
Interfacing Operating Systems and Polymorphic Computing Platforms

based on the MOLEN Programming Paradigm

Mojtaba Sabeghi, Koen Bertels

Computer engineering Laboratory

Delft University of Technology

Delft, the Netherlands

{M.Sabeghi, K.L.M.Bertels}@tudelft.nl

Abstract – The MOLEN Programming Paradigm was

proposed to offer a general function like execution of the

computation intensive parts of the programs on the

reconfigurable fabric of the polymorphic computing platforms.

Within the MOLEN programming paradigm, the MOLEN

SET and EXECUTE primitives are employed to map an

arbitrary function on the reconfigurable hardware. However,

these instructions in their current status are intended for single

application execution scenario. In this paper, we extended the

semantic of MOLEN SET and EXECUTE to have a more

generalized approach and support multi application,

multitasking scenarios. This way, the new SET and

EXECUTES are APIs added to the operating system runtime.

We use these APIs to abstract the concept of the task from its

actual implementation. Our experiments show that the

proposed approach has a negligible overhead over the overall

applications execution.

1 Introduction

Polymorphic computing platforms [1] usually consist of a

General Purpose Processor (GPP) and reconfigurable unit(s)

implemented in an FPGA technology. Programming such

systems usually implies the introduction of a new software

design flow which requires detailed knowledge about the

reconfigurable hardware. The compiler is a very important

component in the software design flow as it has to integrate

most of this information.

To increase the system performance, computational

intensive operations are usually implemented on the

reconfigurable hardware. Different vendors provide their

own implementation for each specific operation. The main

challenge is to integrate these implementations - whenever

possible - in new or existing applications. Such integration is

only possible when application developers as well as

hardware providers adopt a common programming

paradigm.

The MOLEN programming paradigm [2] is a sequential

consistency paradigm for programming reconfigurable

machines. This paradigm allows parallel and concurrent

hardware execution and it is currently intended for single

program execution.

However, movement towards multi applications, multi

tasking scenarios, adds new design factor to the system such

as dealing with FPGA as a shared resource. These factors

prevent using the MOLEN primitives as they are. They

should be extended in such a way that besides offering the

old functionalities, they have to resolves the conflicting

issues between different applications at the time of primitive

usage. In this paper, we present how the MOLEN

programming paradigm primitives are extended and adapted

into our runtime system.

The rest of the paper is organized as follows. Section 2

covers a summary over the related works. In Section 3, we

present a background overview. Section 4 describes the

runtime primitives followed by the evaluation results in

section 5. Finally, we conclude the paper in section 6.

2 Related Work

The main challenge in general-purpose reconfigurable

computers which serve multiple concurrent applications, is

sharing the reconfigurable fabric in a transparent and light-

weighted manner. Several research projects are intended to

offer a consistent runtime system which can handle such a

reconfiguration aware resource sharing. The IBM Lime [3]

goal is to create a single unified programming language and

environment that allows all portions of a system to move

fluidly between hardware and software, dynamically and

adaptively. Lime targets Java applications to be dynamically

translated for co-execution on general-purpose processors

and reconfigurable logic. Another similar work is PPL [4]

which tries to extend the java virtual machine approach by

featuring a parallel object language to be executed on a

common parallel runtime system, mapping this language

onto the respective computing nodes.

ReconOS [5] aims at the investigation and development of a

programming and execution model for dynamically

reconfigurable hardware devices. ReconOS extends the

concept of multithreaded programming to reconfigurable

logic. Another comparable approach is BORPH [6], which

introduces the concept of hardware process that behaves just

like a normal user program except that it is a hardware

design running on a FPGA. Hardware processes behave like

* This research is partially supported by hArtes project EU-IST-

035143, Artemisia iFEST project (grant 100203), Artemisia SMECY

(grant 100230) and FP7 Reflect (grant 248976).

30

normal software programs. The BORPH kernel provides

standard system services, such as file system access, to

hardware processes, allowing them to communicate with the

rest of the system easily and systematically.

Our work focuses on MOLEN programming paradigm and

considers the FPGA as a co-processor rather than having

complete hardware threads as in ReconOS and BORPH.

From this Perspective, our work is more similar to the

HybridOS [7] approach in which the granularity of the

computation on the FPGA is based on multiple data parallel

kernels mapped into accelerators to be accessed by multiple

threads of execution in an interleaved and space-multiplexed

fashion.

StarPU [8] offers a unified task abstraction named "codelet".

Rather than rewriting the entire code, programmers can

encapsulate existing functions within codelets. StarPU takes

care to schedule and execute those codelets as efficiently as

possible over the entire machine. In order to relieve

programmers from the burden of explicit data transfers, a

high-level data management library enforces memory

coherency over the machine: before a codelet starts, all its

data are transparently made available on the computing

resource.

We are targeting the tightly coupled processor coprocessor

MOLEN paradigm in which we abstract the concept of the

task using MOLEN SET and EXECUTE instructions.

3 Background Overview

The MOLEN hardware organization is established based on

the tightly coupled co-processor architectural paradigm.

Within the MOLEN concept, a general-purpose core

processor controls the execution and reconfiguration of

reconfigurable coprocessors (RP), tuning the latter to various

application specific algorithms. Figure 1 represents the

MOLEN machine organization.

Figure 1 MOLEN Hardware Organization

3.1 MOLEN Programming Paradigm

MOLEN programming paradigm presents a programming

model for reconfigurable computing that allows modularity,

general function like code execution and parallelism in a

sequential consistency computational model. Furthermore, it

defines a minimal ISA extension to support the

programming paradigm. Such an extension allows the

mapping of an arbitrary function on the reconfigurable

hardware with no additional instruction requirements.

This is done by introducing new super instructions to

operate the FPGA from the software. An operation, executed

by the RP, is divided into two distinct phases: set and

execute. In the set phase, the RP is configured to perform the

required task and in the execute phase the actual execution

of the task is performed. This decoupling allows the set

phase to be scheduled well ahead of the execute phase,

thereby hiding the reconfiguration latency. These phasing

introduces two super instructions; SET and EXECUTE.

The SET instruction requires single parameter – e.g. the

beginning address of the configuration microcode. When a

SET instruction is detected, the Arbiter reads every

sequential memory address until the termination condition is

met and configures it on the FPGA. After completion of the

SET phase, the hardware is ready to be used for the targeted

functionality. This is done using the EXECUTE instruction.

This instruction also utilizes a single parameter being the

address of the execution microcode. The execution

microcode performs the real operation which consists of

reading the input parameters, performing the targeted

computation and writing the results to the output registers.

As it is obvious, these two instructions are based on the

assumption of a single thread of execution. With such an

assumption, having an operating system as long as there is

only one application dealing with the FPGA is not an issue.

That is because there is no competition for the resources and

the application has full control over the FPGA. In case of

serving several concurrent applications on the same system,

SET and EXECUTE can not be used the same way as they

are used in single application paradigm. Each application

might issue its own SET (EXECUTE) which most probably

has conflicts with the other’s SETs (EXECUTEs). In such a

scenario, the operating system has to resolve all the

conflicts.

In the next section, we describe our runtime execution

environment in which the MOLEN primitives are used to

operate the FPGA.

3.2 The Runtime Environment

Our runtime environment [9] is a virtualized interface, which

decides how to allocate the hardware at run-time based on

the dynamic changing conditions of the system. Moreover,

this layer hides all platform dependent details and provides a

transparent application development process. This layer is

located above the Operating System.

The runtime environment components include a scheduler, a

profiler and a transformer. It might also incorporate a JIT

compiler for on the fly code generation for the target cores,

31

e.g. FPGA bit streams. Figure 2 depicts our runtime

environment.

Figure 2 the Runtime Environment

In our system, task scheduling takes place in two phases.

First, at compile-time, the compiler performs static

scheduling of the reconfiguration requests (SETs and

EXECUTEs) assuming a single application execution. The

main goal at this stage is to hide the reconfiguration delay by

configuring the operations well in advance before the

execution point.

Then at runtime, the run-time system performs the actual

task scheduling. At this stage, the MOLEN SET and

EXECUTE instructions are just a hint and they do not

impose anything to the runtime system. The run-time system

decides based on the runtime status of the system and it is

possible to run a kernel in software even though the

compiler already scheduled the configuration. More detail

about the scheduling procedure can be found in [10]. In this

paper, we only focus on the runtime SET and EXECUTE

operations.

We also have a kernel library which includes a set of

precompiled implementation for each known operations. This

means, we might have multiple implementations per

operation. Each implementation has different characteristics

which are saved as metadata and can contain, among other

things, the configuration latency, execution time, memory

bandwidth requirements, power consumption and physical

location on the reconfigurable fabric.

For each operation’s implementation in the library, there is a

software wrapper which is kept in the form of a Dynamic

Shared Object (DSO). The application developer can also

provide his own DSO along with the required metadata. To

this end, we provide the application developers with a DSO

creation tool, which is discussed later.

4 MOLEN Runtime Primitives

To keep the changes in the compiler and design tool chain

[11] as limited as possible and also to provide legacy

compatibility, we propose the MOLEN runtime primitives as

follows.

Figure 3 the Operation Execution Process

We have extended the operating system runtime with two

APIs; The MOLEN SET and MOLEN EXECUTE. The

functionality of these APIs are almost identical to the

original MOLEN SET and EXECUTE. Besides the normal

MOLEN activities, these APIs have to take care of the

sharing of the FPGA among all the competing applications.

This means, at the time of the call, the runtime system is

responsible to check the availability of the FPGA.

Furthermore, it can impose some sort of allocation policies

such as priorities and performance issues.

Figure 3 shows the sequence diagram of the operation

execution in our runtime system. When an application comes

upon a call to the SET for a specific operation, it sends its

request to the runtime system (VM). The VM then checks

the library to look for all the appropriate implementations. If

no such implementation is found, it sends a FAIL message

back to the application which means the SET operation can

not be performed. Otherwise, based on the scheduling policy

it selects one of the implementations (IM) and configure it

on the FPGA. The OS driver is the low level interface

between the operating system and the physical FPGA fabric.

Finally, it sends the address of the IM to the application.

Later on, when the application encounters the EXECUTE

instruction, the system checks if the IM is still configured

and ready. If so, the execution can start right away. If not, it

32

has to follow the SET routine again and at the end, starts the

execution. If any problem occurs during this process, a FAIL

message will be sent back to the application. A FAIL

message received by the application means the software

execution of the operation has to be started. In the following

two sections, we describe the two APIs in more detail.

4.1 MOLEN SET

The SET API receives the operation name as an input. We

assume all the supported operations have a unique name in

our system. This assumption is based on the idea of having a

library of a number of different implementations per

operation in our runtime environment. Listing 1 shows the

pseudo code corresponding to the SET API.

In Listing 1, line 2 creates a list of all the existing

implementation for the operation. If the physical location

corresponding to any of those implementations is busy, e.g.

another application is using that resource, that

implementation is removed from the list in line 4-1 and the

loop continues to the next element in the list. Some of the

implementations might already be configured on the FPGA.

This means there is no need for configuring them again.

Those implementations are added to another list in line 4-2

and the best candidate (here the fastest one) is return to the

main program in line 5. If there is no such an

implementation exists, the algorithm goes further to choose

one of the other implementations and start configuring it in

line 6. This selection is very dependent on the scheduling

(line 6-1). The configuration process is discussed in section

4.3.

4.2 MOLEN EXECUTE

The EXECUTE is also an API added to the operating

system. It has two input arguments; the operation name and

the address of the configured implementation in the SET

phase. Listing 2 shows the pseudo code corresponding to the

EXECUTE.

In our system, the operations might be shared between

different applications (This task sharing is one of the

motivations behind the idea of using dynamic shared object

as will be discussed in section 4.3). On the other hand, since

there might be a gap between the occurrence of the SET and

EXECUTE instructions, e.g. because of the compiler

optimizations to hide the reconfiguration delay, the control

might go to another application (app2) and that application

(app2) might use the implementation which is set by this

application. That is why the busy status of the IM (in line 2)

has to be checked. If it is not busy, it can start execution. It is

also possible to call the EXECUTE without any prior SET or

any successful prior SET.

In this case IM is null. In case of having a busy

implementation or a null, the SET has to be performed

again. This is done in line 3. Finally, the algorithm executes

the implementation in line 4. If any problem occurs during

the EXECUTE, it return a FAIL which means the operation

has to be executed in software. The execution process is

discussed in section 4.3.

4.3 Dynamic Binding Implementation

As we pointed earlier, the actual binding of the function calls

to the implementation happens at runtime. To do that we use

Listing 2 the EXECUTE

EXECUTE (input: Operation op; input:

Implementation IM)

1- EXECUTE begins

2- If IM is not NULL and IM is not busy

 Execute IM;

 Return SUCCESS;

End if

3- I* = SET (op);

4- If I* is not NULL and I* is not busy

Execute I*;

 Return SUCCESS;

End if

5- Return FAIL;

6- EXECUTE ends

Listing 1 the SET

SET (input: Operation op): return

Implementation I*

1- SET begins

2- Assume im_list the list of all the

implementations corresponding to the

op in the library;

3- Assume co_list as an empty list;

4- For each IM in im_list

4-1- If the corresponding physical

location of IM is busy

Remove IM from im_list;

Continue;

End if

4-2- If IM is already configured on

the FPGA, Add IM to the co_list;

End for

5- If co_list is not empty

Return the IM with the minimum

execution time from co_list;

6- If im_list is not empty

6-1- Choose I* from the im_list based

on the scheduling policy;

6-2- Configure I* on FPGA;

6-3- Return I*;

End if

7- Return FAIL;

8- SET ends

33

the ELF binary format delayed symbol resolution facility

and position independent code.

For each operation implementation in the library, there is a

software wrapper with two functions, one which performs

the low level configuration of the operation (the traditional

SET) and one which performs the low level execution of the

operation (the traditional EXECUTE). In the runtime SET,

when the reconfiguration takes place (line 6-2 in Listing 1),

the low level SET from this software wrapper is called.

Similarly, in the runtime EXECUTE (lines 2 and 4 in Listing

2) the low level EXECUTE is called. The reason that we can

use the traditional SET and execute at this point is that the

sharing controls has already been performed by the runtime

system and it is safe to call the normal SET and EXECUTE

instruction.

As it is mentioned before, this software wrapper is kept in

the form of a Dynamic Shared Object (DSO). Given the

name of a DSO by the SET (line 6-2 in Listing 1), which is

the name of the chosen implementation; the system

dynamically loads the object file into the address space of

the program and returns a handle to it for future operations.

We do this process by using the Linux dlopen function. The

dlopen is called with RTLD_LAZY mode, which says to

perform resolutions only when they're needed. This is done

internally by redirecting all requests that are yet to be

resolved through the dynamic linker. In this way, the

dynamic linker knows at request time when a new reference

is occurring, and resolution occurs normally. Subsequent

calls do not require a repeat of the resolution. To find the

address of each function in the DSO, we use Linux dlsym

facility. The dlsym takes the name of the function and

returns a pointer containing the resolved address of the

function.

In the traditional SET (line 6-2 in Listing 1), all the required

parameters needed by the FPGA have to be transferred to

MOLEN XREGS. Then, it starts configuring the FPGA. At

the time of traditional EXECUTE (lines 2 and 4 in Listing

2); using the dlsym the address of the second function is

resolved. By this function pointer, we can invoke the

required operation.

To simplify the creation of DSO files to be added to the

runtime library, (especially for third-party modules) a

support tool is proposed. The idea is simple: It shows a

template of the wrapper and the program developer has to

add a few lines of code to it. Besides, the program developer

has to explicitly write the parameters transfers instruction in

the pre defined template (moving the parameters to XREGs).

Then, the tool compiles the code for Position Independent

Code (PIC) and converts it to a DSO. Furthermore, the tool

provides a very simple interface to gather the metadata

required by the runtime scheduler such as the configuration

latency, execution time, memory bandwidth requirements,

power consumption, physical location on the reconfigurable

fabric, etc and stores them in an appropriate format.

5 Evaluation

When evaluating our proposed mechanism, two aspects are

important: what is the overall performance improvement

through acceleration which can be achieved and what the

overhead of invoking it is.

Overhead: The execution time overhead imposed by

dynamic linking (DSO loading) occurs on two places: at run

and load-time. At runtime, each reference to an externally

defined symbol must be indirected through the Global

Object Table (GOT). The GOT contains the absolute

addresses of all the static data referenced in the program. At

load-time, the running program must copy the loaded code

and then link it to the program. In most cases, the only run-

time overhead of dynamic code is the need to access

imported symbols through the GOT. Each access requires

only one additional instruction. The load time overhead is

the time spent to load the object file. For a null function call

in our system, the load time is about 0.75 milliseconds. For a

typical wrapper function, the load time increases to about 2

milliseconds. We should mention that the increase in the

input parameters’ size might increase the size of the wrapper

function since each parameter needs a separate instruction to

be transferred to the MOLEN XREGs.

Speedup: In order to show the overall performance of the

system, we performed a series of experiments. To show only

the overhead imposed by the SET and EXECUTE APIs, we

have implemented a scheduling algorithm in which we pick

the fastest implementation and execute it, on condition of

course that the FPGA is available. The experiment workload

is obtained from an interactive multimedia internet based

testing application [12]. The workload’s kernels are listed in

Table 1.

The last column in Table 1, shows the operation total

execution time when it is executed only once. This means

the execution time is the sum of the software wrapper load

delay plus the reconfiguration delay plus the HW execution

time. As shown in Table 1, the software wrapper delay over

the total execution time varies between 5 to 20 percent for

different kernels.

However in general, when a kernel is loaded (incurring one

wrapper and reconfiguration delay), it executes more than

once which means the overhead decreases as the number of

executions increases. To show such a reduction in execution

time, we evaluate the overall execution time in the

following. The first column is the software only execution

time (no FPGA) which is mentioned just as a point of

reference.

To show overall system performance, we used 5 different

workloads from interactive multimedia internet based test;

the workload varies based on the number of test taken and

the number of kernels which is used in each test. We have

workloads for 12 applicants (821 kernels), 24 applicants

(1534 kernels), 36 applicants (2586 kernels), 48 applicants

(3032 kernels) and 60 applicants (4164 kernels). It should be

34

mentioned that each test taker is has its own process in the

system and therefore the number of applications are equal to

the number f test takers. In such a scenario, each test takers

corresponding application is competing against the others to

obtain the FPGA resources.

We compared the software only execution with the

hardware/software execution. As shown in Table 2 the overall

system speedup varies between 2.28 to 1.91. The wrapper

overhead to the overall execution time is between five to

three percent. As the number of test takers increases, the

chance of executing an already configured kernel increases

and as a result, the wrapper overhead reduces.

On the other hand, since the system loads increases, the

overall speedup is also decreases. That is because the FPGA

resources are limited and fixed. Therefore, when the system

load increases the HW/SW execution time gets closer to the

SW only solution and as a result the speedup reduces.

Table 1 Workload Kernels

Kernels

Operation SW

only

execution time

(ms)

Operation

HW

Execution

time

(ms)

Operation

Configuration

Delay

(ms)

Operation

SW

wrapper

Delay

(ms)

The HW

total

execution

time

(ms)

Epic-
Decoder

19.87 8.56 5.82 2.11 16.49

Epic-
Encoder

11.87 5.22 2.49 1.17 8.88

Mpeg2-
Decoder

77.35 2.43 3.64 1.47 7.54

Mpeg2-
Encoder

10.39 1.94 4.87 1.81 8.62

G721 42.42 4.64 5.82 2.57 12.58

Jpeg-
Decoder

68.39 8.63 8.72 3.41 20.76

Jpeg-
Encoder

169.33 35.23 10.98 4.51 50.72

Pegwit 166.06 36.34 5.88 2.59 44.81

Table 2 Overall Execution Time

No application No

kernels

12

821

24

1534

36

2586

48

3032

60

4164

SW-only 135654.08 260508.60 381329.44 501860.74 641478.23

SW/HW 59580.79 121977.13 186415.10 256929.84 335276.90

SW wrapper

Overhead

2983.03 5884.87 7654.71 10814.62 11463.15

Wrapper overhead

percentage

~ 5 % ~ 5 % ~ 4 % ~ 4 % ~ 3 %

Speedup 2.28 2.14 2.05 1.95 1.91

6 Conclusion

In this paper, we extended the MOLEN programming

paradigms primitives to use them in presence of an operating

system and in multi application, multi tasking scenarios. The

MOLEN primitives in their current status are just for single

application execution. We discussed the details of the SET

and EXECUTE APIs and presented the dynamic binding

mechanism whish is used by these APIs to bind a task call to

a proper task implementation. Our experiments show that the

proposed approach has a negligible overhead over the

overall applications execution.

References
1. Vassiliadis, S., Kuzmanov, G.K., Wong, S., Panainte, E.M.,

Gaydadjiev, G.N., Bertels, K.L.M., Cheresiz, D.: PISC:

Polymorphic Instruction Set Computers. International Workshop on

Applied Reconfigurable Computing (2006)

2. Vassiliadis, S., Gaydadjiev, G.N., Bertels, K.L.M., Panainte,

E.M.: The Molen Programming Paradigm. Third International

Workshop on Systems, Architectures, Modeling, and Simulation

(2003)

3. Huang, S.S., Hormati, A., Bacon, D.F., Rabbah, R.: Liquid

Metal: Object-Oriented Programming Across the

Hardware/Software Boundary. European Conference on Object-

Oriented Programming (ECOOP) (2008)

4. Olukotun, K.: Towards Pervasive Parallelism. (2010)

5. Lübbers, E., Platzner, M.: ReconOS: An Operating System for

Dynamically Reconfigurable Hardware. Dynamically

Reconfigurable Systems. Springer (2010)

6. So, H.K.-H., Brodersen, R.: A unified hardware/software

runtime environment for FPGA-based reconfigurable computers

using BORPH. ACM Transactions on Embedded Computing

Systems (TECS) 7 (2008)

7. Kelm, J.H., Lumetta, S.S.: HybridOS: Runtime Support for

Reconfigurable Accelerators. International Symposium on Field-

Programmable Gate Arrays, Monterey, California (2008)

8. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.:

StarPU: A Unified Platform for Task Scheduling on Heterogeneous

Multicore Architectures. 15th International Euro-Par Conference

(2009)

9. Sabeghi, M., Bertels, K.: Toward a Runtime System for

Reconfigurable Computers: A Virtualization Approach.

Proceedings of the conference on Design, automation and test in

Europe (2009)

10. Sabeghi, M., Sima, V.M., Bertels, K.L.M.: Compiler Assisted

Runtime Task Scheduling on a Reconfigurable Computer. 19th

International Conference on Field Programmable Logic and

Applications (FPL09) (2009)

11. Panainte, E.M., Bertels, K., Vassiliadis, S.: Compiling for the

Molen Programming Paradigm. Field-Programmable Logic and

Applications (2003) 900-910

12. Fazlali, M., Zakerolhosseini, A.: REC-BENCH: A Tool to

Create Benchmark for Reconfigurable Computers. VI Southern

Programmable Logic Conference, (SPL 2010) (2010)

35

