size, fully-assoc. / direct-mapped
Branch Predictor VAR (4-cc mispred. lat.)
Ret. Address Stack VAR size
I/D TLB (separ.) 1-entry / 1-entry
Write Buf. / Fill Buf. 2-entry / 2-entry
Mem. bus width 8-bit (1 mem. port)
INT/FP ALUs 1/1
Clock frequency 2 MHz
Implem. technology 0.18 μm @ 1.5 Volt

to provide the input to and capture the output of XTREM.

As a result, the internal framework structure has been kept

highly modular allowing for porting faster, more accurate or

more powerful simulators in the future.

For evaluating the area cost of each chromosome, we have

made the valid approximation that the subsystem dominating

our envisioned implant processor is the cache (which holds

also true for modern general-purpose processors). Further-

more, as can be seen from Table I, more adjustable param-

eters include some cache-like structure in them. Therefore,

for quantifying each chromosome’s area cost, we have used

CACTI, a well-known, cache-area estimation tool. CACTI

v3.2 has been primarily used since it is suitable for modeling

simpler (older) cache-like structures (such as the BTB) and

at an implementation technology identical to the one of the

simulator (180 nm). However, our framework at present

(Fig. 1) can also handle CACTI versions 4.1 and 6.0.

C. Biomedical benchmarks & workloads

Eight suitable benchmark applications have been used

for execution on XTREM for evaluating different chro-

mosomes. They comprise the ImpBench benchmark suite

[15] and consist of lossless data compression algorithms,

symmetric-key encryption algorithms and data-integrity al-

gorithms as well as representative code based on real
biomedical applications. The benchmarks represent antici-

pated common tasks running on future implant processors

and exhibit varied characteristics, as shown in Table II.

Typical biomedical readouts are often highly periodic

signals (e.g. heart beat) or stable signals (e.g. blood tem-

perature) which can, under specific circumstances, display

gradual or abrupt changes in value (e.g. a sudden muscle

contortion). We have collected and used various represen-

tative workloads capturing both stable as well as rapidly

changing patterns. The original data has been provided from

the BIOPAC (R) Student Lab PRO v3.7 Software. Paper-

size limitations do not allow for an extensive description of

the various workloads; a concise overview of the workload

41 ASAP 2010

Table II: ImpBench [15] benchmarks. Columns denoted with

a (*) indicate average values for 1 − KB input workloads.

Benchmark type Name Size (KB) #Instr.* Sim. time* (sec)

Compression miniLZO 16.30 199,163 3.07
Finish 10.40 852,663 21.82

Encryption MISTY1 18.80 1,268,465 16.65
RC6 11.40 864,930 9.37

Data integrity checksum 9.40 62,869 0.80
CRC32 9.30 419,159 5.46

Real applications motion 9.44 859,371 31.16
DMU 19.50 36,808,268 37.25

Table III: Biomedical workloads with double-precision (8-

Byte) data samples of sizes 1-KB and 10-KB.

Dataset name size (Bytes) Samples (#) duration (sec)

Electromyogram II (EMGII) 1147 / 9605 144 / 1201 0,288 / 2,402
Electroencephalogram (EEGI) 984 / 9616 123 / 1202 0,615 / 6,010
Electrocardiogram (ECGI) 912 / 9615 114 / 1202 0,114 / 1,202
Respiratory Cycle I (RCI) 1192 / 9520 149 / 1191 1,490 / 11,910
Pulmonary Function I (PFI) 1184 / 9240 148 / 1155 1,480 / 11,550
Skin Temperature (AEP) 1120 / 9736 140 / 1217 0,700 / 6,085
Blood Pressure (BP) 1128 / 9545 141 / 1198 0,282 / 2,396

details is provided in Table III. Since reported literature [16]

has revealed that typical implant data-memory sizes range

from 1 KB to 10 KB, workloads of both sizes (1 KB and

10 KB) have been profiled.

Each chromosome represents a particular processor in-

stance onto which each all benchmarks except DMU (which

runs on a single, hard-coded input) are fed with each of the

7 workloads (of (1 KB or 10 KB)) and are executed. This

accounts for a total of 50 benchmark runs for the 1 KB
case and another 50 for the 10 KB case. As we shall see

in subsection III-D, this is a substantial amount of (cycle-

accurate) simulation time. In order to get practical results in

our limited time frame and without loss of generality, for

this paper we have selected and executed only the EMGII

workload as it displays worst-case performance characteris-

tics. In so doing, we have limited the number of runs to 8

per workload size. We, nonetheless, explore the design space

for both sizes in order to investigate the effect workload size

has on the Pareto-optimal solutions.

D. Parallelization & optimization

As shown in Table II, evaluating a single processor config-

uration (i.e. one GA individual) with a single input (EMGII)

and a single data size (1KB), across all 8 benchmarks takes

on an average 125.58 seconds5. Assuming the 10KB work-

loads run 10× as slow as the 1KB workloads, except for

the DMU benchmark and, considering optimization across

all 7 Workload types, a full run of the GA with a population

size of 20 and 200 generations will take approximately 343
days per result. We do not consider the GA run times in this

calculation as the execution overhead of the parallelized GA

5Measured on a dual-core, AMD Athlon(TM) XP 2400+ @ 2000.244
MHz, cache size 256 KB running Fedora 8 linux

was found to be negligible, contributing only 0.13 seconds

per generation.

Since this run-time is quite prohibitive, we parallelized the

evaluation stage of the GA so that different individuals are

evaluated on idle CPUs of the group’s laboratory machines.

Hence, the speedup offered by our parallelized version is

equal to ∼ P/�P/N�, where P is the population size and

N is the number of computers available. During the runtime

of the GA, support scripts periodically search for and prepare

free machines for the algorithm to use; these machines are

used on the lowest priority in order to not disrupt regular

usage. Therefore, this framework is expandable, modular and

requires minimum dedicated resources.

IV. FRAMEWORK FINE-TUNING

In the previous section, we went through the various

building blocks of the DSE framework. Adjusting the frame-

work to target implant processors requires, however, fine-

tuning of the GA parameters and proper encoding (i.e.

representation) of the chromosomes. In what follows, we

go through such details that make our framework suitable

for implant-processor design.

A. Chromosome encoding

Since GAs optimize the information encoded in the chro-

mosomes, we needed to define a chromosomal representa-

tion for the processor parameters that the GA can work with.

Each chromosome is encoded as shown in Table IV using

a binary encoding. The table lists the processor variables

chosen, their ranges as well as the encoding and decoding

rules. The included variables are in agreement with the ones

in Table I.

The processor parameters we chose to include in the

search space depended both on what we wanted out of

the processor and the capabilities and limitations of the

simulators we had. As can be seen from Table IV, clock

frequency has been encoded but was not used in this version

of the GA; we found that running the simulator with different

clock frequency values did not affect the results (although

they are expected to be). For the purposes of this work,

XTREM runs on a default clock frequency of 2 MHz, typical

for implant processors.

The Write Buffer and the Fill Buffer included in XScale

and shown in Table I help achieve better performance by

hiding memory-access stalls when the core is running at

a high clock frequency (e.g. 200 MHz). This is hardly

the case for an implant processor; therefore, we did not

encode the two buffers but rather fixed their sizes at the

minimum supported by XTREM, i.e. exactly two entries. For

similar reasons, Translation Lookaside Buffers (I/D-TLBs)

have been excluded from the GA and fixed to a single-entry

structure each.

We found that varying the I-cache latency above the

default value of 1 often had XTREM crashing. Therefore,

42 ASAP 2010

Table IV: Processor design parameters considered in this work, encoded as 36 chromosomal bits.

Parameter Encoded Decoding Remarks
Name (Ref) Range Range Bits Formula

Core Clock Frequency (Freq) [1...64] [0...63] 6 n + 1 Not used in current version
Branch Prediction (Bpred) Bimodal, Taken, notTaken [0...2] 2 - bit0 = isBimod, bit1 = isTaken

Branch Target Buffer: Number of Sets (btb nsets) [32...128] [0...5] 3 2n+5 Only valid for isBimod = TRUE
Branch Target Buffer: Associativity (btb assoc) [1...32] [0...5] 3 2n Only valid for isBimod = TRUE

Branch Prediction: Return Address Stack (RAS) [0...8] [0...4] 3 floor(2n−1) -
L1 I/D-Cache: Number of Sets (I/D nsets) [1...8192] [0...13] 4 2n -

L1 I/D-Cache: Block Size (I/D bsize) [8...32] [0...2] 2 2n+3 -
L1 I/D-Cache: Associativity (I/D assoc) [1...32] [0...2] 3 2n -
L1 I/D-Cache: Replacement Policy (I/D repl) f, r, l [0...2] 2 - bit0 = isF ifo, bit1 = isRandom
L1 D-Cache: Latency (D latency) [1...16] [0...4] 3 floor(2n) -
L1 I-Cache: Latency (I latency) [1...16] [0...4] 3 floor(2n) Not used in current version

we only include D-cache latency as a variable. Note also

that the above discussion pertains only to L1 caches. At a

stage where embedded applications hardly have even an L1

cache, we think having L2 caches would be an overkill, and

therefore exclude them from our exploration. This is also in

agreement with the results in [1].

B. Population size

The size of the population represents the maximum

number of Pareto points the algorithm can find. If we

pick too small a size for the population, we would have

lesser tradeoffs available. On the other hand, the GA is

O(mN2), where m is the number of objectives and N
is the population size. Keeping these factors in mind, we

chose a population size of 20, which also coincided with

the number of machines we expected to be free at any given

time. Therefore, the entire population could be evaluated at

once in parallel.

C. Number of Generations

The number of generations represent the time the GA is

allowed to reach the Pareto front. We observed that the GA

converges rather rapidly to a front, then tries to increase

its spread in the subsequent generations. After this, the GA

reaches a sort of ‘stable state’ where it is unable to improve

the spread without degrading the distance from the front,

and vice versa. We can limit the number of generations at

this phase, in order to reduce computation time. We use a

reduced problem set - that of only optimizing the checksum
benchmark, and run this for a large number of generations

(1000) in order to approximate the number of generations

needed, then use this as a guide to selecting the number of

generations for the full problem.

We use Deb’s metric (Δ) [17] to quantify the diversity

(spread) of the solutions and Veldhuizen’s Generational

Distance (GD) [18] metric to quantify the distance of the

solution front from the ‘true’ Pareto front6. We found both

metrics to be very noisy, specially the diversity metric.

6Since we do not know the true front (by problem definition itself), we
approximate it by computing a combined front consisting of mutually non-
dominating points from the results of 10 separate runs of the algorithm.
We call this the ‘reference front’.

Therefore, to make them easier to compare, we smooth the

data using a moving average with a span of 20 generations.

Figure 3 shows the resulting metrics. We observer that GD

declines rapidly until about the 100th generation, after which

it fluctuates around GD=0.4 for a long time until finally

dropping to zero around generation 600. The rapid decline

is of course due to the solution fronts converging towards

the reference. After generation 51, it can be seen that the

general trend is that as spread decreases, distance increases

and vice versa. The behavior from generations 100-593 is

also expected - as the algorithm searches for new solutions,

the distance fluctuates. A minor rise in both GD and spread

may not mean that the front is actually further away than the

one previously – since we have finite points in the reference

front, points that are the same distance from the actual front

may give slightly varying distance values from the reference

front. The behavior at the tail end reflects the fact that

the reference solution is a combination of several solutions,

and therefore also contains the final solution of the run in

question. The apparent rapid convergence seen therefore, is

in fact the algorithm moving towards its own final solution

– a foregone conclusion. Therefore, we do not consider this

region in our analysis.

Since after generation 100, the algorithm seems to os-

cillate between improving spread and distance at the cost

of the other; without loss of precision in both quantities at

the same time, we can stop the algorithm around generation

100. Since GAs are random by nature, in order to be sure of

getting good results, we run every subsequent experiment for

twice this time, i.e. – 200 generations. This also compensates

for the smoothing we performed.

D. Mutation

The simplest and most recommended strategy is simply

setting the mutation probability as pm = 1/n where n is the

chromosome length [19]. This means that a single bit per

chromosome is expected to change from the parent to the

child population. Therefore, the child chromosome is likely

to vary from the parent chromosome in exactly one attribute,

that too by a hamming distance of one. We use this approach

for setting the mutation probability in our implementation of

the GA, i.e pm = 1/36.

43 ASAP 2010

� ��� ��� ��� ��� ��� ��� 	��
�� ��� ����
�

���

���

���

���

���

���

��	

��

���

�

�����

�
�

�
�

��
��
�

�

��������

���������

Figure 3: Smoothed distance and di-

versity metrics over 1000 generations

(Benchmark: checksum)

0 20 40 60 80 100 120 140 160 180 200
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

p
c
=0.0 p

c
=0.2 p

c
=0.4 p

c
=0.6 p

c
=0.8 p

c
=1.0

(a) Distance metric

0 20 40 60 80 100 120 140 160 180 200
0.75

0.8

0.85

0.9

0.95

1

p
c
=0.0 p

c
=0.2 p

c
=0.4 p

c
=0.6 p

c
=0.8 p

c
=1.0

(b) Diversity metric

Figure 4: Distance and Diversity metrics for various crossover probabilities

(Pc) over 200 generations (Benchmark:checksum)

−0.5 −0.4 −0.3 −0.2 −0.1 0
80

100

120

140

160

Performance

P
o

w
e

r

10 KB

1 KB

(a) Performance-Power

80 100 120 140 160
10

0

10
5

Power

A
re

a

10 KB

1 KB

(b) Power-Area

10
0

10
5

−0.5

−0.4

−0.3

−0.2

−0.1

0

Area

P
e
rf

o
rm

a
n
c
e

10 KB

1 KB

(c) Performance-Area

Figure 5: Baseline DSE results for 1 KB and 10 KB workloads running on all benchmarks.

E. Crossover probability

Used carefully, crossover can lead to much quicker evolu-

tion times, and is central to the idea of Genetic Algorithms

examining more solutions in the more promising regions of

the solution space. Therefore, it is important to set a good

crossover probability Pc, which determines the percentage

of chromosomes that undergo recombination at each gen-

eration. As in the case of number of generations, we used

a reduced problem set – running only checksum with the

1 − KB EMGII input for 200 generations with different

crossover probabilities. Figure 4 shows the two metrics for

the Pareto fronts resulting from each value of Pc
7. Keeping

in mind the discussion from Section IV-C, we see from the

graphs that Pc = 0.2 and Pc = 0.6 seem to lead to the

fastest convergence and best values for the two metrics over

the course of the generations, and therefore Pc = 0.2 is

chosen for subsequent runs.

V. SELECTED RESULTS & VALIDATION

In this section, the correct functionality of the framework

is demonstrated. Also, an expansion of the framework with

7Note that in this case, these are the un-normalized, un-smoothed metrics.
They appear less noisy due to the fact that the number of generations plotted
is much lower than in Section IV-C

DMU

application

compression

encryption

data

integrity

logged raw

data (10KB)

T

P
I
drug

compressed

data (2.2KB)

encrypted

data (2.3KB)

data with

CRC32(2.3KB)
TxD

10011100111001110011

10011

XXXX

CXXXX

XXXX

XXXX

storage

00:00:00

09:55:00

09:55:05

09:55:08

09:55:10

HH:MM:SS

Figure 6: Conceptual block diagram of simulated implant

application [20].

a hard realtime deadline leading to constrained design is

illustrated.

A. Implant-processor results

Having prepared and fine-tuned the framework to the best

of our knowledge, we move on to testing it by running it

with all the benchmarks, once for each of the two workload

sizes. We call these the baseline results. Figure 5 shows the

projections of the Pareto front evolved on the 3 Cartesian

planes (performance, power, area)).

We see from Fig. 5a and Fig. 5c that the 10−KB work-

44 ASAP 2010

−0.4 −0.3 −0.2 −0.1 0
80

100

120

140

160

Performance

P
o
w

e
r

no deadline

deadline=2sec

deadline=1sec

(a) Performance-Power

80 100 120 140 160
10

0

10
5

Power

A
re

a

no deadline

deadline=2sec

deadline=1sec

(b) Power-Area

10
0

10
5

−0.4

−0.3

−0.2

−0.1

0

Area

P
e
rf

o
rm

a
n
c
e

no deadline

deadline=2sec

deadline=1sec

(c) Performance-Area

Figure 7: DSE results expanded with hard realtime deadlines of 2 seconds and 1 second for 10 KB workloads running on

all benchmarks.

loads have a wider front w.r.t. performance. We anticipate

this to be so because the bigger workload increases processor

utilization by allowing the caches and branch predictor table

to fill and, hence, minimizing processor stalls. This higher

performance also leads to a corresponding increase in the

power consumption as can be seen from the power axes in

Fig. 5a and Fig. 5b.

On the contrary, we see slightly bigger area-utilization

solutions for the smaller workload. Although measurements

with more workload sizes are needed to draw safe con-

clusions, this area trend may again be due to ”cold-start”

effects; that is, due to the fact that when small workloads

are processed, poor CPU utilization occurs since the cache

structures do not have enough time to fill, pushing the GA

towards larger structures in the hopes of minimizing cache

stalls.

B. Framework expansion

As this was one of the first steps towards designing an im-

plant processor, we wanted to make sure that the framework

was expandable, in order to facilitate the addition of new

domain specific information into the framework as it gets

available. In order to test this property of the framework, we

devised a synthetic implant application with a hard realtime

deadline. Indeed, many implant applications have realtime

requirements so formulating a synthetic problem with such

a constraint does not fall far from practice. We modified

the DMU and Motion benchmarks (called StressDMU and

StressMotion respectively), to represent a single iteration

of these (repetitive) applications. Further, this iteration was

chosen to be the worst-case iteration (in terms of instruction-

cycle count) for each of the two original benchmarks.

Combined with data-integrity checks, compression and

encryption, the stress benchmarks represent an atomic action

for an implant application – from data collecting, processing,

to transferring – as exemplified in Fig. 6. In a real applica-

tion, this atomic action must be finished, for example, before

the next set of input arrives. Therefore, we constrain the total

time required for this combined operation as a hard realtime

deadline.

Out of the ImpBench set, we chose checksum, miniLZO

and RC6 as the data-integrity, compression and encryption

algorithms, respectively. We obtain the simulated execution

time of the processor configuration under investigation from

the simulator output. In case the deadline is violated, the

processor configuration is deemed to be unacceptable. On

the other hand, if the deadline is met, we calculate the

objectives of the configuration by combining with the rest of

the benchmarks in the test suite (including ”normal” DMU

and Motion). Therefore, the fitness metric remains the same

as the baseline case.

Figure 7 shows the Pareto front evolved with a deadline

of 1 second, and also with a slightly relaxed deadline of

2 seconds. As expected, the stricter deadline encourages

processor configurations that have a higher performance, but

at the same time take slightly more power and area.

VI. CONCLUSIONS & FUTURE WORK

Although reliability is one of the major reasons for the

need to design processors specifically for implants, the

present work does not directly address reliability. Instead,

it starts off with the idea that processor design can be

looked at from a black-box design perspective and provides

a flexible and modular framework for doing so. Given such

a framework, adding reliability as one of the optimization

objectives is the next logical step, left as future work. We

would also like to expand the simulator models with more

parameters such as (off-chip) memory, effectively allowing

for System-on-Chip exploration. In order to overcome the

aforementioned limitations of XTREM, we are considering

the XEEMU [21] simulator as a candidate for the next phase

of the framework.

In conclusion, this paper introduces ImpEDE, a novel,

multiobjective, framework that provides high-level DSE

of biomedical-implant processors, populated by suitable

biomedical benchmarks and assorted workloads. ImpEDE

organization is described in detail and its functionality is

45 ASAP 2010

fine-tuned based on our previous experience (e.g. proces-

sor parameter values and ranges) and new findings (e.g.

crossover probability, workload size). Restricted by its sim-

ulator components, the current framework version can de-

liver (near) Pareto-optimal processor solutions, co-optimized

across performance, power consumption and area utilization.

In view of potentially more optimization goals and bench-

marks, we have paid attention to making the framework

modular and expandable. Furthermore, we have provided a

parallelized, versatile version of the framework which offers

execution speedup roughly equal to the number of processor

available, without dedicated hardware resources. Last, it

has been our intension to make the proposed framework a

freely accessible tool, available to everyone online for further

studies and improvements.

VII. ACKNOWLEDGEMENTS

This work has been partially supported by the ICT Delft

Research Centre (DRC-ICT) of the Delft University of

Technology and by Google Inc.

REFERENCES

[1] C. Strydis and G. Gaydadjiev, “Suitable cache organizations
for a novel biomedical-implant architecture,” in International
Conference of Computer Design (ICCD’08), Lake Tahoe,
California, USA, 12-15 October 2008, pp. 591–598.

[2] C. Strydis and G. N. Gaydadjiev, “Evaluating Various Branch-
Prediction Schemes for Biomedical-Implant Processors,” in
Proceedings of the 20th IEEE International Conference on
Application-specific Systems, Architectures and Processors
(ASAP’09), Boston, USA, July 2009, pp. 169–176.

[3] M. Lorenz, R. Leupers, P. Marwedel, T. Drager, and G. Fet-
tweis, “Low-energy DSP code generation using a genetic
algorithm,” in Proceedings of International Conference on
Computer Design (ICCD) 2001, Austin, Texas, 2001, pp. 431–
437.

[4] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli, “Design
space exploration of network processor architectures,” Net-
work Processor Design: Issues and Practices, vol. 1, pp. 55–
89, 2002.

[5] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, “Rapid
design space exploration of heterogeneous embedded systems
using symbolic search and multi-granular simulation,” in
LCTES/SCOPES ’02: Proceedings of the joint conference on
Languages, compilers and tools for embedded systems. New
York, NY, USA: ACM, 2002, pp. 18–27.

[6] A. Pimentel, L. Hertzberger, P. Lieverse, P. van der Wolf, and
F. Deprettere, “Exploring embedded-systems architectures
with Artemis,” Computer, pp. 57–63, 2001.

[7] M. Gries, “Methods for evaluating and covering the design
space during early design development,” Integr. VLSI J.,
vol. 38, no. 2, pp. 131–183, 2004.

[8] G. Ascia, V. Catania, and M. Palesi, “Parameterised sys-
tem design based on genetic algorithms,” in CODES ’01:
Proceedings of the ninth international symposium on Hard-
ware/software codesign. New York, NY, USA: ACM, 2001,
pp. 177–182.

[9] K. Ghali and O. Hammani, “Embedded Processor Charac-
teristics Specification Through Multiobjective Evolutionary
Algorithms,” in IEEE International Symposium on Industrial
Electronics (ISIE’03), 2003, pp. 907–912.

[10] S. Eyerman, L. Eeckhout, and K. De Bosschere, “Efficient
design space exploration of high performance embedded
out-of-order processors,” in DATE ’06: Proceedings of the
conference on Design, automation and test in Europe. 3001
Leuven, Belgium, Belgium: European Design and Automa-
tion Association, 2006, pp. 351–356.

[11] D. Dave, “Automated implant-processor design: An evolu-
tionary multiobjective exploration framework,” Master’s the-
sis, TU Delft, 2010.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast elitist multi-objective genetic algorithm: Nsga-ii,” IEEE
Transactions on Evolutionary Computation, vol. 6, pp. 182–
197, 2000.

[13] G. Contreras et al., “XTREM: A Power Simulator for the
Intel XScale Core,” in LCTES’04, 2004, pp. 115–125.

[14] Intel XScale Microarchitecture for the PXA255 Processor:
User’s Manual, Intel Corp., March 2003.

[15] C. Strydis, C. Kachris, and G. Gaydadjiev, “ImpBench -
A novel benchmark suite for biomedical, microelectronic
implants,” in To appear in International Conference on
Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS’08), Samos, Greece, 21-24 July 2008.

[16] C. Strydis et al., “Implantable microelectronic devices: A
comprehensive review,” Computer Engineering, TU Delft,
CE-TR-2006-01, Dec. 2006.

[17] K. Deb, Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley & Sons, LTD, 2001.

[18] D. A. V. Veldhuizen and G. B. Lamont, “Evolutionary
computation and convergence to a pareto front,” in Genetic
Programming 1998: Proceedings of the Third Annual Confer-
ence. University of Wisconsin, Madison, WI, USA: Morgan
Kaufmann, 22-25 Jul. 1998.

[19] T. Back, “Optimal mutation rates in genetic search,” in
Proceedings of the Fifth International Conference on Genetic
Algorithms, 1993, pp. 2–8.

[20] C. Strydis and G. Gaydadjiev, “The Case for a Generic
Implant Processor,” in 30th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society
(EMBC’08), August 2008, pp. 3186–3191.

[21] Z. Herczeg, Á. Kiss, D. Schmidt, N. Wehn, and T. Gyimothy,
“XEEMU: An improved XScale power simulator,” Lecture
Notes in Computer Science, vol. 4644, p. 300, 2007.

46 ASAP 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

