SAMS Multi-Layout Memory: Providing Multiple Views of
Data to Boost SIMD Performance

Chunyang Gou, Georgi Kuzmanov, Georgi N. Gaydadjiev
Computer Engineering Lab
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, The Netherlands

{C.Gou, G.K.Kuzmanov, G.N.Gaydadjievi@tudelft.nl

ABSTRACT

We propose to bridge the discrepancy between data represen-
tations in memory and those favored by the SIMD proces-
sor by customizing the low-level address mapping. To achieve
this, we employ the extended Single-Affiliation Multiple-Stride
(SAMS) parallel memory scheme at an appropriate level in the
memory hierarchy. This level of memory provides both Ar-
ray of Structures (AoS) and Structure of Arrays (SoA) views
for the structured data to the processor, appearing to have
maintained multiple layouts for the same data. With such
multi-layout memory, optimal SIMDization can be achieved.
Our synthesis results using TSMC 90nm CMOS technology
indicate that the SAMS Multi-Layout Memory system has ef-
ficient hardware implementation, with a critical path delay of
less than 1ns and moderate hardware overhead. Experimen-
tal evaluation based on a modified IBM Cell processor model
suggests that our approach is able to decrease the dynamic in-
struction count by up to 49% for a selection of real applications
and kernels. Under the same conditions, the total execution
time can be reduced by up to 37%.

Categories and Subject Descriptors: C.1.2[Multiple Data
Stream Architectures (Multiprocessors)]:SIMD; B.3.2[Design
Styles]:Interleaved memories

General Terms: Design, Performance

1. INTRODUCTION

One of the most critical challenges in SIMD processing is
imposed by the data representation. By exploiting explicitly
expressed data parallelism, SIMD processors tend to provide
higher performance for computationally intensive applications
with lower control overhead compared to superscalar micro-
processors. However, SIMDization suffers from the notorious
problems of difficult data alignment and arrangement, which
greatly undermine its potential performance[4, 26, 31].

In both scientific and commercial applications, data is usu-
ally organized in a structured way. A sequence of structured
data units could be represented either in AoS (Array of Struc-
tures) or in SoA (Structure of Arrays) format. Such data rep-
resentation predetermines, at the application level, the data

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

ICS 10, June 24, 2010, Tsukuba, Ibaraki, Japan.

Copyright 2010 ACM 978-1-4503-0018-6/10/06 ...$10.00.

layout and its continuity in the linear memory address space.
It has been found that most SIMDized applications are in fa-
vor of operating on SoA format for better performance[l8,
20]. However, data representation in the system memory is
mostly in the form of AoS because of two reasons. First, AoS
is the natural data representation in many scientific and en-
gineering applications. Secondly, indirections to structured
data, such as pointer or indexed array accesses, are in favor
of the AoS format. Therefore, a pragmatic problem in the
SIMDization arises: the need for dynamic data format trans-
form between AoS and SoA, which results in significant perfor-
mance degradation. To our best knowledge, no trivial solution
for this problem has been previously proposed. Our SAMS
Multi-Layout Memory system, presented in this paper, sup-
ports contiguous data access for both AoS and SoA formats.
The specific contributions of our proposal are:

e Custom, low-level address mapping logic to manage indi-
vidual internal data layout and provide efficient memory
accesses for both AoS and SoA views;

e Novel hardware/software interface for improved program-
mer productivity and additional performance gains;

e The SAMS scheme implementation in TSMC 90nm CMOS
technology with affordable critical path (<1ns) and its
integration into the IBM Cell SPE model;

e Up to 49% improvement in dynamic instruction counts
for real applications and kernels, which is translated into
a 37% reduction of the overall execution time.

The remainder of the paper is organized as follows. In Sec-
tion 2, we provide the motivation for this work. In Section 3,
the original SAMS scheme and the proposed extensions are
briefly described. The hardware implementation and synthe-
sis results of the SAMS Multi-Layout Memory system and its
integration to the IBM Cell SPE are presented in Section 4.
Simulated performance of the SAMS memory in applications
and kernels is evaluated in Section 5. The major differences be-
tween our proposal and related art are described in Section 6.
Finally, Section 7 concludes the paper.

2. MOTIVATION

Motivation Example: We shall examine the SIMDization of
vector-matrix multiplication, ¢ = a * B, where a and c are 1x3
vectors and B is a 3x3 matrix with column-major storage. Al-
though the involved computations are quite simple, SIMDizing
them to achieve optimal speedup is very difficult. Assuming

struct vec3 {float a0, float a1, float a2};

struct vec3 {float a0[d], float a1[4], struct vec3 {float a0, float a1, float a2};

float a2[4]};

struct matrix3 {float b0[4], float
b3[4], float b6[4], float b1[4], float
b4[4], float b7[4], float b2[4], float
b5[4], float b8[4]};

float b7, float b2, float b5, float b8};

struct vec3 a[4], c[4];
struct matrix3 b[4];

struct vec3 a, c; €0 Gl &2

struct matrix3 b;
vector float a0, al, a2, b0, b1, b2,

b3, ba, b5, b6, b7, b8, c0, c1, c2: vector float tmp0 = *(vector float*)a;

vector float tmpl = *(vector float*)(&a[1].al);
vector float tmp2 = *(vector float*)(&a[2].a2);
a0 = spu_shuffle(tmp0, tmp1, pattern_0360);
a0 = spu_shuffle(a0, tmp2, pattern_0125);
al = spu_shuffle(tmpl, tmp2, pattern_0360);
al = spu_shuffle(a0, tmp0, pattern_5012);
a2 = spu_shuffle(tmp2, tmp0, pattern_0360);
a2 = spu_shuffle(a0, tmp1, pattern_2501);

/I'load a with SoA format
a0 = *(vector float*)a.a0;
al = *(vector float*)a.al;
a2 = *(vector float*)a.a2;

I'load b with SoA format

1/ do computation

c0 = a0*b0+al*b3+a2*h6;

cl = a0*bl+al*b4+a2*b7;

c2 = a0*b2+al*b5+a2*h8;

11 store resullts to ¢ with SoA format
(vector float)c.a0 = c0;

(vector float)c.al = c1;

(vector float)c.a2 = c2;

/I do computation

c0=a0*b0+al*bh3+a2*h6
cl=a0*bl+al*b4+a2*h7
c2=a0*b2+al*b5+a2*h8

store them to ¢

struct matrix3 {float b0, float b3, float b6, float b1, float b4,

vector float a0, al, a2, b0, b1, b2, b3, b4, b5, b6, b7, b8,

/l'load a with AoS format, transform it to SoA with shuffles

/l'load b with AoS format, transform it to SoA with shuffles

/I transform results from SoA to AoS format with shuffles,

struct matrix3 {float b0, float b3, float b6, float b1, float b4, float b7,
float b2, float b5, float b8};

struct vec3 af4], c[4];

struct matrix3 b[4];

vector float a0, al, a2, b0, b1, b2, b3, b4, b5, b6, b7, b8, 0, c1, c2;
/I global addresses in main memory: gaa (for a), gab (b), gac (c)

// reading data from main memory to multi-layout memory
AOS_DMA_GET(a, gaa, 4*sizeof(vec3), tag, vec3);
AOS_DMA_GET(b, gab, 4*sizeof(matrix3), tag, matrix3);
/l'load a with SoA view

BEGIN_MULTI_VIEW(vec3);

a0 = SOA_GET(&a[0].a0);

al = SOA_GET(&a[0].al);

a2 = SOA_GET(&a[0].a2);

/l'load b with SoA view

BEGIN_MULTI_VIEW(matrix3);

b0 = SOA_GET(&b[0].b0);

bl = SOA_GET(&b[0].b1);

b8 = SOA_GET(&b[0].b8);

/I do computation
c0=a0*b0+al*b3+a2*b6
cl=a0*bl+al*b4+a2*b7
c2=a0*b2+al*b5+a2*b8

/I store ¢ with SoA view
BEGIN_MULTI_VIEW(vec3);
SOA_PUT(&c[0].a0, c0);
SOA_PUT(&c[0].a1, c1);

(@) (b)
SoA storage + AoS storage +
SoA SIMDization SoA SIMDization

SOA_PUT(&c[0].a2, c2);
/I writing data from multi-layout memory to main memory
AOS_DMA_PUT(c, gac, 4*sizeof(vec3), tag, vec3);

(c)
AoS storage + SoA SIMDization
+ Multi-layout memory

Figure 2: Sample vector-matrix multiplication code

B[4]

ol4] = afd]* B[4]
where

P O O S W A

by’ | by” | by Cri=ag*b; +a,"b, +a;*b;

X —— Ca=ag"b,'+a, be-+a; b,

b | b | be (=0,1,2.3)

b’ | b | bg

(a) SoA SIMDization scheme @

vector data used in SIMD
processor with SoA
SIMDization scheme

data port width=4 element: vector data stored with SoA
@ storage format in memory:
@ @ contiguous
0
a03 eh a En e 1 memory access
no data rearrangement

address

0

0x1F10 | @ !

2

vector data stored with AoS
storage format in memory:
discontiguous

3 memory accesses

data rearrangement
required

oxtF20 | a° | at | a? | a° a' | a &

ox1F30 | a0 | &' | &’ | a° a’ | a

lerpent size=4B

o

(b) SoA storage scheme (c) AoS storage scheme

Figure 1: Vector-matrix multiplication: multiple

working data sets

a 4-way SIMD processor, the first apparent drawback is that
only 75% of the available bandwidth could be utilized during
vector multiplications for the inner products. Afterwards, all
3 elements of the vector multiplication result have to be ac-
cumulated. However, this is not straightforward because the
3 elements are located in different vector lanes while a vec-
tor operation could be done in SIMD processors only when its
operands are distributed in the same vector lane. Therefore,
a sequence of data shuffle operations is necessary to rearrange
the elements to be accumulated in the same lanes. Moreover,
due to memory alignment restrictions in many practical SIMD
systems, neither the second, nor the third column of B can be
accessed within a single vector load; instead, they require ad-
ditional load and shuffle instructions to fetch and rearrange
the data into the right format. As a consequence of this re-
arrangement, performance is penalized. Zero-padding can be

used in some applications to alleviate the data alignment prob-
lem, but at the cost of wasted memory space and additional
memory bandwidth which can become prohibitively expensive
for some applications (e.g. the Wilson-Dirac kernel).

Fortunately, it is common in applications with high data
parallelism that the processing is to be operated upon mul-
tiple independent data sets, just as Figure la suggests. The
SIMDization method which exploits data parallelism in single
data set processing is still applicable, which will be referred
to as “AoS SIMDization scheme” in the paper. However, we
can also map each SIMD operation to a batch of data sets to
exploit inter-dataset parallelism, which is referred to as “SoA
SIMDization scheme”'. If the data storage scheme is SoA, il-
lustrated in Figure 1b, optimal performance gain of four times
speed-up could be potentially achieved. The example code for
this case is shown in Figure 2a. However, if the data format in
memory is AoS, as suggested in Figure 1c, the data rearrange-
ment is inevitable, resulting in performance degradation. The
example code for this case (Figure 2b) suggests that, e.g., 6
shuffles are required to rearrange 3 vector elements of a loaded
from memory, which are apparently non-trivial overhead com-
pared to the actual vector-matrix multiplication.

Problem Statement: From the above example, it can be
observed that parallel processing of a batch of N data sets is
more favorable for better utilization of SIMD parallel data-
path and thus results in higher performance. Therefore, the
SoA SIMDization scheme is preferable in most cases. Unfortu-
nately, the most common data layout in the main memory is
AoS (as briefly discussed in Section 1). This data representa-
tion discrepancy poses a significant overhead of dynamic data
format conversions between the AoS and SoA.

Proposed Solution: The essential reason for the data for-
mat mismatch is that there is no single optimal data layout

! Also known as “outer-loop vectorization”[27].

p
Contiguous access to
fields in same data set
assuming AoS format
Multi-layout
memory Contiguous access to
same field in con-

secutive data sets
assuming SoA format

15

Main memory
(AoS data layout)

Figure 3: Proposed multi-layout memory

for different data access patterns. For operations based on
indirections, the AoS storage scheme is preferable since ac-
cess to fields inside a data set is contiguous; while for SIMD
operations in most cases, the SoA storage scheme is favor-
able. To bridge the data representation gap, our idea is to
design a memory system, which preserves the benefits of both
AoS and SoA layouts. We call such a system “multi-layout
memory” and its position and main functionalities are shown
in Figure 3. In such a system, the multi-layout memory is
deployed between the main memory and the SIMD processor,
working as an intermediate data storage to provide contiguous
data access to both data fields within the same data set (like
the AoS layout) and the same field across consecutive data
sets (like the SoA layout). Therefore, the penalty of dynamic
conversion between the AoS and SoA data representations is
completely avoided with the help of this multi-layout memory.
The vector-matrix multiplication code for this case is shown
in Figure 2c. It can be observed that, the programmer can
easily express multiple views of the data arrays and the shuffle
overhead is completely avoided.

It’s worthy to mention that, assuming AoS layout in the
linear address space, the AoS view of data requires unit-stride
access, while the SoA view requires strided access, where the
stride is determined by the size of the working data structure.
We will address this issue in the following section.

3. THE EXTENDED SAMS SCHEME
3.1 Original SAMS Scheme

Given a specific physical memory organization and resources,
parallel memory schemes determine the mapping from the lin-
ear address space to the physical locations, such as the module
number and row address. Vector access is one of the most im-
portant memory reference patterns in SIMDized applications.
Traditional parallel memory schemes in vector computers pro-
vide conflict-free access for a single stride family. To solve
the module conflicts encountered with the cross stride fam-
ily accesses, several enhancements have been previously pro-
posed, e.g., the use of dynamic memory schemes[14, 15], use of
buffers[13], use of more memory modules[13], and out-of-order
vector access[32].

Recently, a parallel memory scheme, SAMS, was proposed
to simultaneously support conflict-free unit-stride and strided
memory accesses[19]. The idea of the SAMS hardware scheme
is to use wide data line of memory modules (instead of using
more modules) and make use of the wide data line to tolerate
module conflicts, in order to support conflict-free access for
both unit-stride and strided access patterns. More specifically,
it uses 2¢ memory modules with doubled memory module port
width to support conflict-free vector loads/stores with vector
length of 27. The SAMS scheme is mathematically described

float a[100];

struct X {float x0, float x1, float x2} x[12]; layout | stride family (s)
struct Y {float y0, float y1, float y2, flat y3} y[12];
Module 0 Module 1 Module 2 Module 3 D Nas
a[0] ‘ﬁlll a[2] |a[3] | |a[4] ‘6[5] a[6] ‘a[7]
: l 2
o Pl I VO Y B VL Bl I Yl et
T T Xm" = X[n].xm
X% | %o x| x| x| % X% | %o ym" = ylnl.ym

Multi-view access example

H AoS view @y[0].y0:
i 1 {01y0, y(0ly1, y[0].y2, y[0].y3}
t---< 3 Single memory access
SoA view @y[0].y0:
{[0]¥0, y[1]¥0, y[2].yO, y[3].y0}
Single memory access

Figure 4: Internal data layouts in SAMS Multi-Layout
Memory

by the following three functions[19]:
e module assignment function:

a%29, s=0

m(a) = <aq"'a57 (CL®THS,11LI+1)%23_1>7 1<s<gq
(a®Tu,) %29, s>q
(s, g €N)
e row assignment function:
#7 s=0
1<s<qg (s,9€N)

ra)={
(z+1) %279 /2, s>q

e offset assignment function:

aq, s=0
ola) =19 as—1, 1<s<gq (s, €N)
aq, 8>4q

3.2 Proposed Extensions

We have made two important extensions to the original
SAMS scheme[19], in order to better meet the requirements
and constraints of practical SIMD systems, related to (1)multi-
layout support and (2)non-strided access.

(1)Multiple Data Layouts Support: In [19], it is assumed
that the entire SAMS memory system adopts a single low-level
address mapping (linear address<>module/row/offset) scheme
and therefore manages unified internal data layout pattern.
Although this simplifies the memory access since it doesn’t
need to indicate the stride family for which the accessed data
is optimized (such information is maintained at the global
scope), it significantly limits the SAMS applications, since
there are many applications with multiple structured data,
which require different internal data layouts for optimal ac-
cess efficiency. The Point and PointData in streamcluster[5],
and the spinor and gauge_link in Wilson-Dirac kernel[22] are
examples? for such a requirement. Therefore, instead of main-
taining a single low-level address mapping at the global scope
for all data, our approach customizes the address mapping logic
and manages an individual internal data layout for each ap-
plication data, as illustrated in Figure 4. Figure 4 suggests
that the stride family is an essential parameter in the SAMS
scheme. Strided accesses with strides belonging to the stride

2See Section 5 for details.

family supported by the internal data layout could be accom-
plished in a single access; while accesses with strides from other
stride families may cause module conflicts. Furthermore, it is
the stride family that configures the low-level address map-
ping and the resulting internal data layout in the memory.
On the other hand, the internal data layout/address mapping
determines what stride family it supports, as illustrated in
Figure 4.

The configuration granularity of the internal data layout/
address mapping is a complete 32 bytes data line. This equals
2x sizeof (vector register), which is determined by the SAMS
hardware. Since most relevant applications tend to use large
arrays, such granularity is well suited.

Obviously, with the extension to multiple data layouts, we
have to keep track of the appropriate access strides and stride
families for different data. Fortunately, this is not difficult as
the information of the data structure and organization is static
in most cases. Therefore, it is quite feasible to provide the
programmer with some abstractions, e.g., C macros or library
functions, to facilitate capturing such structural information,
as Figure 2c illustrates. Furthermore, it is also possible for
the compiler to automate the multi-layout memory usage with
proper compile-time analysis and optimizations.

(2)Definition for NaS: By convention, the stride family s >
0. We extend this definition by introducing a special symbol
NaS (not a stride), which indicates a special non-strided data
storage pattern:

m(a) = §%21
r(a) = wFr
ola) = ao

as demonstrated by the layout of a in Figure 4. The NaS
pattern is a simple yet efficient layout for data not touched by
any strided memory access. The intuition for this extension
is the concern of power efficiency. For aligned and continuous
accesses, it is unnecessary to invoke the majority of the AGU,
ATU and In/Out Switch logic in Figure 5b®. Therefore, those
components may be bypassed or even shutdown to save power,
when the program doesn’t need unaligned or strided access. In
the particular case of the SAMS integration into the Cell SPE,
the system further benefits from the NaS pattern. In the Cell
SPE, the local store is responsible for feeding instructions as
well as data to SPU, where the instruction fetch (IF) is always
aligned and continuous - at the granularity of 64 bytes[17].
Therefore, the instruction fetch engine can use the NasS lay-
out and completely remove the Out Switch in Figure 5b from
the IF pipeline. The DMA engine can also benefit from this
pattern for regular data accesses.

4. IMPLEMENTATIONAND INTEGRATION

In this section, we investigate the implementation of the
SAMS Multi-Layout Memory system and present its integra-
tion into the IBM Cell SPE.

4.1 SAMS Organization and I mplementation

Figure 5a illustrates a typical memory system of a SIMD
processor. To reduce hardware complexity, a logically mono-
lithic memory module with wide data port is used to feed
vector elements, which are contiguous in memory space, to
the SIMD processor core. Figure 5b illustrates the organiza-
tion of a multi-layout memory system based on the extended

3See Section 4.1 for details.

SIMD Processor

B:base S: stride Vector element [7:0]
US: use_stride B |S |US UF_
UF: use_stride_family B L

\ / vy Write
Address Generation masks
Unit (AGU)
Stride | Linear
family W addresses

Address Translation
Unit (ATU)

Row, offset | Row, offspt
address 7 address (v \

—»{ In Switch ‘

Local row address 7 Local row address 0

Vector
Element

[15:0]*

Module/Offset
assignment 7...0

Vector
element [7:0]

SIMD Processor

Address ector element [7:0]

Wide-Port Memory

Offset address 15,14 Offset address 1,0
¥ Data 15,14 Y Data 10
Memory
Module 7
|

Memory
Module 0
I

* Data 15,14 * Data 1,0

Out Switch ‘

(a) Typical SIMD memory system

=== Time-shared read/write port for processor and wide access
— Read port for processor Read port for wide access
* Elements [15:8] used only by wide access port

(k) SAMS Multi-Layout Memory system

Figure 5: SIMD memory organizations

SAMS scheme. The vector processor core issues memory ac-
cess commands, together with the base address and stride
(note the vector length (V L)=8) to the Address Generation
Unit(AGU). The eight linear addresses are generated in paral-
lel in AGU and they are then resolved by the Address Transla-
tion Unit(ATU) into eight module assignments, eight row ad-
dresses and eight row offset addresses. Afterwards, the eight
groups of row-offset pair and eight data elements from input
data port (on a memory write) go to the In Switch and get
routed to the proper memory modules according to their cor-
responding module assignments. In case of a memory read
access, after the read latency of the memory modules®, eight
read data are fed back to the vector processor through the Out
Switch at the bottom of Figure 5b. Two additional latencies
are incurred by the integration of extended SAMS scheme to
the original SIMD memory system of Figure 5a: a)“inbound
path”, which includes AGU, ATU and In Switch; b)“outbound
path”, which consists of the Out Switch only.

Address Generation Unit (AGU): is responsible for paral-
lel generation of the addresses of the 27 vector elements. Also,
it computes the stride family.

Address Translation Unit (ATU): determines the inter-
nal data layout of the SAMS Multi-Layout Memory and in-
put/output data permutation patterns used in In Switch and
Out Switch. ATU consists of three independent components:
the module assignment logic, the row assignment logic and the
offset assignment logic. Therefore, the critical path of ATU is
the longest of the three, which is the n — ¢ bit adder followed
by a 2-to-1 multiplexor in the row assignment logic[19].

In Switch and Out Switch: In the SAMS Multi-Layout
Memory system, the InSwitch is a 27 by 297" crossbar, while
the OutSwitch is a 297! by 29 crossbar[19).

Unaligned Vector Access: Unaligned vector memory ac-

4The access latency of a memory module may be more than
one clock cycle. In the paper, we assume the memory modules
are fully pipelined.

Table 1: Synthesis results of SAMS Multi-Layout Memory system

Critical Path Delay [ns] | Logic Complexity [# of gates]
q=2|q=3| q=4 q:2| q=3 | q=4
SAMS memory logic 0.76 0.87 1.01 6,906 | 2,6784 82,538
equivalent # of 32-bit adders 2.0 2.3 2.7 1.5 5.9 18.1

cess is one of the critical problems in SIMD processing sys-
tems[26, 31]. The SAMS Multi-Layout Memory system sup-
ports unaligned unit-stride and strided vector loads and stores.
Details of a similar technique can be found in[4].

Memory Store Granularity: With 2?9 memory modules
instead of a monolithic memory module, the store granularity
of the SAMS Multi-Layout Memory system is reduced from
an entire vector of 29 elements to a single element. For ex-
ample, the monolithic local store of IBM Cell SPE only sup-
ports loads/stores at the granularity of 128 bits; while with the
SAMS scheme with 4 memory modules and element size of 32
bits, stores of 1, 2 or 4 32-bit elements are well supported.

Wide Port Support: The SAMS scheme utilizes wide data
lines to tolerate module conflicts[19]. More specifically, each of
the eight modules in Figure 5b has a data port width of two el-
ements and the eight memory modules are capable of servicing
16 elements per access, under the condition that it is aligned
to 16 elements boundary. To avoid additional hardware com-
plexity, the wide access port in Figure 5b is not responsible
for reordering the 16 data elements during a wide access. In-
deed, the wide port behaves the same as an ordinary linear
memory interface: it directly reads or writes all the 16 data
elements from/to the 8 memory modules with the row address
of bgge (assuming 4B element size), effectively bypassing all the
SAMS logic. Therefore, for a read of a full data line of 16 el-
ements from the SAMS Multi-Layout Memory, the external
data consumer has to do a post read shuffle after reading the
data. For a write, a pre-write shuffle is also necessary, since
the internal data layout of the SAMS Multi-layout Memory
has non-linear structure as indicated in Figure 4. For the ex-
ternal data provider/consumer of the SAMS memory, there is
a trade-off between the bandwidth and hardware complexity.
We shall further discuss this in Section 4.2.

Implementation and Synthesis Results: We have imple-
mented the SAMS Multi-Layout Memory system using Verilog
and synthesized it for TSMC 90nm Low-K process technology
using Synopsis Design Compiler. Synthesis results are pro-
vided in Table 1 for SAMS memory systems with 4, 8 and 16
memory modules, i.e., ¢ = 2, 3 and 4, which target 4-way,
8-way and 16-way SIMD processing systems respectively. The
critical path delays in Table 1 actually present the inbound
path. We also calculated the relative delay and area consump-
tion of the SAMS system compared to a 32-bit adder synthe-
sized on the same technology node. Further investigation into
the synthesis results indicates that the ATU, which is the core
of the SAMS scheme, has quite fast and compact hardware
implementation: it only contributes to approximately % of the
entire critical path delay and its contribution to the overall
area is even much smaller.

4.2 Integration intothe Cell SPE

To validate the performance of the proposed SAMS Multi-
Layout Memory in real applications, we implemented it in a
model of the IBM Cell processor, aiming at computation in-

tensive applications with high data parallelism[23, 30]. The
local store of the Cell Synergistic Processing Element (SPE) is
chosen for the deployment and implementation of the multi-
layout memory system. Figure 6a depicts the original local
store memory organization in the Cell SPE. The fully pipelined
256KB local store is composed of 4 m64k SRAM modules (run-
ning at the same speed as the SPU core[16]). Note, the SRAM
arrays are themselves single-ported, therefore, the local store
is accessed in a time-shared manner, as sketched in Figure 6a
(only the load path is shown for simplicity).

The integration of SAMS Multi-Layout Memory is illus-
trated in Figure 6b. It is also referred to as “SAMS local store”
in our experiments in Section 5. Note, although in Figure 6b
each m64k module is split into four submodules, the total size
of the SAMS local store is kept the same as the original one.
The “splitting” of SRAM arrays may not incur additional en-
gineering effort, since the original m64k is composed of 32
subarrays in the Cell local store physical implementation[16].

An important change in hardware due to the SAMS integra-
tion is on the 128B wide port buffers. As high bandwidth of the
wide port is extraordinarily desirable for both instruction fetch
and DMA in SPE, we choose to provide full bandwidth of the
SAMS memory for the wide port. As discussed in Section 4.1,
in this case the wide port data of each SAMS duplicate needs
to be aligned to 32B boundary (this is guaranteed by the 128B
access granularity of the original local store wide port), and
the data format needs to be adjusted to the internal layout in
SAMS memory modules. The latter requires two macros, the
Post-Read Shuffle(PRS) and the Pre-Write Shuffle(PWS), to
be added to the system, as suggested in Figure 6b. The critical
path delay and area of PRS and PWS are comparable to those
of the SAMS ATU, which has less than one cycle latency and
trivial hardware consumption as discussed in 4.1.

The major impact on the SPU microarchitecture with the in-
corporation of the SAMS Multi-Layout Memory in the SPE lo-
cal store is that the local store pipeline is lengthened, since the
SAMS logic introduces additional delay. According to our syn-
thesis results in Table 1, the critical path delay of the SAMS
inbound path for 4 memory modules (each with 64-bit port
width) is 0.76ns, which corresponds to two times the latency
of a 32-bit adder. In the Cell SPU, 32-bit addition in the
Vector Fixed Point Unit (FPU) fixed-point is accomplished in
a single cycle[25]. Therefore, we project the deployment of
the SAMS memory in SPE’s local store will introduce 2(very
stringent) or 3(considering pipeline latches and retiming costs)
additional pipeline stages for the inbound path. The outbound
path takes one additional cycle since it has a critical path de-
lay of 0.35ns which is less than the 0.38ns latency of a 32-bit
adder in our study. To summarize, 4 cycles for a load (inbound
and outbound paths) and 3 cycles for a store (only inbound
path involved) is a realistic estimation for the extra latency in-
curred by the integration of the SAMS Multi-Layout Memory
logic inside the SPU pipeline in our study. As in the original
SPE[30] the load and store instructions take 6 and 4 clock cy-

Load/Store
Unit

(a) Original
Local Store

(b) SAMS
Local Store

Load/Store
Unit

SAMS Multi- SRAM Datanort
___EVPE‘_MED"P"_Y___; module | Capacity | - dlt)h
1
I Shated type
! T|CATU by;4

e |
| M64k .
! i 64KB | 32B*/168
1
M3 m m1][mol| K 4
el elnfollk s
i ! 16KB | 8BI4B

+* 32-byte data port activated only

1988 Tead 1288 Write for wid_e-po-rt ﬂlZBB) local store
buffer buffer access in original SPE[9]

Post-Read Pre-Write ‘ + 8-byte data port activated
Shuffle Shffle only for wide-port (32B)

— 8Bytelcycle —p= 16 Bytelcycle
—)p 64 Bytelcycle ’ 128 Byte/cycle

Sz
DMA
Engine

SAMS memory access

Figure 6: Integration of the SAMS Multi-Layout Memory into the Cell SPE

cles respectively, their costs will become 10 and 7 cycles in the
modified SPE pipeline.

5. EXPERIMENTAL EVALUATION

Experimental Setup: We use CellSim developed at BSC[1],
which is a cycle-accurate full system simulator for IBM Cell/BE
processor. The benchmarks of our experiments consist of some
full applications from PARSEC[5], the Wilson-Dirac kernel
from INRIA[22], and some micro kernels from IBM Cell SDK|2].
These applications/kernels are selected since they are repre-
sentative of application codes which operate heavily on array-
based data structures. This type of code is widely used in
scientific and engineering applications. Table 2 lists the ma-
jor features of the selected benchmarks. Streamcluster from
PARSEC is an online clustering kernel which takes stream-
ing data points as input and uses a modified k-median algo-
rithm to do the online clustering. The parameters of stream-
cluster workload in our study are set as follows: 1024 input
points, block size 256 points, 10 point dimensions, 5-10 cen-
ters, up to 500 intermediate centers allowed. Fluidanimate
is an Intel RMS application and it uses an extension of the
Smoothed Particle Hydrodynamics (SPH) method to simulate
an incompressible fluid for interactive animation purposes[5].
The fluidanimate workload in our experiments uses the sims-
mall input set provided by PARSEC. The 3D working domain
for one SPE has been shrunk to 9x9x30 cells and the maxi-
mal number of particles inside a cell has been reduced to 10.
The simulation runs for one time step to compute one frame.
Computing the actions of Wilson-Dirac operator contributes
most of the CPU time in the simulation of Lattice Quantum
Chromodynamics (Lattice QCD), which aims at understand-
ing the strong interactions that bind quarks and gluons to-
gether to form hadrons[22]. The experiments in our study
with the Wilson-Dirac kernel focus on single SPE for float-
ing point data, with the 4-way runtime data fusion scheme
proposed in [22]. The problem size for the Wilson-Dirac ker-
nel for single SPE is 128 output spinors, with a computation
intensity of 1608 FP (floating point operations) per output
spinor. Besides full applications and large kernels, we also
include some micro kernels, including complex number multi-
plication[21] with workload set to 10K multiplications and 4x4

Table 2: Selected benchmark suit

Benchmark Source Type Application| Working
Domain Set

streamcluster | PARSEC kernel data mining | medium
fluidanimate PARSEC application | animation large
Wilson-Dirac INRIA kernel quantum medium
Operator physics
complex mul- | Cell SDK | micro ker- | - small
tiplication nel
matrix trans- | Cell SDK | micro ker- | - small
pose nel

matrix transpose[2] (with workload set to 10K transposes).

To compile the C code, we use two stand-alone compilers:
PPU toolchain 2.3 (based on gec 3.4.1) and SPU toolchain 3.3
(based on gcc 4.1.1). All benchmark applications and kernels
are compiled with the -O1 option.

To make the functionalities of the SAMS Multi-Layout Mem-
ory available to software, we have extended the SPU ISA and
the programming interface. Table 3 lists some of the new in-
structions, C intrinsics and macros for the enhanced SPE with
SAMS integration (also referred to as “SAMS SPE”). To re-
flect the changes in the architecture, we have modified the
spu-gcec backend to generate optimal code for the SAMS SPE,
including automatic selection of appropriate instructions for
unaligned memory access and flexible access granularity. The
load latency and branch penalty have also been updated for
proper instruction scheduling. Besides the compiler, the Cell-
Sim simulator has also been modified accordingly.

It should be noted that although there are eight SPEs avail-
able in the Cell processor, we only use a single one in our
experiments, since we want to focus on the performance im-
pact of the SAMS Multi-Layout Memory on SIMDization. Our
techniques are orthogonal to those for efficient parallelization
of data parallel applications on multiple processor cores.

Benchmarks SIMDization: In both applications of stream-
cluster and fluidanimate, the house keeping work (such as
data preparation), scalar code dominated by branches (such as
building the neighbor table in fluidanimate), and work suited
to be done in the global scope (e.g., rebuilding the grid in

Table 3: New instructions, intrinsics and macros with the SAMS Multi-Layout Memory

| Name | Type | Operation
setstride instruction | set stride register
lgwsd/x/a instruction | load a quad word with stride = stride register and s = loga (stride)’, d/x/a-form
stqwsd/x/a instruction | store a quad word with stride = stride register and s = loga(stride)t, d/x/a-form
lqwsfd/x/a instruction | load a quad word with stride = 1 and s = loga (stride register)’, d/x/a-form
stqwsfd/x/a instruction | store a quad word with stride = 1 and s = loga (stride register)’, d/x/a-form
spu-sams_setstride | intrinsic set stride register to value imm
(imm)
spu-sams_lqws (a) | intrinsic load a quad word at base address a with stride = stride register and s = logZ(siﬁride)]L
(unified form for lqwsd/x/a)
spu_sams_stqws intrinsic store quad word wal at base address a with with stride = strideregister and s =
(a,val) log2(stride)’ (unified form for stqwsd/x/a)
spu_sams_lqwsf intrinsic load a quad word at base address a with stride = 1 and s = log2(stride register)f
(a) (unified form for lqwsfd/x/a)
spu_sams_stqwsf intrinsic store quad word wal at base address a with with stride = 1 and s =
(a,val) log2(stride register)’ (unified form for stqwsfd/x/a)
BEGIN_MULTL macro spu_sams_setstride(sizeof(str))
VIEW (str)
SOA_GET(a) macro spu-sams_lqws(a)
SOA_PUT(a,val) macro spu_sams_stqws(a,val)
AOS_GET(a) macro spu_sams_lqwsf(a)
AOS_PUT(a,val) macro spu_sams_stqwsf(a,val)
AOS_DMA_GET macro spu_sams_mfcdma64(la,mfc_ea2h(ga),mfc_ea2l(ga),size,tag,
(la,ga,size,tag,str) MFC_GET_CMD log2sizeof(str)¥)
AOS_DMA_PET macro spu_sams_mfcdma64(la,mfc_ea2h(ga),mfc_ea2l(ga),size,tag,
(la,ga,size,tag,str) MFC_PUT_CMD,log2sizeof(str)¥)

fStride family(s) calculation is done in AGU (see Figure 5b).
*log2sizeof is a new C keyword we implemented in spu-gcc (log2sizeof(str)=logs (sizeof(str)), where logs is done at compile time).

fluidanimate) is done by PPU, while the majority of the com-
putation is offloaded to the SPU. When data are ready in the
main memory, the PPU triggers SPU to start processing. SPU
reads a portion of data into its local store by DMA transfers,
processes them and writes (using DMA) the results back to
main memory. The baseline Wilson-Dirac kernel is already
SIMDized and heavily optimized on the original SPE using
SoA SIMDization scheme. Therefore, our optimizations based
on the SAMS SPE only involve the elimination of dynamic
data format conversion overhead. The micro kernels of com-
plex number multiplication and matrix transpose are normally
used as one step in a sequence of data operations in the SPE
local store. Therefore, DMA transfers are not invoked in our
experiments with them.

It should be noted that for all experiments except stream-
cluster, the SoA SIMDization scheme is adopted since it gives
better performance over AoS, in both the original and the
SAMS SPEs. As for the memory access patterns, the AoS
access of the SAMS local-store is used in all benchmarks for
data transfers between the main memory and the local-store
(illustrated in Figure 1lc). During execution, however, four
benchmarks access the local-store with the SoA access and
one - streamcluster - uses both SoA/AoS.

Experimental Results: We evaluate the performance by
measuring the application execution time on the SPU. Table 4
depicts the results of our experiments.

For the streamcluster benchmark, it is not obvious whether
the AoS or the SoA SIMDization scheme gives better perfor-
mance, since it depends on the input data, the load latency and
the quality of spu-gcc instruction scheduling. Although the
critical loop is SIMDized with the AoS SIMDization scheme,
for the rest of the code, the loops involving distance calcula-
tion are SIMDized with SoA scheme, to achieve better SIMD

datapath utilization. The major performance improvement of
the SAMS SPE comes from the support for unaligned vector
and scalar memory accesses in the SAMS local store, quanti-
fied by up to 19% reduction of memory instructions and 43%
of total instructions. However, the two-level indirection has se-
rious negative impact on performance especially in the SAMS
SPE (it has longer load latency). Moreover, the large num-
ber of branches in the source code which could not be well
handled by SPU also incur substantial performance overhead
- around 14% execution time is on IF stall for the original
SPE and 20% for the SAMS SPE since it has longer IF la-
tency. Therefore, the overall performance gain is only 11%,
as indicated in Table 4. For such applications, further effort
to make major modifications to both the data representation
and the control flow at algorithm level would pay-off for bet-
ter SIMDization performance, on both the original and the
SAMS SPEs. Nonetheless, streamcluster represents a class of
applications where both AoS and SoA SIMDization schemes
are applied on the same data at different application phases.
In such cases, the SAMS Multi-Layout Memory’s capability
of providing multiple data views with high efficiency enables
flexible choices of optimal SIMDization schemes in different
scenarios.

In fluidanimate, most execution time is spent on computing
the density and the acceleration for each particle, by accumu-
lating densities and forces between the current particle and all
neighboring particles in a valid range. Since the data paral-
lelism in computing a single particle pair is very limited, the
SoA SIMDization scheme is used to vectorize the code, so that
in each batch of processing the interoperation between 4 par-
ticles in the current cell and a particle in a neighboring cell
are evaluated. Although optimizations are equally deployed in
both the original and the SAMS SPEs, the SAMS SPE gives

Table 4: Comparison of SPU dynamic instruction count and execution time

B h " Memory Instruction Count Total Instruction Count Execution Time (cycles)
enchmar
Original SPE | SAMS SPE | R Original SAMS R Original SAMS SPE R
(load/store) (load/store) SPE SPE SPE
streamcluster 12,790,400 10,331,056 19%| 78,850,693 | 45,117,363 | 43%| 251,783,087 | 224,622,745 11%
(11,084,211/ (9,079,100/
1,706,189) 1,251,956)
fluidanimate 4,888,924 1,772,207 64%| 33,106,575 | 22,515,460 | 32%| 95,284,379 74,148,296 22%
(3,043,109/ (680,436/
1,845,815) 1,091,771)
Wilson-Dirac 13,863 11,375 18% 77,038 63,510 18% 75,975 62,035 18%
Operator (13,077/786) (10,551/824)
complex multi- 15,392 15,419 0% 42,008 26,693 36% 96,242 73,137 24%
plication (10,256/5,136) | (10,272/5,147)
matrix trans- 81,950 81,979 0% 167,766 85,893 49% 283,121 179,690 37%
pose (40,974/40,976) | (40,992/40,987)

superior performance for three major reasons. First, the 3D
position, velocity and acceleration data are maintained in AoS
format in main memory, therefore the dynamic format conver-
sion overhead is incurred in the original SPE. Second, as the
3D particle data components are not aligned to 16B memory
addresses, an alignment problem occurs in the original SPE.
Third, frequent scalar memory access in the code incurs sig-
nificant performance overhead in the original SPE. All three
overheads are removed in the SAMS SPE, leading to the 22%
reduction of execution time as presented in Table 4. Note, the
number of stores (3rd column of Table 4) in our SoA SIMDized
fluidanimate is significantly larger than the loads. The reason
is explained as follows. As the actual number of particles in
current cell (maximal 10) is known only at runtime, 3 batches
of processing (dealing with 4, 4, and 2 particles in the current
cell respectively) are necessary for computing one neighboring
particle. Furthermore, each batch has to update the density
and acceleration of the current particles and the neighboring
particle. As a result, the stores of the particle data are doubled
for current cells with 5 ~ 8 particles and tripled for current
cells with 9 ~ 10 particles, compared to current cells with only
1 ~ 4 particles, for each neighboring particle. In contrast to
the duplicated stores, the loads of particles in the current cell
are shared among all particles in all neighboring cells, and the
load of a neighboring particle is invoked only once regardless
of the number of particles in the current cell. This explains
the unusual disparity between the number of dynamic loads
and stores in the SAMS SPE. In the original SPE, the number
of loads (2nd column in Table 4) are larger than the stores
because each unaligned load incurs two aligned loads and each
unaligned store incurs a load-modify-store sequence.

The main problem that prevents SIMDizing the computa-
tion of Wilson-Dirac operator efficiently is the multiplicity of
patterns accessing the same spinor and gauge link data[22].
For efficient SIMDization, the authors introduce the runtime
data fusion technique in [22], which is basically a SoA SIMDiza-
tion scheme with rearrangement of data from AoS to SoA for-
mat at runtime. Consequently, it also suffers from the over-
head of dynamic data format conversion. With our SAMS
Multi-Layout Memory, the spinor and gauge link data are ac-
cessed in both AoS and SoA formats (for computation) with
high efficiency, therefore the data rearrangement overhead is
completely eliminated. Additionally, with the original SPE
code there are 80 loads overhead per 4 output spinors (there-
fore 20%128=2560 loads overhead in total for 128 spinors) due
to partial use of the loaded spinor and gauge filed data. The

partial use of memory bandwidth also results from the mis-
match between the data layout in the local store and the one
used in the SPU. With the SAMS local store, such overhead is
effectively removed, resulting the reduced number of executed
load instructions. Altogether, the execution time is reduced
by 18% in the SAMS SPE, as indicated in Table 4.

In complex number multiplication, with the common AoS
representation of a complex number array, load and store of the
real/imaginary part of consecutive complex numbers require
a SoA view of the array. With the multiple view capability
of the SAMS memory, the real vector and imaginary vector
can be loaded directly with one single strided access, instead
of loading the mixture of them and extracting the real and
imaginary parts using shuffle instructions, as the source code
in [21] did. Therefore, although the memory accesses count is
the same for both the original and the SAMS SPEs, the kernel
still achieved a significant performance gain in the proposed
SPE as a result of glue instructions reduction.

In 4x4 matrix transpose, if each row (4 elements) of the ma-
trix is treated as a basic structure, and the original matrix
is stored in the AoS format, then accessing a row requires an
AoS view of the row array, while accessing a column requires
a SoA view. With the SAMS local store, the transpose proce-
dure is accomplished in a simple manner: first load 4 columns
of the input matrix directly (with the SoA view) into reg-
isters (transpose the matrix), and then store the transposed
result to the output buffer. All shuffle instructions to pack the
transposed rows from the original rows in the original SPE
are completely eliminated. This explains the significant per-
formance improvement of 37% by the SAMS SPE suggested
in Table 4.

6. RELATED WORK

Vector supercomputers have traditionally relied on expen-
sive, large number of SRAM memory banks used as main mem-
ory to achieve high memory bandwidth at low latency[10, 12].
Many of them are optimized for unit-stride[10], which lead to
serious bank/module conflicts with other strided vector ac-
cess patterns[6, 28]. To cope with module conflicts of vector
accesses across stride families, several techniques have been
proposed in the literature, including the use of buffers[13],
dynamic memory schemes[14, 15], memory modules cluster-
ing[13], and intra-stream out-of-order access[32], just to name
a few. These schemes have certain constraints or limits such as
degraded performance for short vectors, data flush and reload

penalty for stride change, and waste of memory module re-
sources[19]. In the Tarantula project, a conflict-free memory
scheme is devised and deployed in the L2 cache to support
strided vector access with strides from a range of stride fami-
lies, by using the wide cache line[3]. The limit is that it also
requires long vectors to achieve conflict-free access.

The SAMS parallel memory scheme was recently proposed
as a pure hardware scheme, to simultaneously support conflict-
free unit-stride and strided memory accesses for short vec-
tors[19]. The general idea of this paper is independent of any
specific hardware memory-mapping scheme. Nevertheness, we
chose the SAMS scheme because of its capability to support
both contiguous and strided memory access with atomicity,
predictability, and low hardware complexity. Although we
built our multi-layout memory upon the extended SAMS ad-
dress mapping scheme, the idea of our work is that by convey-
ing the static structural information of the data to the mem-
ory system, the memory access patterns to the structured data
can be captured and handled with improved efficiency. To do
so, we expose the configuration of the low-level address map-
ping logic of each linear memory region (at the granularity of
2x sizeof (vector register)) to the architecture level (with 2 sets
of special load/store instructions and 1 special-purpose stride
register). We further abstract such a configuration with C
intrinsics/macros to create a simple yet easy-to-use program-
ming interface. In such a way, the layout of each individual
memory region can be customized with specific address map-
ping logic, in order to provide “conflict-free” accesses to the
data for which the memory region is allocated.

There has been a lot of work in exploiting the memory access
pattern information, by dynamically predicting or statically
capturing the access patterns/strides, e.g., stream buffers[29]
and software prefetching[7, 9]. Although existing prefetching
techniques can do a good job in reducing memory latency for
scalar processors, they are not as efficient for SIMD proces-
sors, since prefetched data elements may reside among multi-
ple cache lines, causing non-trivial efforts to gather/rearrange.
Our SAMS Multi-Layout Memory not only maintains the re-
quired data as a fast local store, but also guarantees the cor-
rect data format - data elements are distributed in the local
store without bank-conflicts and can be accessed simultane-
ously, without any need for rearrangement in software.

Some recent research projects also consider manipulating
the memory address to improve memory access performance.
The Impulse memory [8] remaps physical addresses of dis-
continuous data to an alias contiguous in the shadow space.
References to the discrete data through the alias are actually
performed by the Impulse Memory Controller at the DRAM
side. While improving the cache and memory bus utiliza-
tion, it is not suitable for on-chip local stores, as data at
the memory side still remain discontinuous and the efficiency
of the data access remains low. Our work differs from Im-
pulse in that we adjust physical locations of data among mul-
tiple memory banks/rows/offsets to exploit the memory ac-
cess parallelism. We also avoid the coherence problem as the
SAMS memory does not create any alias for discontinuous
data. Similar to Impulse, the active memory system|[24] uses
the address remapping to create contiguous aliases for discon-
tinuous data, and access the data with their aliases, to hijack
the memory hierarchy for better cache behavior. Again, they
are unable to improve the efficiency of the memory access at
the memory side. The Command Vector Memory System[11]
proposes broadcasting vector access commands to all memory

modules/banks, instead of sending individual addresses/data.
Despite its inherent support for strided access, the Command
Vector Memory System does not consider special address map-
ping schemes to exploit memory access parallelism among mul-
tiple banks for strided access.

Regarding the data alignment problem in GPP SIMD exten-
sions, studies have been done to improve the performance of
SIMD devices by relieving the impact of non-contiguous and
unaligned memory access from both the compiler and hard-
ware point of view. For example, Ren et al proposed a com-
piler framework to optimize data permutation operations by
reducing the number of permutations in the source code with
techniques such as permutation propagation and reduction[31].
Nuzman et al [26] developed an auto-vectorization compilation
scheme for interleaved data access with constant strides that
are power of two. Alvarez et al [4] analyzed the performance
of extending the Altivec SIMD ISA with unaligned memory
access support on H.264/AVC codec applications. Our work
also addresses the data rearrangement overhead in SIMD pro-
cessors in general and the pragmatic problem of data format
conversion between AoS and SoA in particular. However, our
special focus is on the demonstration of a parallel memory
system with configurable low-level address mapping logic at
proper granularity and the accompanying software abstrac-
tions to improve the memory access efficiency.

7. CONCLUSIONS

In this paper, we proposed the SAMS Multi-Layout Memory
to solve the data rearrangement problem in general and to re-
duce the dynamic data format conversion overhead in particu-
lar. The idea is to easily express the preferred view of the data
structures in software and let the hardware customize the low-
level address mapping logic for optimal data access using this
information. Synthesis results for TSMC 90nm CMOS tech-
nology node suggest reasonable latency and area overhead of
the proposed SAMS memory. To investigate the performance
improvement gains, SAMS was integrated into the IBM Cell
SPE model, and simulated using real applications. FExperi-
ments suggest that, for applications which require dynamic
data format conversions between AoS and SoA, our multi-
layout memory hardware together with the accompanying soft-
ware abstractions improve the system performance by up to
37% and simplify the program SIMDization.

Acknowledgments

This research has been supported by the European Commis-
sion in the context of the FP6 project SARC (FET-27648) and
by the Dutch Technology Foundation STW, applied science
division of NWO and the Technology Program of the Dutch
Ministry of Economic Affairs (project DCS.7533).

References

[1] http://pcsostres.ac.upc.edu/cellsim/doku.php.

[2] http://www.ibm.com/developerworks/power/cell/.

[3] A. Seznec and R. Espasa. Conflict-free accesses to
strided vectors on a banked cache. IEEE Trans.
Computers, 54(7):913-916, 2005.

[4] M. Alvarez, E. Salami, A. Ramirez, and M. Valero.
Performance impact of unaligned memory operations in
SIMD extensions for video codec applications. In
ISPASS ’07: Proceedings of the 2007 International
Symposium on Performance Analysis of Systems and
Software, pages 62-71, 2007.

[5]

[6]

[7]

[9]

(15]

(16]

(17]

(18]

(19]

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: characterization and
architectural implications. In PACT ’08: Proceedings of
the 17th international conference on Parallel
Architectures and Compilation Techniques, pages 72-81,
2008.

P. Budnik and D. J. Kuck. The organization and use of
parallel memories. IEEE Trans. Comput.,
20(12):1566-1569, 1971.

D. Callahan, K. Kennedy, and A. Porterfield. Software
prefetching. In ASPLOS-1V: Proceedings of the fourth
international conference on Architectural Support for
Programming Languages and Operating Systems, pages
40-52, 1991.

J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang,
E. Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote,

M. Parker, L. Schaelicke, and T. Tateyama. Impulse:
Building a smarter memory controller. In HPCA ’99:
Proceedings of the 5th international symposium on High
Performance Computer Architecture, pages 70-79, 1999.
T.-F. Chen and J.-L. Baer. A performance study of
software and hardware data prefetching schemes. In
ISCA ’94: Proceedings of the 21st annual International
Symposium on Computer Architecture, pages 223-232,
1994.

T. Cheung and J. E. Smith. A simulation study of the
CRAY X-MP memory system. IEEE Trans. Comput.,
35(7):613-622, 1986.

J. Corbal, R. Espasa, and M. Valero. Command vector
memory systems: High performance at low cost. In
PACT ’98: Proceedings of the 1998 international
conference on Parallel Architectures and Compilation
Techniques, pages 6877, 1998.

Cray Research Inc. Cray Y-MP C90 system programmer
reference manual. 1993.

D. T. Harper III. Block, multistride vector and FFT
accesses in parallel memory systems. IEEE Trans.
Parallel and Distributed Systems, 2(1):43-51, 1991.

D. T. Harper III. Increased memory performance during
vector accesses through the use of linear address
transformations. IEEE Trans. Comput., 41(2):227-230,
1992.

D. T. Harper IIT and D. A. Linebarger. Conflict-free
vector access using a dynamic storage scheme. IEEE
Trans. Comput., 40(3):276-283, 1991.

S. Dhong, O. Takahashi, M. White, T. Asano,

T. Nakazato, J. Silberman, A. Kawasumi, and

H. Yoshihara. A 4.8GHz fully pipelined embedded
SRAM in the streaming processor of a Cell processor. In
Proceedings of IEEE Int’l Solid-State Circuits
Conference 2005, pages 486612, 2005.

B. Flachs, S. Asano, S. Dhong, P. Hotstee, G. Gervais,
R. Kim, T. Le, P. Liu, J. Leenstra, J. Liberty,

B. Michael, H. Oh, S. Mueller, O. Takahashi,

A. Hatakeyama, Y. Watanabe, and N. Yano. A
streaming processing unit for a Cell processor. In
Proceedings of IEEE Int’l Solid-State Circuits
Conference 2005, pages 134-135, 2005.

T. Forsyth. SIMD programming with Larrabee.
http://software.intel.com/file/15545.

C. Gou, G. K. Kuzmanov, and G. N. Gaydadjiev.
SAMS: Single-Affiliation Multiple-Stride parallel

10

(26]

27]

(28]

29]

(30]

memory scheme. In MAW ’08: Proceedings of the 2008
Workshop on Memory Access on future processors, pages
359-367, 2008.

IBM Systems and Technology Group. Cell BE
programming tutorial v3.0. http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857
AE550FTEB83872571A80061F788.

IBM Systems and Technology Group. Developing code
for Cell - SIMD. www. cc.gatech. edu/bader/cell/Day1-
06_DevelopingCodeforCell-SIMD. ppt.

K. Z. Ibrahim and F. Bodin. Implementing Wilson-Dirac
operator on the Cell Broadband Engine. In IC'S "08:
Proceedings of the 22nd annual International Conference
on Supercomputing, pages 4—14, 2008.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,

T. R. Maeurer, and D. Shippy. Introduction to the Cell
multiprocessor. IBM J. Res. & Dev., 49(4/5):589-604,
2005.

D. Kim, M. Chaudhuri, M. Heinrich, and E. Speight.
Architectural support for uniprocessor and
multiprocessor active memory systems. IEEE Trans.
Comput., 53(3):288-307, 2004.

N. Méading, J. Leenstra, J. Pille, R. Sautter, S. Biittner,
S. Ehrenreich, and W. Haller. The vector fixed point
unit of the Synergistic Processor Element of the Cell
architecture processor. In DATE ’06: Proceedings of the
conference on Design, Automation and Test in Furope,
pages 244-248, 2006.

D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization
of interleaved data for SIMD. In PLDI ’06: Proceedings
of the 2006 conference on Programming Language
Design and Implementation, pages 132-143, 2006.

D. Nuzman and A. Zaks. Outer-loop vectorization:
revisited for short simd architectures. In PACT ’08:
Proceedings of the 17th international conference on
Parallel Architectures and Compilation Techniques,
pages 2—-11, 2008.

W. Oed and O. Lange. On the effective bandwidth of
interleaved memories in vector processor systems. I[EEE
Trans. Comput., 34(10):949-957, 1985.

S. Palacharla and R. E. Kessler. Evaluating stream
buffers as a secondary cache replacement. In ISCA ’9/:
Proceedings of the 21st annual International Symposium
on Computer Architecture, pages 24-33, 1994.

D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger,

R. Chaudhry, D. Cox, P. Harvey, H. Harvey,

P.M. Hofstee, C. Johns, J. Kahle, A. Kameyama,

J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny,
M. Riley, D. Stasiak, M. Suzuoki, O. Takahashi,

J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa.
Overview of the architecture, circuit design, and physical
implementation of a first-generation Cell processor.
IEEFE Journal of Solid-State Circuits, 41:179-196, 2005.
G. Ren, P. Wu, and D. Padua. Optimizing data
permutations for SIMD devices. In PLDI ’06:
Proceedings of the 2006 ACM SIGPLAN conference on
Programming Language Design and Implementation,
pages 118-131, 2006.

M. Valero, T. Lang, M. Peiron, and E. Ayguade.
Conflict-free access for streams in multimodule
memories. IEEE Trans. Comput., 44:634-646, 1995.

