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Abstract

In this paper, we propose an efficient online task scheduling
algorithm which targets 2D FPGA area partitioning model and takes
into account the data dependency and the data communications 1)
among hardware tasks and 2) between hardware tasks and external
devices which have not been explicitly investigated in previous work.
In the experiment with 10000 workloads, the evaluation result shows
that our proposed scheduling algorithm is about 20x faster than the
comparable approach.

I. Introduction

For FPGA-based partially reconfigurable systems, one of the key
challenges is to provide the appropriate runtime management of
the configurable resources which is referred to as reconfigurable
hardware operating system (RHOS). The RHOS manages all config-
urable resources to avoid any conflict among various configurations
as well as to achieve efficient resource usage. Two critical parts of the
RHOS are the task placement and task scheduler which determine
the allocation and the starting and ending times of hardware tasks
running on a FPGA respectively.

Nowadays, the 2D area partitioning model of FPGAs (2D
area) [1] is broadly used. The loading and removing of hardware
tasks impact the free resources on the FPGA. So a successful
task scheduling decision means that a task is assigned to some
configurable resources (spatial requirements) which will not be used
by any other tasks during its scheduled time (temporal requirements).

Previously proposed 2D area task scheduling algorithms showed
the spatial requirement (e.g.[2][3]), as well as parts of the temporal
requirements (configuration and execution times, e.g. [4][5]). How-
ever, there is less investigation into data communications among
tasks and external devices which introduce another critical temporal
requirement: tasks’ data communication time. Without taking the
communication requirement into account, the scheduler may not
guarantee correct data exchanges among scheduled tasks and external
devices during an application’s execution.

In this paper, we propose an efficient 2D area task scheduling
algorithm supporting these communication constraints. The main
contributions of this paper are:

• the definition of an efficient communication aware task schedul-
ing algorithm based on our 2D area model and communication
infrastructure;

• elaboration and evaluation of a scheduling heuristic;

The remainder of the paper is structured as follows: in section II,
related work is presented. Then, in section III, we define the
models used in our scheduling algorithm and analyze the common
problems of scheduling tasks in the partially reconfigurable systems.
Thereafter, we detail our algorithm in section IV. In section V, we

present the experimental results. Finally, we conclude this paper and
discuss future work.

II. Related work

Steiger et al. [2] converted the online 1D area scheduling problem
to a strip packing problem. In addition, they proposed and evaluated
the “1D Horizon” and “Stuffing” scheduling heuristics. Banerjee et
al. [3] also applied the strip packing model into the PARLGRAN
which is an application mapping and scheduling approach.

Zhou et al. [6] proposed a compact reservation (CR) scheduling
algorithm which modeled the FPGA area as a 2D matrix. For each
arriving task, the algorithm recalculates all the encoded information
stored in matrix units to find all available allocations.

Fu et al. [4] proposed a knapsack algorithm based scheduler
where the application execution time is divided into continuous time
intervals. In the beginning of each time interval, their multi-constraint
knapsack heuristic chooses the tasks that need to be mapped on the
FPGA.

None of these approaches treat the communication time as a
specific constraint when scheduling tasks. Our proposed online task
scheduling algorithm applies the strip packing to the 2D area as
well as takes into account the task communication time as a specific
constraint.

III. Models and problem analysis

In this section, we first detail our system model, the 2D area
with communication infrastructure, and the task model which will
be used in our scheduling algorithm. Then based on these models,
we analyze the common problems for scheduling a task into the
FPGA-based partially reconfigurable systems and present possible
solutions.

A. Models

1) System model: Figure 1 shows the target system where the
partial reconfiguration on the FPGA is controlled by the scheduler
and bitstream loader running on the host processor. When a task
arrives, the scheduler allocates the task by taking into account the
start and end time. According to the scheduler’s decisions, the
bitstream loader configures the required tasks at their scheduled
times. The tasks running on the FPGA can communicate not only
with the host processor via an exchange memory, but can also
read (write) data from (to) the peripherals connected to the FPGA.

2) 2D area and its communication infrastructure: The FPGA
area is first partitioned into slots, then each slot is further partitioned
into blocks. As shown in Figure 2, such a block is referred to as a
configuration block which is defined as the minimum configuration
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unit in our algorithm. Each task is only allowed to be allocated in
the neighboring configuration block(s) in the same slot.

The communication structure consists of communication chan-
nels, local buses, system buses and peripheral buses. Each configu-
ration block has its own local buses which connect to the adjacent
communication channel(s). Between two adjacent slots, we add
a communication channel where all the buses can be connected.
The system buses horizontally expand the FPGA and connect to
all communication channels, which allow communications between
tasks in non-adjacent slots. The peripheral buses are the same as
system buses but with an end connecting to peripherals. An example
of communication among Task 1, 2, 3 and two external peripherals is
shown in Figure 2: Task1 and Task2 are connected to the same system
bus for data exchange; Task1 and Task3 are directly connected via
the local buses in the channel; Task2 and Task3 are connected to the
two peripheral buses respectively for communicating with external
devices.

With this communication infrastructure, a communication route
for a scheduled task is built by connecting the local buses to the des-
tination buses. Since all the bus connections must be built within the
communication channels and the locations of all the buses are known
when the area partitioning is decided, the necessary communication
connections in the channels can be derived regardless of the task
configuration and allocation. The communication protocols among
tasks could be designed according to various tasks’ specifications
and the relatively fixed communication structure.

3) Hardware task model: We combine task size, execution time,
configuration time and communication time into the task model
in order to reflect both spatial and temporal requirements. Each
task supposes to occupy a rectangular area (Width x Height) of
configurable logic blocks (CLBs). It arrives at arbitrary time ta and
requires its configuration time (tconfig), execution time (texe) on
the FPGA and communication time (tcomm). Since each task is only
allowed to be allocated in a slot, tasks will have the same width and
the size of the tasks are represented only by their heights.

The task model has two variants as shown in Figure 3. The
horizontal direction reflects the spatial requirement which is the
task’s size represented by its height. The vertical direction stands
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Figure 3. The task model

for the temporal requirement. The tcomm1 stands for the loading of
raw data and the tcomm2 is the time to send the processed data to an
expected destination. The variant 2 which mixes the tcomm1 and texe

together represents tasks who have intensive memory access during
their executions.

B. Problem analysis and solutions

1) Spatial and temporal requirements for configurable re-
sources: When our 2D area and task model are applied, the
utilization of the FPGA can be mapped into the strip packing model
described in [2]. A task’s spatial and temporal requirements for
configurable resources can then be met by assigning it a proper
rectangular allocation in the strip model.

In Figure 4(a), the strip model reflects the utilization of the 3 slots
shown in Figure 2 (the utilization of a slot is referred to as Uslot).
The vertical axis represents time and the horizontal axis stands for
the height of the slot. Since a configuration block is treated as the
minimum configurable unit, the height of all slot is from ‘1’ to ‘5’.
All Uslots are mapped in the strip packing model by adjusting their
horizontal axis ranges (e.g. the Uslot 2 is mapped from ‘6’ to ‘10’).

0 5 10 15Uslot 1 Uslot 3Uslot 2

Task1

Task2

ts

t3
t2

t4

t e

5 10 15

t1

(a)

FTSS1_1

In_edge

Out_edge

FTSS1_1

Task1

Task2

ts

te

FTSS2_1 FTSS3_1

(b)

FTSS1_2

FTSS1_3

FTSS2_1

FTSS3_1

FTSS3_2

FTSS3_3

S

T
Uslot 1 Uslot 3Uslot 2

Figure 4. mFS for the 2D area scheduling
Because the strip has temporal and spatial coordinates, we define

the maximum free rectangle in the strip as free time and space
slot (FTSS). The previously proposed flow scanning (FS) algo-
rithm [7] is modified to find all available FTSSs for arriving tasks in
the strip. The modified FS (mFS) sets the searching interval for each
arriving task, which is the time period between its arriving time (ts)
and the expected end time (te) as shown in Figure 4(a). By setting
initial FTSS in each Uslot, the mFS will find all FTSSs as
shown in Figure 4(b). The detail mechanism of the mFS has been
described in [8][5].

2) Temporal requirements for the allocation-confirmed re-
source: Certain resources such as configuration port, system buses
and peripheral buses are shared among tasks. An efficient schedule
has to take this sharing into account. We give an example shown in
Figure 5.

Assume there is one configuration port and one peripheral bus on
the FPGA. Without taking these constraints into account, two data
independent tasks Task1 and Task2 will be scheduled starting at ts

as shown in Figure 5(a). However it is obvious that such scheduling
results in an access conflict when the two tasks try to access the
configuration port(tconfig) and the peripheral bus(tcomm1) at the
same time. A realistic scheduling result is shown in Figure 5(b) and
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Figure 5(c) shows the occupation status of the peripheral bus. In our
scheduling algorithm, the availabilities of each allocation-confirmed
resource is maintained in a linked list by the software OS and the
scheduler together. The configuration port constraint was studied
in [8] and we now extend it to include communication requirements
and task dependency.

IV. The CASA scheduling algorithm

The proposed Communication Aware online task Scheduling
Algorithm (CASA) has three basic steps. When scheduling an
arriving task, first, the mFS algorithm is called to find all available
FTSSs in the strip model between a search interval. Then these
FTSSs are checked and adjusted if any conflict with the config-
uration port is found. Finally, the task is scheduled into a FTSS
according to its communication requirements.

In this paper, since we focus on the communication requirements
when tasks running on the FPGA, we assume that all hardware tasks
will be scheduled on the FPGA. This can be accomplished by setting
each task’s expected end time te = tlatest + tconfig + tcomm1 + texe

+ tcomm2. The tlatest represents the latest completion time of all
already scheduled tasks. The other terms have been defined earlier
in this paper.

In CASA, task arrivals are represented by task graphs. Each
task graph represents a part of an application as well as any data
dependency between tasks. Tasks in each task graph are supposed to
process some data from an external peripheral. We assume that each
task has at most one child task and one ancestor task (e.g. Task 1,
2 and 3 in Figure 6(a)).

The scheduling heuristic used in CASA is called “locked com-
munication scheduling” (LCS). If a task is successfully scheduled,
all the needed communication buses have to be assigned to the
task during the required periods, in other words, the required buses
are “locked” for the task during scheduled times. LCS schedules
Taski in the first-found suitable FTSS and assigns ti

config (ti
abc is

used to represent tabc of Taski) at the bottom of the FTSS where
the availability of the configuration port is checked in the second
step. Then we will explain how LCS handles the communication
requirements of each task in a task graph by giving an example shown
in Figure 6. In order not to overload the figure, the configuration time
is not shown.
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Figure 6. An example of LCS

The first task in a task graph is assumed to download raw data
from an external device as shown in Figure 6(a). In an available
FTSSi where Task1 can be assigned to, LCS checks whether
the required peripheral bus is available and determines the times
for t1comm1 and t1comm2. If t1comm2 completes earlier than FTSSi,
Task1 is successfully scheduled as shown in Figure 6(b). Task1

is supposed to send intermediate data to Task2 during t1comm2.
Due to the unknown scheduling result of Task2 at this moment,
the possibility of building a direct connection between the two tasks
is uncertain. Therefore, when scheduling Task1, the peripheral bus
is reserved for Task1 at t1comm2 in order to allow it to temporally
store the intermediate data in the peripheral buffer. This is applied
to any task (Taski) in a task graph.

For the second task, LCS needs to handle the data dependency
between tasks. For any two data dependent tasks (represented by
Task1 and Task2), there are 3 possible situations in CASA as
shown in Figure 7. LCS first tries to schedule Task2 in “situation A”
where the two tasks are allocated in adjacent slots and t1comm2 and
t2comm1 are scheduled into the same time period. Task1 can therefore
send the intermediate data directly to Task2 via the local buses. If
“situation A” can not be met, LCS then tries to schedule Task2

in “situation B” where the two tasks are allocated in non-adjacent
slots and the system bus needs to be available at t2comm1. Hence,
the two tasks will communicate directly via the system bus they are
connected to. In any of the above two situations, the peripheral bus
reserved at t1comm2 for Task1 can be released. The scheduling result
of these two situations are shown in Figure 6(c). If “situation B” can
not be applied either, LCS will schedule Task2 in “situation C”
where Task1 stores the intermediate data in a peripheral buffer and
Task2 will later read these data. Figure 6(d) shows the scheduling
of “situation C”. In order to simplify the question, we assume the
buffers are big enough to temporally store the intermediate data. It
can be observed that from “situation A” to ‘C’, more time and system
resources (e.g. peripheral buffer) are consumed.
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Figure 7. Situations for 2 dependent tasks
The scheduling processes of the rest tasks in a task graph (e.g.

Task3) are similar to that of Task2. In LCS, if a task is modeled
by variant 2 of the task model, LCS will schedule it only in the
“situation C” because of its intensive access to a peripheral.

V. Experimental evaluation

To our best knowledge, no previously proposed online task
scheduling algorithm targeting 2D FPGA area explicitly treated
communication as a specific constraint. Therefore, we compare
CASA with the recently proposed CR [6] which showed the best
performance among the scheduling algorithms not only targeting 2D
area but also assigning tasks with exact allocation and execution time
on the FPGA. Since CR does not take into account the communi-
cation and configuration constraints, in the simulation, we added an
idealized CASA (CASA-ideal) which also omits these constraints.

We will use the application completion time (ACT) and single
task waiting time (STWT) to evaluate the different scheduling
algorithms. The execution times of all algorithms will be given
as well. The STWT is defined as the time interval from a task’s
arriving time to its starting time.
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The target FPGA model is Xilinx Virtex4 XC4VF100 FPGA
which contains 160(rows) x 68(columns) CLBs. The 2D area and
communication infrastructure on the target FPGA are similar as the
ones shown in Figure 2: each slot occupies 20 columns of CLBs and
each communication channel uses 4 columns of CLBs. Each configu-
ration block covers the height of 16 CLBs and its configuration time
is about 0.34ms. All the buses in the communication infrastructure
can be implemented by using Xilinx slice-based busmacros [9].

Thanks to DWARV hardware compiler [10] and “Molen” hard-
ware platform [11], the necessary information (e.g. task size and
execution time) on the real hardware tasks (e.g. DCT and AES) was
collected to generate sufficiently large synthetic workloads.

Task sizes are uniformly distributed in [320..1920]CLBs. The
execution times are distributed in [1.00..50.00]ms and the tcomm1

and tcomm2 of each task are distributed in [5%..15%] of its execution
time. The number of tasks in each task graph is in the range of [1..5]
and the time interval for the arriving task graph is distributed in
[1..5]ms. There are around 30 task graphs in each application which
requires [1..3] peripheral(s). Peripherals’s interfaces are randomly
chosen in [32, 64, 96, 128] bits and there is a 128-bit system bus.

Currently, the proposed algorithm is running in simulation. All
evaluated algorithms were programmed using C, and executed under
Windows Vista with Intel(R) Core(TM)2 Duo CPU @ 2.10GHz.

A. Comparison of ACT and STWT

In the simulation, in total 10000 applications were processed by
each scheduling algorithm. The average ACT and STWT of each
algorithm is shown in Figure 8 and Table I gives their standard
deviations.

CASA-config only considers the configuration time constraint [8].
“V1” means the hardware tasks are only modeled with variant 1 of
the task model and “V1+2” is for the tasks modeled with both variant
1 and 2 of the task model. In our simulation, on the average 26.7%
of the tasks in an application are modeled with variant 2.
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Figure 8. Average ACT and STWT
As shown in Figure 8, when only variant 1 of the task model

is used, the CASA based algorithms outperform the CR. This is
mainly because CR bring more area fragmentation. The CASA-
config and LCS-V1 show a small increasing ACT and STWT
compared to CASA-ideal, this is due to the sequential access to the
allocation-confirmed resources which, to some extent, serializes the
applications’ executions. This can be more clearly observed when
variant 2 of the task model is applied (LCS-V1+2).

For all ACT and STWT results of the 10000 applications, only
these for LCS-V1+2 are distributed in relatively large ranges as shown
in Table I. This is because they are highly effected by the random
factors such as number of tasks modeled with variant 2 of the task
model and the appearance frequency of these tasks.

Table I. Std. dev. of average ACT, STWT

CR CASA-ideal CASA-config LCS-V1 LCS-V1+2

ACT 42.05 33.69 33.59 34.88 120.23
STWT 6.55 3.73 3.80 4.39 21.85

B. Execution time of algorithms
The execution time of each algorithm is defined as the time used

by an algorithm to schedule a task. The average execution times are
40µs for CASA-ideal, 44µs for CASA-config, and 37µs for both
LCS-V1 and LCS-V1+2. The CASA based algorithms is about 20x
faster than CR (847µs).

VI. Conclusion and future work

In this paper, we highlighted CASA’s ability to handle the commu-
nication constraints when scheduling tasks. In the future, our work
will focus on: (i) implementing CASA into our FPGA-based config-
urable platform; (ii) investigating in the online task scheduling taking
correlation analysis of multiple allocation-confirmed resources.
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