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Abstract—Exponential growth in biological sequence data com-
bined with the computationally intensive nature of bioinformatics
applications results in a continuously rising demand for process-
ing power. In this paper, we propose a performance model that
captures the behavior and performance scalability of HMMER,
a bioinformatics application that identifies similarities between
protein sequences and a protein family model. With our analytical
model, the optimal master-worker ratio for a user scenario can
be estimated. The model is evaluated and is found accurate with
less than 2% error. We applied our model to a widely used
heterogeneous multicore, the Cell BE, using the PPE and SPEs as
master and workers respectively. Experimental results show that
for the current parallelization strategy, the I/O speed at which
the database is read from disk and the inputs pre-processing are
the two most limiting factors in the Cell BE case.

Keywords-performance model; HMMER; multicore architec-
tures; bioinformatics;

I. INTRODUCTION

The rapid development of genetics in recent decades has

led to an explosion of genetic information data. The genetic

structure of many species has been sequenced and the resulting

sheer size of such data sets makes analysis by hand impossible.

In bioinformatics, computers are used to enable biological

research directions that would be unfeasible otherwise.

Within bioinformatics, sequence alignment is a primary

activity. Fragments of DNA or protein sequences are compared

to each other in order to identify similarities between them.

Due to the computational complexity of the algorithms used

to process these data sets, demand for processing power is

soaring. Therefore, it is critical for bioinformatics applications

to be efficient and scalable in order to meet this demand. Two

popular sequence analysis tools are BLAST [1] and HMMER

[2]. Each has its own merits: BLAST is faster; HMMER is

more sensitive and also able to find more distant relationships.

The adoption of HMMER2 in the SPEC2006 and the recent

HMMER3 developments show its significance.

Advancements in microprocessor technology in the past

have resulted in steadily increasing computational power,

through miniaturization and growing transistor budgets. How-

ever, single threaded performance improvement is stagnating

because of frequency, power and memory scaling barriers.

These “walls” are the reason for the current paradigm shift

towards multicore architectures, in an attempt to deliver the

expected performance growth. One example of such multicore

architecture is Cell BE, a processor with special architectural

components and organization that has opened a new path in

processor design. In this paper we have used the Cell BE as

a case study to validate our proposal, however, we consider

that our analysis is applicable to other multicore architectures

as well.

The effectiveness of the multicore paradigm for bioin-

formatics applications is still an open research question. In

this paper, we propose an analytical model of a HMMER

master-worker parallelization for multicore architectures and

investigate its scalability behavior. Through profiling on real

hardware we determine the coefficients and validate our model

for the Cell BE case. The main contributions of this paper are

the in-depth analysis of the HMMER parallelization and the

accurate performance prediction model that is shown to be

precise with error less than 2%.

The remainder of the paper is organized as follows. Sec-

tion II describes the related work. Section III introduces the

Cell BE processor and HMMERCELL. In Section IV we

describe the methodology used and Section V presents the

model. Finally, in Section VI we draw the conclusions.

II. RELATED WORK

HMMERCELL, the Cell BE port of HMMER, is created by

Lu et al. In [3], detailed information on the implementation

and parallelization strategy is provided, along with raw perfor-

mance data where it is benchmarked against commodity x86

architectures. Compared to the AMD Opteron platform (2.8

GHz, 1-4 cores) and the Intel Woodcrest platform (3.0 GHz,

1-4 cores), a single Cell BE is reported to be up to thirty times

faster than a single core Intel or AMD processor. In contrast, in

this paper we build a model of HMMER for a master-worker

parallelization scheme and use HMMERCELL as a validation

example. Besides, we evaluate HMMERCELL performance in

much more detail by breaking down performance into three

constituent phases. These are then modeled and profiled in

order to analyze their behavior for various workloads. Finally,

bottlenecks to scalability are discussed.

HMMER has been ported to various architectures. In [4],

an FPGA implementation of HMMER is investigated. As in

HMMERCELL, the computationally intensive kernel of the

Viterbi algorithm is the main focus. Similar to HMMERCELL,

the FPGA is used as a filter: the sequences with a promising
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score require reprocessing on the host machine. A thirty fold

speedup over an AMD Athlon64 3500+ is reported. This result

is comparable to the performance of HMMERCELL.

MPI-HMMER was created to take advantage of computer

clusters [5]. Similar to HMMERCELL, one node is assigned

a manager role and the rest of the machines are workers

over which the workload is distributed. To cope with over-

head from message passing, sequences are grouped in larger

bundles and sent as one message. Through double buffer-

ing, communication latency is minimized. An eleven-fold

speedup is reported when using sixteen machines. In [6], MPI-

HMMER is analyzed and found to be scalable up to 32-64

nodes, depending on workload. PIO-HMMER is introduced,

addressing I/O-related bottlenecks through the use of parallel

I/O and optimized post-processing. The manager distributes

an offset file with sequences to each node, worker nodes

read the sequences from their local database. Furthermore,

nodes only report significant results back to the manager.

The resulting scaling capability is much improved, as up to

256 machines can be used effectively. Other authors have

parallelized HMMER hmmpfam kernel for shared-memory

machines [7] and for computer clusters in HSP-HMMER[8],

using MPI. Although our proposed model could also be used

for the mentioned HMMER versions, this paper only verifies

the model against the HMMERCELL implementation. The

reason why HMMERCELL scales to less cores than other

implementations [5], [6] is because of the higher per-core

Viterbi performance brought by the Cell’s SPEs.

III. BACKGROUND

In this section we briefly present the platform used in our

case study, i.e., the Cell BE. Besides, we introduce HMMER

along with its parallel implementation.

A. The Cell Broadband Engine

The Cell Broadband Engine [9] represents a radical depar-

ture from traditional microprocessors design. The Cell BE

is a heterogeneous architecture with 9 computing cores: the

Power Processing Unit (PPE), used for general purpose tasks,

and 8 Synergistic Processing Elements (SPEs), designed for

streaming workloads. SPEs are dual-issue in-order SIMD cores

with 256KB Local Stores (LS) and 128 registers, 128-bit wide.

The PPE is a 2-way Simultaneous Multithreading dual-issue

in-order PowerPC processor. A circular ring of four 16B-wide

unidirectional channels connects the SPEs, the PPE, the two

memory controllers and the two I/O controllers. The operating

system runs on the PPE and software can spawn threads

to the SPEs. Data has to be explicitly copied to the SPEs

LSs using Direct Memory Access (DMA) commands. The

Memory Flow Controller (MFC) in each SPE takes care of

these DMA transfers and it does so in parallel to the SPEs’

SIMD execution unit.

B. HMMERCELL

HMMER is an open source family of tools often used in

biosequence analysis [2]. It is aimed specifically at protein

Fig. 1. HMMERCELL program phases.

sequence analysis. Groups of protein sequences thought of

as belonging to the same family are modeled with profile

Hidden Markov Models (HMMs). This paper focuses on one

tool within the HMMER suite: hmmsearch. With this program,

an HMM can be compared to a protein sequence database to

obtain a list of high scoring sequences and their alignment

to the HMM. Execution time is dominated by the Viterbi

decoding phase, which is performed once for each sequence

in the database. Profiling shows that for all but the simplest

workloads, this phase accounts for 98+% of total execution

time.

HMMERCELL [3] is the port of hmmsearch v2.3.2 to

the Cell BE. Parallelism is used at two levels: coarse-grain

parallelism by spawning SPE threads that run one Viterbi

instance each, and fine-grain parallelism within the SPEs,

by using a highly efficient SIMDized version of the Viterbi

algorithm [3]. Secondly, due to the small SPE Local Store, the

use of small memory footprint version of the Viterbi algorithm

is required. Hence, SPEs do not provide a full alignment but

only produce an alignment score. High scoring alignments are

post-processed on the PPE to obtain the actual alignment.

Fig. 1 shows the internal functioning of HMMERCELL

with the PPE and the SPEs acting as master and workers

respectively. The three important phases are:

• M-BUF: the master buffers the sequences by loading

them from disk to memory and creates tasks for the

workers by adding entries in a job queue.

• W-VIT: each worker copies a protein from main memory

to its LS, performs the reduced Viterbi algorithm and

writes the result back to main memory.

• M-PP: during the post-processing phase, the master runs

the full Viterbi algorithm to recover the alignment of

highly scored proteins.

IV. EXPERIMENTAL METHODOLOGY

Experiments are performed on an IBM QS21 Blade fea-

turing two Cell BE processors (and hence 16 SPEs) running

at 3.2GHz and having 4GB of RAM. The code has been

compiled with GCC4.1.1 and -O3 flag. Only one PPE was
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Fig. 2. Distribution of protein database element sizes.

used in our experiments as we intend to study scalability in

the number of SPEs.

For the profiling and model validation tests, profile HMMs

from the Pfam database [10] and sequence data sets from the

UniProt database [11] were used. Fig. 2 shows the current

model and sequence length distribution for Pfam and UniProt

databases. Only the length of the profile HMMs was taken

into account. For the sequence data set, the number of items

in the set and the distribution of their lengths was relevant.

Based on this information, input test sets have been chosen.

To model the application’s behavior, parametric functions

for each phase were created. Their dependence on the input

and the choice for linear or logarithmic scaling depends on

theory, profiling and inspection of code. Based on these equa-

tions, the formulas were parametrized by fitting the profiled

performance data, using linear or logarithmic regression.

V. HMMER ANALYTICAL MODEL

Our model describes the total execution time of the paral-

lelized version of HMMER using the master-worker paradigm.

Based on theoretical expectations and code inspection, we

model the required time for each program phase separately

and combine these phases together. This results in an accurate

model for HMMER performance on multicore platforms.

First, we start with the derivation of the different functions

of the model. Then, the model is applied to our implementation

platform (the Cell BE) by estimating the numeric coefficients.

The analytical results are validated and used to show how the

model can be used to derive the maximum effectively usable

SPE count. More information on the program phases and the

profiling results can be found in [12].

A. Model Derivation

The following parameters are used in our HMMER model:

• TM , TW : master-worker processor time;

• TM BUF , TM PP , TW V IT : execution time of phases;

• li: length of a specific sequence;

• l̄: average length of sequences in the test set;

• m: length of the profile HMM H;

• n: number of sequences in the test set S;

• PPP : chance for a high scoring alignment that requires

post-processing on the master;

• q: number of workers used;

• α, β, γ, δ, Cα, Cβ , Cγ , Cδ: model coefficients.

The required time (t) for each phase to process a single

sequence is expressed in Eqs. 1-3 and is based upon expec-

tations from theory and program inspection. Function IPP

acts as an indicator, returning 1 when an alignment between

a sequence si and the model H is significant for a test set of

size n and otherwise returning 0. Such a sequence requires

post-processing on the master node, which in our case means

recomputing the alignment using the full Viterbi algorithm.

tM BUF = α · li + Cα (1)

tW V IT = β ·m · li + Cβ (2)

tM PP = (γ ·m · li + Cγ) · IPP (3)

Aggregating these equations for individual sequences to the

entire test set results in Eqs. 4-6. The indicator function IPP

has been replaced by the probability function PPP , giving

the average chance for a sequence in test set S to require

post-processing. Predicting the result of indicator function IPP

is difficult, as it requires knowledge of the biological match

between the protein model and a specific sequence. Probability

PPP however can be estimated based on overall traceback
count of a test set. Also, TW V IT states the time required for

the Viterbi computations of all the sequences combined.

TM BUF = n · (α · l̄ + Cα) (4)

TW V IT = n · (β ·m · l̄ + Cβ) (5)

TM PP = n · (γ ·m · l̄ + Cγ) · PPP (6)

with PPP =
δ · lnn+ Cδ

n

To combine the previous equations into an integrated model

of HMMER performance, the interrelation between the func-

tions should be taken into account. The dependencies between

these three functions are depicted in Fig. 3. W VIT starts after

M BUF, as at least one sequence should be buffered before
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Fig. 3. Relationship of dependence between functions.

processing by the workers can commence. W VIT ends after

M BUF, as the last sequence to be buffered must be processed

as well. M PP starts when M BUF finishes, as both buffering

and post-processing is performed on the Master node. M PP

ends after W VIT, as the last processed sequence must be

checked by the master.

When a test set contains many thousands of sequences,

processing time of any individual sequence is insignificant

when compared to total execution time. This observation

allows for two simplifications: first, the above dependencies

between functions can be approximated as follows: M BUF

and W VIT can start at the same time, M PP starts when

M BUF completes, and M PP must finish after W VIT. The

model also assumes that when M BUF finishes there are hits
already available for it to post-process. This is reasonable

considering the M BUF long latencies and because hits will

usually be randomly distributed in the database.

On the other hand, load balancing between workers is

assumed to be perfect, as all processes will finish at approx-

imately the same time. This approximation and hence the

accuracy of the model relies on the assumption that the test set

contains a large number of sequences, so that the granularity

of individual sequence processing becomes very small. This

is reasonable, for example a relevant workload such as the

UniProt database contains around half a million sequences.

Using these assumptions, execution time is modeled as per

Eqs. 7-9:

TM = TM BUF + TM PP (7)

TW = (TW V IT )/q (8)

TTOTAL = max(TM , TW ) (9)

B. Model Parametrization

The previous section shows the generalized form of a perfor-

mance model for an application parallelized using the master-

worker paradigm. The coefficients α-δ, Cα-Cδ and function

PPP are specific to the actual implementation of HMMER.

Here, we show the actual values for our implementation on the

Cell BE architecture. Using linear and logarithmic regression,

the parametrized values are derived from the profiling results.

The extra processing time required by reprocessing high

scoring sequences on the master node is incorporated in the

coefficient’s values.

TM BUF = n · (0.19
103

· l̄ + 5.52

103
) (10)

TW V IT = n · (0.59
103

· m

102
· l̄ + 0.88

103
) (11)

HMM Length 100 200 300 400 500

q (max worker count) 3 6 9 12 15

TABLE I
MAXIMUM EFFECTIVELY USABLE WORKERS.

TM PP = n · (2.25
103

· m

102
· l̄ + 35.7

103
) · PPP (12)

with PPP =
21.9 · lnn− 73.2

n

Combining Eqs. 7-9 and 10-12, total execution time is

approximated by:

max

⎧⎨
⎩

TM ⇒ n · [( 0,19103 + 2,25
103 · m

102 · PPP ) · l̄
+( 5,52103 + 35,7

103 · PPP )]

TW ⇒ n · ( 0,59103 · m
102 · l̄ + 0,88

103 )/q

(13)

C. Maximum Effective SPE Count

Eq. 13 can be used to derive the number of workers (or

in the case of Cell BE: SPEs) that can be effectively used

in scenarios that are constrained by the master’s buffering

performance (in our case: the PPE). In that case, the number

of cores that will saturate the master’s buffering capability can

be estimated by setting TM BUF equal to TW , which results

in the maximum effective number of workers q:

q ≈ TW V IT

TM BUF
=

0, 59 · m
102 · l̄ + 0, 88

0, 19 · l̄ + 5, 52
(14)

From this equation, it follows that the number of usable

workers is solely dependent on HMM model size. Table I gives

the maximum number of usable workers for various HMM

sizes when using sequences with typical length.

D. Model Validation

To validate our model, additional tests have been performed

with new randomly selected data sets of 20.000 and 40.000

sequences (the size is constrained to fit in our blade user

quota, but large enough to be significant for the experiments).

These are compared against four different HMMs with length

150 and 450 (two representative lengths as seen in Fig. 2).

Our model was able to accurately estimate the execution

time of M BUF and W VIT. The average deviation between

result and estimation was 1.5% and 1.7% respectively. Our

model for M PP was found inaccurate, as the number of se-

quences that require post-processing depends on the biological

fit between data set and the HMM, and because the time

for post-processing varies considerably for each sequence.

However, the M PP model inaccuracy will only affect overall

performance estimation if the application is constrained by

the M PP phase. This only occurs when a high fraction of

sequences requires post-processing. However, as traceback
count scales logarithmically with test set size, this fraction

is marginal for realistic data sets. Furthermore, for shared

memory architectures where the M PP phase does not need

to compute the full Viterbi algorithm, the significance of
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the phase is even less than in our case-study. Thus, M PP

contribution to total execution time is negligible. Overall, the

average error of our model was 2%.

VI. CONCLUSIONS

In this paper we presented an analytical model of HMMER

aimed at master-worker parallelization schemes. The model

was deduced from program inspection and later compared

against execution of HMMERCELL on a real Cell BE based

system. The hmmsearch kernel was parallelized following

to the master-worker approach into three stages: buffering,

Viterbi processing and post-processing. The phase that per-

forms the Viterbi calculations is the most time-consuming

portion of HMMER and is primarily responsible for overall

program behavior. Hence, inspection of this part and its paral-

lelization strategy is very important. Offloading the Viterbi

calculations onto the workers is effective: the workload is

regular, the computation-to-communication ratio is high, and

in theory the number of workers that can be efficiently used

is only limited by the number of input sequences. However,

the master should be able to create jobs fast enough. This

implies that for any given workload a certain worker count

exists that will saturate a single master. In this respect, our

model shows that the HMM model size determines how many

workers can be used for a given master’s buffering capability.

This is explained by the fact that only the HMM size has a

different impact on M BUF and W VIT. For short HMMs

for instance, worker jobs are small compared to the M BUF

phase, resulting in the master not being able to keep up with

preparing jobs. Notice that by letting the workers format the

input sequences themselves would improve scalability as less

work needs to be done by the master in the buffering phase.

More in-depth profiling revealed that 40% of the M BUF time

is spent on I/O (fetching the sequences from the disk). Most

of the remaining time is spent on formatting the sequences

before they can be processed by the Viterbi algorithm.

Results showed that the M PP phase introduces uncertainty

in our model. However, the M BUF and W VIT phases are

both linearly dependent on the number of sequences and

are the most influential to overall performance. Since M PP

execution time becomes less significant for larger workloads,

its impact on the overall model accuracy becomes negligible

for realistic data sets. Overall, the model was found to be

highly accurate, with only 2% error when compared to ex-

ecution on real hardware. Notice that on a shared-memory

system, the M PP influence would be reduced even further as

there would be no need to re-compute the Viterbi algorithm.

HMMER executions on both shared-memory machines and

other scratchpad-based architectures such us GPUs could also

be modeled by following the proposed methodology and

determining the model coefficients.

Our model can be used to estimate the optimal ratio between

PPE and SPEs for different working sets. For our case study

with the Cell BE, we found that three SPEs saturate the PPE

for typical HMM sizes. In general, modeling the behavioral

characteristics is a valuable aid for decision-making during

design space exploration as it can show the optimal ratio

between job creation and consumption. The proposed model

can also be used for runtime scheduling.

The findings in this paper are relevant for other bioinfor-

matics applications as well. Most bioinformatics applications

contain an abundance of coarse-grained parallelism and the

master-worker approach (also known as task-centric) is a

useful strategy to divide the work over multiple cores.

Although using only HMMER and the Cell BE in our

experiments, the study presented in this paper has a more

general scope. Our ultimate goal is to understand the inter-

action between bioinformatics workloads and heterogeneous

multicore architectures. In future work we will analyze the

new HMMER3 [13] and apply the same methodology.
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