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Abstract – The MOLEN Programming Paradigm was 

proposed to offer a general function like execution of the 

computation intensive parts of the programs on the 

reconfigurable fabric of the polymorphic computing platforms. 

Within the MOLEN programming paradigm, the MOLEN 

SET and EXECUTE primitives are employed to map an 

arbitrary function on the reconfigurable hardware. However, 

these instructions in their current status are intended for single 

application execution scenario. In this paper, we extended the 

semantic of MOLEN SET and EXECUTE to have a more 

generalized approach and support multi application, 

multitasking scenarios. This way, the new SET and 

EXECUTES are APIs added to the operating system runtime. 

We use these APIs to abstract the concept of the task from its 

actual implementation. Our experiments show that the 

proposed approach has a negligible overhead over the overall 

applications execution. 

 

1 Introduction 

Polymorphic computing platforms [1] usually consist of a 

General Purpose Processor (GPP) and reconfigurable unit(s) 

implemented in an FPGA technology.  Programming such 

systems usually implies the introduction of a new software 

design flow which requires detailed knowledge about the 

reconfigurable hardware. The compiler is a very important 

component in the software design flow as it has to integrate 

most of this information. 

To increase the system performance, computational 

intensive operations are usually implemented on the 

reconfigurable hardware.  Different vendors provide their 

own implementation for each specific operation. The main 

challenge is to integrate these implementations - whenever 

possible - in new or existing applications. Such integration is 

only possible when application developers as well as 

hardware providers adopt a common programming 

paradigm. 

The MOLEN programming paradigm [2] is a sequential 

consistency paradigm for programming reconfigurable 

machines. This paradigm allows parallel and concurrent 

hardware execution and it is currently intended for single 

program execution.   

However, movement towards multi applications, multi 

tasking scenarios, adds new design factor to the system such 

as dealing with FPGA as a shared resource. These factors 

prevent using the MOLEN primitives as they are. They 

should be extended in such a way that besides offering the 

old functionalities, they have to resolves the conflicting 

issues between different applications at the time of primitive 

usage. In this paper, we present how the MOLEN 

programming paradigm primitives are extended and adapted 

into our runtime system.  

The rest of the paper is organized as follows. Section 2 

covers a summary over the related works. In Section 3, we 

present a background overview.  Section 4 describes the 

runtime primitives followed by the evaluation results in 

section 5. Finally, we conclude the paper in section 6. 

2 Related Work 

The main challenge in general-purpose reconfigurable 

computers which serve multiple concurrent applications, is 

sharing the reconfigurable fabric in a transparent and light-

weighted manner. Several research projects are intended to 

offer a consistent runtime system which can handle such a 

reconfiguration aware resource sharing.    The IBM Lime [3] 

goal is to create a single unified programming language and 

environment that allows all portions of a system to move 

fluidly between hardware and software, dynamically and 

adaptively. Lime targets Java applications to be dynamically 

translated for co-execution on general-purpose processors 

and reconfigurable logic. Another similar work is PPL [4] 

which tries to extend the java virtual machine approach by 

featuring a parallel object language to be executed on a 

common parallel runtime system, mapping this language 

onto the respective computing nodes.  

ReconOS [5] aims at the investigation and development of a 

programming and execution model for dynamically 

reconfigurable hardware devices. ReconOS extends the 

concept of multithreaded programming to reconfigurable 

logic. Another comparable approach is BORPH [6], which 

introduces the concept of hardware process that behaves just 

like a normal user program except that it is a hardware 

design running on a FPGA. Hardware processes behave like 
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normal software programs. The BORPH kernel provides 

standard system services, such as file system access, to 

hardware processes, allowing them to communicate with the 

rest of the system easily and systematically.  

Our work focuses on MOLEN programming paradigm and 

considers the FPGA as a co-processor rather than having 

complete hardware threads as in ReconOS and BORPH. 

From this Perspective, our work is more similar to the 

HybridOS [7] approach in which the granularity of the 

computation on the FPGA is based on multiple data parallel 

kernels mapped into accelerators to be accessed by multiple 

threads of execution in an interleaved and space-multiplexed 

fashion.  

StarPU [8] offers a unified task abstraction named "codelet". 

Rather than rewriting the entire code, programmers can 

encapsulate existing functions within codelets. StarPU takes 

care to schedule and execute those codelets as efficiently as 

possible over the entire machine. In order to relieve 

programmers from the burden of explicit data transfers, a 

high-level data management library enforces memory 

coherency over the machine: before a codelet starts, all its 

data are transparently made available on the computing 

resource.  

We are targeting the tightly coupled processor coprocessor 

MOLEN paradigm in which we abstract the concept of the 

task using MOLEN SET and EXECUTE instructions. 

3 Background Overview 

The MOLEN hardware organization is established based on 

the tightly coupled co-processor architectural paradigm. 

Within the MOLEN concept, a general-purpose core 

processor controls the execution and reconfiguration of 

reconfigurable coprocessors (RP), tuning the latter to various 

application specific algorithms. Figure 1 represents the 

MOLEN machine organization. 

 

Figure 1 MOLEN Hardware Organization 

3.1 MOLEN Programming Paradigm 

MOLEN programming paradigm presents a programming 

model for reconfigurable computing that allows modularity, 

general function like code execution and parallelism in a 

sequential consistency computational model. Furthermore, it 

defines a minimal ISA extension to support the 

programming paradigm. Such an extension allows the 

mapping of an arbitrary function on the reconfigurable 

hardware with no additional instruction requirements.  

This is done by introducing new super instructions to 

operate the FPGA from the software. An operation, executed 

by the RP, is divided into two distinct phases: set and 

execute. In the set phase, the RP is configured to perform the 

required task and in the execute phase the actual execution 

of the task is performed. This decoupling allows the set 

phase to be scheduled well ahead of the execute phase, 

thereby hiding the reconfiguration latency. These phasing 

introduces two super instructions; SET and EXECUTE. 

The SET instruction requires single parameter – e.g. the 

beginning address of the configuration microcode. When a 

SET instruction is detected, the Arbiter reads every 

sequential memory address until the termination condition is 

met and configures it on the FPGA. After completion of the 

SET phase, the hardware is ready to be used for the targeted 

functionality. This is done using the EXECUTE instruction. 

This instruction also utilizes a single parameter being the 

address of the execution microcode. The execution 

microcode performs the real operation which consists of 

reading the input parameters, performing the targeted 

computation and writing the results to the output registers. 

As it is obvious, these two instructions are based on the 

assumption of a single thread of execution. With such an 

assumption, having an operating system as long as there is 

only one application dealing with the FPGA is not an issue.  

That is because there is no competition for the resources and 

the application has full control over the FPGA.  In case of 

serving several concurrent applications on the same system, 

SET and EXECUTE can not be used the same way as they 

are used in single application paradigm. Each application 

might issue its own SET (EXECUTE) which most probably 

has conflicts with the other’s SETs (EXECUTEs). In such a 

scenario, the operating system has to resolve all the 

conflicts. 

In the next section, we describe our runtime execution 

environment in which the MOLEN primitives are used to 

operate the FPGA.  

3.2 The Runtime Environment 

Our runtime environment [9] is a virtualized interface, which 

decides how to allocate the hardware at run-time based on 

the dynamic changing conditions of the system. Moreover, 

this layer hides all platform dependent details and provides a 

transparent application development process. This layer is 

located above the Operating System.   

The runtime environment components include a scheduler, a 

profiler and a transformer. It might also incorporate a JIT 

compiler for on the fly code generation for the target cores, 
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e.g. FPGA bit streams. Figure 2 depicts our runtime 

environment.  

 

Figure 2 the Runtime Environment 

In our system, task scheduling takes place in two phases. 

First, at compile-time, the compiler performs static 

scheduling of the reconfiguration requests (SETs and 

EXECUTEs) assuming a single application execution. The 

main goal at this stage is to hide the reconfiguration delay by 

configuring the operations well in advance before the 

execution point.  

Then at runtime, the run-time system performs the actual 

task scheduling. At this stage, the MOLEN SET and 

EXECUTE instructions are just a hint and they do not 

impose anything to the runtime system. The run-time system 

decides based on the runtime status of the system and it is 

possible to run a kernel in software even though the 

compiler already scheduled the configuration. More detail 

about the scheduling procedure can be found in [10]. In this 

paper, we only focus on the runtime SET and EXECUTE 

operations. 

We also have a kernel library which includes a set of 

precompiled implementation for each known operations. This 

means, we might have multiple implementations per 

operation. Each implementation has different characteristics 

which are saved as metadata and can contain, among other 

things, the configuration latency, execution time, memory 

bandwidth requirements, power consumption and physical 

location on the reconfigurable fabric. 

For each operation’s implementation in the library, there is a 

software wrapper which is kept in the form of a Dynamic 

Shared Object (DSO). The application developer can also 

provide his own DSO along with the required metadata. To 

this end, we provide the application developers with a DSO 

creation tool, which is discussed later. 

4 MOLEN Runtime Primitives 

To keep the changes in the compiler and design tool chain 

[11] as limited as possible and also to provide legacy 

compatibility, we propose the MOLEN runtime primitives as 

follows.  

 

Figure 3 the Operation Execution Process 

We have extended the operating system runtime with two 

APIs; The MOLEN SET and MOLEN EXECUTE. The 

functionality of these APIs are almost identical to the 

original MOLEN SET and EXECUTE. Besides the normal 

MOLEN activities, these APIs have to take care of the 

sharing of the FPGA among all the competing applications. 

This means, at the time of the call, the runtime system is 

responsible to check the availability of the FPGA. 

Furthermore, it can impose some sort of allocation policies 

such as priorities and performance issues. 

Figure 3 shows the sequence diagram of the operation 

execution in our runtime system. When an application comes 

upon a call to the SET for a specific operation, it sends its 

request to the runtime system (VM). The VM then checks 

the library to look for all the appropriate implementations. If 

no such implementation is found, it sends a FAIL message 

back to the application which means the SET operation can 

not be performed. Otherwise, based on the scheduling policy 

it selects one of the implementations (IM) and configure it 

on the FPGA. The OS driver is the low level interface 

between the operating system and the physical FPGA fabric.  

Finally, it sends the address of the IM to the application.  

Later on, when the application encounters the EXECUTE 

instruction, the system checks if the IM is still configured 

and ready. If so, the execution can start right away. If not, it 
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has to follow the SET routine again and at the end, starts the 

execution. If any problem occurs during this process, a FAIL 

message will be sent back to the application. A FAIL 

message received by the application means the software 

execution of the operation has to be started. In the following 

two sections, we describe the two APIs in more detail. 

4.1 MOLEN SET 

The SET API receives the operation name as an input. We 

assume all the supported operations have a unique name in 

our system. This assumption is based on the idea of having a 

library of a number of different implementations per 

operation in our runtime environment. Listing 1 shows the 

pseudo code corresponding to the SET API. 

 

In Listing 1, line 2 creates a list of all the existing 

implementation for the operation. If the physical location 

corresponding to any of those implementations is busy, e.g. 

another application is using that resource, that 

implementation is removed from the list in line 4-1 and the 

loop continues to the next element in the list. Some of the 

implementations might already be configured on the FPGA.  

This means there is no need for configuring them again. 

Those implementations are added to another list in line 4-2 

and the best candidate (here the fastest one) is return to the 

main program in line 5.  If there is no such an 

implementation exists, the algorithm goes further to choose 

one of the other implementations and start configuring it in 

line 6. This selection is very dependent on the scheduling 

(line 6-1). The configuration process is discussed in section 

4.3. 

4.2 MOLEN EXECUTE 

The EXECUTE is also an API added to the operating 

system. It has two input arguments; the operation name and 

the address of the configured implementation in the SET 

phase. Listing 2 shows the pseudo code corresponding to the 

EXECUTE. 

In our system, the operations might be shared between 

different applications (This task sharing is one of the 

motivations behind the idea of using dynamic shared object 

as will be discussed in section 4.3). On the other hand, since 

there might be a gap between the occurrence of the SET and 

EXECUTE instructions, e.g. because of the compiler 

optimizations to hide the reconfiguration delay, the control 

might go to another application (app2) and that application 

(app2) might use the implementation which is set by this 

application. That is why the busy status of the IM (in line 2) 

has to be checked. If it is not busy, it can start execution. It is 

also possible to call the EXECUTE without any prior SET or 

any successful prior SET. 

 

 

In this case IM is null. In case of having a busy 

implementation or a null, the SET has to be performed 

again. This is done in line 3. Finally, the algorithm executes 

the implementation in line 4. If any problem occurs during 

the EXECUTE, it return a FAIL which means the operation 

has to be executed in software. The execution process is 

discussed in section 4.3. 

4.3 Dynamic Binding Implementation 

As we pointed earlier, the actual binding of the function calls 

to the implementation happens at runtime. To do that we use 

Listing 2 the EXECUTE 

EXECUTE (input: Operation op; input: 

Implementation IM) 

1- EXECUTE begins 

2- If IM is not NULL and IM is not busy 

 Execute IM; 

 Return SUCCESS; 

End if 

3- I* = SET (op); 

4- If I* is not NULL and I* is not busy 

Execute I*; 

 Return SUCCESS; 

End if 

5- Return FAIL; 

6- EXECUTE ends 

Listing 1 the SET 

SET (input: Operation op): return 

Implementation I* 

1-  SET begins 

2-  Assume im_list the list of all the 

implementations corresponding to the 

op in the library; 

3-  Assume co_list as an empty list; 

4-  For each IM in im_list  

4-1- If the corresponding physical 

location of IM is busy  

Remove IM from im_list; 

Continue; 

End if 

4-2- If IM is already configured on 

the FPGA, Add IM to the co_list; 

End for 

5-  If co_list is not empty 

Return the IM with the minimum 

execution time from co_list; 

6-  If im_list is not empty 

6-1- Choose I* from the im_list based 

on the scheduling policy; 

6-2- Configure I* on FPGA; 

6-3- Return I*; 

End if 

7-  Return FAIL; 

8-  SET ends 
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the ELF binary format delayed symbol resolution facility 

and position independent code.  

For each operation implementation in the library, there is a 

software wrapper with two functions, one which performs 

the low level configuration of the operation (the traditional 

SET) and one which performs the low level execution of the 

operation (the traditional EXECUTE). In the runtime SET, 

when the reconfiguration takes place (line 6-2 in Listing 1), 

the low level SET from this software wrapper is called. 

Similarly, in the runtime EXECUTE (lines 2 and 4 in Listing 

2) the low level EXECUTE is called. The reason that we can 

use the traditional SET and execute at this point is that the 

sharing controls has already been performed by the runtime 

system and it is safe to call the normal SET and EXECUTE 

instruction. 

As it is mentioned before, this software wrapper is kept in 

the form of a Dynamic Shared Object (DSO). Given the 

name of a DSO by the SET (line 6-2 in Listing 1), which is 

the name of the chosen implementation; the system 

dynamically loads the object file into the address space of 

the program and returns a handle to it for future operations. 

We do this process by using the Linux dlopen function. The 

dlopen is called with RTLD_LAZY mode, which says to 

perform resolutions only when they're needed. This is done 

internally by redirecting all requests that are yet to be 

resolved through the dynamic linker. In this way, the 

dynamic linker knows at request time when a new reference 

is occurring, and resolution occurs normally. Subsequent 

calls do not require a repeat of the resolution. To find the 

address of each function in the DSO, we use Linux dlsym 

facility. The dlsym takes the name of the function and 

returns a pointer containing the resolved address of the 

function.   

In the traditional SET (line 6-2 in Listing 1), all the required 

parameters needed by the FPGA have to be transferred to 

MOLEN XREGS. Then, it starts configuring the FPGA. At 

the time of traditional EXECUTE (lines 2 and 4 in Listing 

2); using the dlsym the address of the second function is 

resolved. By this function pointer, we can invoke the 

required operation.   

To simplify the creation of DSO files to be added to the 

runtime library, (especially for third-party modules) a 

support tool is proposed. The idea is simple: It shows a 

template of the wrapper and the program developer has to 

add a few lines of code to it. Besides, the program developer 

has to explicitly write the parameters transfers instruction in 

the pre defined template (moving the parameters to XREGs). 

Then, the tool compiles the code for Position Independent 

Code (PIC) and converts it to a DSO. Furthermore, the tool 

provides a very simple interface to gather the metadata 

required by the runtime scheduler such as the configuration 

latency, execution time, memory bandwidth requirements, 

power consumption, physical location on the reconfigurable 

fabric, etc and stores them in an appropriate format.  

5 Evaluation 

When evaluating our proposed mechanism, two aspects are 

important: what is the overall performance improvement 

through acceleration which can be achieved and what the 

overhead of invoking it is. 

Overhead: The execution time overhead imposed by 

dynamic linking (DSO loading) occurs on two places: at run 

and load-time. At runtime, each reference to an externally 

defined symbol must be indirected through the Global 

Object Table (GOT). The GOT contains the absolute 

addresses of all the static data referenced in the program. At 

load-time, the running program must copy the loaded code 

and then link it to the program. In most cases, the only run-

time overhead of dynamic code is the need to access 

imported symbols through the GOT. Each access requires 

only one additional instruction. The load time overhead is 

the time spent to load the object file. For a null function call 

in our system, the load time is about 0.75 milliseconds. For a 

typical wrapper function, the load time increases to about 2 

milliseconds. We should mention that the increase in the 

input parameters’ size might increase the size of the wrapper 

function since each parameter needs a separate instruction to 

be transferred to the MOLEN XREGs.  

Speedup: In order to show the overall performance of the 

system, we performed a series of experiments. To show only 

the overhead imposed by the SET and EXECUTE APIs, we 

have implemented a scheduling algorithm in which we pick 

the fastest implementation and execute it, on condition of 

course that the FPGA is available. The experiment workload 

is obtained from an interactive multimedia internet based 

testing application [12]. The workload’s kernels are listed in 

Table 1. 

The last column in Table 1, shows the operation total 

execution time when it is executed only once. This means 

the execution time is the sum of the software wrapper load 

delay plus the reconfiguration delay plus the HW execution 

time. As shown in Table 1, the software wrapper delay over 

the total execution time varies between 5 to 20 percent for 

different kernels.  

However in general, when a kernel is loaded (incurring one 

wrapper and reconfiguration delay), it executes more than 

once which means the overhead decreases as the number of 

executions increases. To show such a reduction in execution 

time, we evaluate the overall execution time in the 

following. The first column is the software only execution 

time (no FPGA) which is mentioned just as a point of 

reference. 

To show overall system performance, we used 5 different 

workloads from interactive multimedia internet based test; 

the workload varies based on the number of test taken and 

the number of kernels which is used in each test. We have 

workloads for 12 applicants (821 kernels), 24 applicants 

(1534 kernels), 36 applicants (2586 kernels), 48 applicants 

(3032 kernels) and 60 applicants (4164 kernels). It should be 
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mentioned that each test taker is has its own process in the 

system and therefore the number of applications are equal to 

the number f test takers. In such a scenario, each test takers 

corresponding application is competing against the others to 

obtain the FPGA resources.  

We compared the software only execution with the 

hardware/software execution. As shown in Table 2 the overall 

system speedup varies between 2.28 to 1.91. The wrapper 

overhead to the overall execution time is between five to 

three percent. As the number of test takers increases, the 

chance of executing an already configured kernel increases 

and as a result, the wrapper overhead reduces.  

On the other hand, since the system loads increases, the 

overall speedup is also decreases. That is because the FPGA 

resources are limited and fixed. Therefore, when the system 

load increases the HW/SW execution time gets closer to the 

SW only solution and as a result the speedup reduces. 

 

Table 1 Workload Kernels 

 

Kernels 

Operation SW 

only  

execution time 

(ms) 

Operation 

HW  

Execution 

time 

(ms) 

Operation 

Configuration 

Delay 

(ms) 

Operation 

SW 

wrapper 

Delay 

(ms) 

The HW 

total 

execution 

time 

(ms) 

Epic-
Decoder 

19.87 8.56 5.82 2.11 16.49 

Epic-
Encoder 

11.87 5.22 2.49 1.17 8.88 

Mpeg2-
Decoder 

77.35 2.43 3.64 1.47 7.54 

Mpeg2-
Encoder 

10.39 1.94 4.87 1.81 8.62 

G721 42.42 4.64 5.82 2.57 12.58 

Jpeg-
Decoder 

68.39 8.63 8.72 3.41 20.76 

Jpeg-
Encoder 

169.33 35.23 10.98 4.51 50.72 

Pegwit 166.06 36.34 5.88 2.59 44.81 

 

Table 2 Overall Execution Time 

No application No 

kernels 

12 

821 

24  

1534 

36  

2586 

48  

3032 

60  

4164  

SW-only 135654.08 260508.60 381329.44 501860.74 641478.23

SW/HW 59580.79 121977.13 186415.10 256929.84 335276.90

SW wrapper 

Overhead 

2983.03 5884.87 7654.71 10814.62 11463.15 

Wrapper  overhead 

percentage 

~ 5 % ~ 5 % ~ 4 % ~ 4 % ~ 3 % 

Speedup 2.28 2.14 2.05 1.95 1.91 

6 Conclusion 

In this paper, we extended the MOLEN programming 

paradigms primitives to use them in presence of an operating 

system and in multi application, multi tasking scenarios. The 

MOLEN primitives in their current status are just for single 

application execution. We discussed the details of the SET 

and EXECUTE APIs and presented the dynamic binding 

mechanism whish is used by these APIs to bind a task call to 

a proper task implementation. Our experiments show that the 

proposed approach has a negligible overhead over the 

overall applications execution. 
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