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Abstract— Smith-Waterman (S-W) algorithm is an optimal
sequence alignment method and is widely used for genetic
databases. This paper presents a Graphics Processing Units
(GPUs) accelerated S-W implementation for protein sequence
alignment. The paper proposes a new sequence database organi-
zation and several optimizations to reduce the number of mem-
ory accesses. The new implementation achieves a performance
of 21.4 GCUPS, which is 1.13 times better than the state-of-
the-art implementation on an NVIDIA GTX 275 graphics card.

Index Terms— Bioinformatics, Protein Sequence Alignment,
Database Organization, Smith-Waterman Algorithm, GPUs

I. INTRODUCTION

Sequence alignment is used to identify regions of sim-

ilarity between DNA or protein sequences. This similarity

may be a consequence of functional, structural or evolution-

ary relationships between the sequences. Various methods

are available for local and global sequence alignment [1].

Heuristics based approaches like BLAST, FASTA and HM-

MER [2–4] are fast, but they do not guarantee an optimal

alignment. Although slow in aligning long sequences, the

Smith-Waterman (S-W) algorithm [5], based on dynamic

programming (DP) [6], is a method that finds an optimal

local alignment between two DNA or protein sequences, i.e.

the query sequence and the database sequence. To develop

efficient and optimal sequence alignment solutions, the S-

W algorithm has recently been implemented on emerging

accelerator platforms such as FPGAs, Cell/BEs and GPUs

[7–16]. The fastest GPU implementation, i.e. ‘CUDASW++

2.0’ [16], achieves a performance of 17 GCUPS on a single

GTX 280 GPU, outperforming CPU-based BLAST in its

benchmarks.

The S-W algorithm with affine gap penalties [17] is given

by Equation 1, where α, β are the gap opening and extension

penalties, respectively. Further, H0,0 = D0,0 = E0,0 =

Hi,0 = Di,0 = Ei,0 = H0,j = D0,j = E0,j = 0, for 1 ≤
i ≤ M and 1 ≤ j ≤ N , where M and N are the lengths of

the sequences to be aligned.

Hi,j = max















0

Hi−1,j−1 + Si,j

Di,j

Ei,j

(1)

where Di,j = max

{

Hi−1,j − α
Di−1,j − β

and Ei,j = max

{

Hi,j−1 − α
Ei,j−1 − β

In this paper, we present a GPU-accelerated S-W imple-

mentation for protein sequence alignment. The implementa-

tion pre-converts the reference protein database to a custom

GPU format. Like other GPU implementations, the time con-

suming matrix fill step of the S-W algorithm is implemented

and accelerated on the GPU. The performance is enhanced

by restructuring the entire database and optimizing its or-

ganization. Furthermore, memory accesses are optimized to

eliminate bandwidth bottlenecks. The results demonstrate

that the new implementation achieves a performance of 21.4

GCUPS, which is 1.13 times better than the state-of-the-art

implementation on an NVIDIA GTX 275 graphics card.

The remainder of the paper is organized as follows:

Section II presents the GPU-accelerated S-W implementation

for protein sequence alignment. Section III discusses the

results and compares the performance of our implementation

with other solutions. Section IV concludes the paper.

II. GPU-ACCELERATED IMPLEMENTATION

A. General design

Being the most mature GPU programming toolkit to date,

NVIDIA Compute Unified Device Architecture (CUDA) [18]

is used for the GPU programming (device code) in conjunc-

tion with C++ for the PC programming (host code). Like with

other existing GPU implementations, protein sequences from

the Swiss-Prot database [19] are considered for alignment.

The reason is that protein alignment is more complex than

the DNA version, which makes supporting DNA alignments

later on relatively simple. Figure 1 shows a block diagram

description of the implementation. The host code is mostly

concerned with loading data structures, copying them to the

GPU, and copying back and presenting the results. The query

sequence, converted database and other data are copied to

the GPU. Then the device code is launched, which aligns

the query sequence with the database sequences using the

S-W algorithm.

Like other GPU implementations, our implementation

returns maximum S-W scores instead of the actual align-

ments. Skipping the algorithm’s traceback step significantly

simplifies and speeds up the implementation. Furthermore, as

no data structures like pointer lists need to be kept, memory

consumption is decreased as well. However, to be able to

generate full alignments, a number of top-scoring sequences

are exported to a new database file. The sequences in this

file can then be aligned on the host PC using the Smith-

Waterman search (ssearch) tool. This approach leads to some

redundancy as some sequences are aligned twice, however,
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the number of such sequences is relatively small. By default

20 top scoring sequences are returned, whereas the Swiss-

Prot database contains more than 500,000.
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Fig. 1. Description of the GPU implementation

Each processing element in our implementation is used

to independently generate a complete alignment between a

query sequence and a database sequence. This eliminates

the need for inter-processor communication and results in

efficient resource utilization. The GPU used for implementa-

tion (i.e. NVIDIA GTX 275) contains 240 processors, while

the latest release of Swiss-Prot contains more than 500,000

sequences. Hence, it is possible to keep all processors well

occupied [20].

B. Database organization

The Swiss-Prot database is organized in FASTA format,

where sequences are preceded by sequence descriptions that

give names and other biological information about them.

Instead of directly loading databases in FASTA format, the

GPU implementation converts them to a custom GPU format

to better match the device capabilities. A database only needs

to be converted once, after which it is locally stored in the

new format. The conversion process as shown in Figure 2

consists of the following steps.

1) Sorting: A CUDA program executes in parallel across

a set of threads, where a thread is the basic unit in the CUDA

programming model that executes an instance of the code

and has access to registers and per thread local memory.

The GPU processors execute threads in groups of 32 called

warps. Performance on GT200-class GPUs can be optimized

a great deal by having threads in a half-warp (16 threads)

execute the same code path and access memory in a close

vicinity. In practice the threads in a half-warp will have

to wait for each other to finish their workload instead of

continuing on independently. To reduce this waiting time, the

database sequences are sorted by length to minimize length

differences between neighboring threads, as shown in Figure

2(b). Sequence descriptions are stored in a separate file that

is not uploaded to the GPU, saving memory and decreasing

load times. Furthermore, sequence characters are replaced

with numeric indexes to facilitate easier substitution matrix

lookups.
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Fig. 2. The database conversion process

2) Concatenation: After sorting, groups of 16 sequences

are taken and processed in sequence sets that will have a

half-warp of threads working on them, as shown in Figure

2(c). Even though sorting by length has somewhat equalized

workload within each sequence set, various sequence sets

still have different sizes. To combat this, sequences within

a sequence set are concatenated with leftover sequences to

form sequence groups. The total length of each sequence

group within a sequence set nearly equals or, ideally, matches

the length of the longest sequence in that set. This results in

an equal workload for each thread in a half-warp processing

a sequence set.

Sequence terminators are inserted between the concate-

nated sequences; these tell the GPU kernel to initiate a new

alignment. Sequence group terminators are inserted at the

end of each sequence group signifying the end of a group of

concatenated sequences, at which point a thread will wait for

the rest of the threads in the half-warp to cease execution.

3) Interlacing: Once all database sequences have been

processed into 16-wide sets of sequence groups, they are

written to file. The sequence sets are written in an interlaced

fashion, as shown in Figure 3. Each interlaced subset consists

of eight characters from each sequence group.
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Fig. 3. Sequence storing as interlaced subsets
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Eight characters of the set’s first sequence group are

written, then eight characters of the set’s second group and

so on. As there are 16 sequence groups in each sequence

set, each thread in a half-warp is now able to load 8 bytes

of sequence data from neighboring addresses. As a result,

128-byte coalesced loading takes place [20].

4) Equal length sequence sets: During code development,

alignments were conducted with a synthetic (randomly gen-

erated) database, each sequence of which had the same

length. The performance of this synthetic database is twice

that of the Swiss-Prot database, which has sequences ranging

in length from 2 to 35213 characters. The drop in perfor-

mance for Swiss-Prot is the result of different workloads

between different half-warps.

Though concatenation resulted in an equal workload dis-

tribution for threads within every sequence set, it still varies

among different sequence sets. To resolve this, the length

of each sequence group within every sequence set is made

equal or nearly equal to the length of the longest sequence

in the database, as shown in Figure 2(c). This results in an

equal workload distribution for all GPU threads in general.

The outcome of this is a 1.7 times increase in performance.

Evidently, equal workload across different threads im-

proves performance; possibly a result of the GPU’s thread

scheduling not being optimal in the previous case. For

example, the GPU thread scheduler might only schedule a

new thread block once all the threads in a previous thread

block have completed their execution.

C. Temporary data reads and writes

Memory bandwidth represented a serious bottleneck while

developing the GPU implementation. A number of steps have

been taken to optimize for high performance by reducing the

number of memory accesses, the frequent temporary data

accesses in particular. As no traceback is performed on the

GPU, S-W matrix values do not need to be saved for the

entire execution time and can be overwritten. As such, only

a single column of S-W scores is kept. This score column

stores values to the left of the currently processing column,

i.e. Hi−1,1≤j≤N in Equation 1. The size of this temporary

data column is set to the size of the query sequence, not the

database sequence, so that the column can have one fixed

size for all database sequences. This usually requires less

memory, as it is unlikely that the query sequence will be as

long as the longest database sequence. The temporary data

column is set to zero whenever a new database sequence is

started. In addition to this temporary score column, variables

are used to keep the values of the upper and upper-left

cells required by the algorithm, i.e. Hi,j−1 and Hi−1,j−1

in Equation 1. To support affine gap penalties, another

temporary data column is added for D values. Additionally,

an upper E value is kept (see Equation 1).

Each S-W iteration involves reading and writing two

temporary values (score and D), for four accesses in total.

When both are non-coalesced, 32 byte reads/writes are issued

for each access. This means that per half-warp 16 threads×
32 bytes × 2 values × 2 read/write = 2048 bytes of

bandwidth is used, resulting in a major memory bottleneck.

The optimization steps mentioned below decrease this to one

128-byte coalesced read and write for every second iteration.

This is a 16 times bandwidth improvement and requires only

1 instead of 64 accesses. 128 bytes is the largest allowed

coalesced access size, and is faster than multiple smaller

coalesced accesses. The optimizations are as follows:

• Smaller, 16-bit data type for the temporary values,

cutting the theoretically required bandwidth in half and

allowing for better coalescing.

• Each thread stores one data value in turn, resulting in

an interlaced storage scheme. Instead of direct array

accesses, a pointer into the temporary storage is started

at the thread id, and increased by the total number of

threads to move to the next element of the S-W H
matrix. Each thread in a half-warp then reads a 2-byte

coalesced value, meaning that instead of two 32-byte

accesses per thread, two such accesses take place per

half-warp. This sixteen times bandwidth improvement

results in an almost ten times net speedup.

• To again halve the number of memory accesses, the

temporary score and D values are interlaced. This is

done by defining a data structure consisting of these

values and using it to access the score and D values for

an iteration in one go. At this point, a thread accesses

two 2-byte values in one read, for a total of 16× 2× 2

bytes bandwidth per half warp. The result is a 64-byte

coalesced access.

• Finally, two temporary values are interlaced to move

to 128-byte accesses. This has an additional benefit of

temporary reads/writes only being required for every

second query sequence symbol processed.

D. Substitution matrix accesses

Aligning proteins requires the use of a substitution matrix,

which is accessed every time two symbols are aligned,

making its access time critical to the implementation’s per-

formance. Substitution matrix (e.g. BLOSUM 62) accesses

are random and are completely dependent on the database

sequence, complicating the choice of memory used. GPU’s

Global memory is not a good choice for such a frequent

usage due to its high access time. Also the random nature of

substitution matrix accesses makes coalescing very difficult.

As an alternative, the substitution matrix is stored in texture

memory. Texture memory is a cached window into global

memory that offers lower latency and does not require

coalescing for best performance. It is thus well suited for

random access. Texture memory has the ability to fetch four

values at a time. This mechanism can be used to fetch four

substitution matrix values from a query profile.

A query profile is shown in Figure 4. It is a type of

substitution matrix where, instead of the protein alphabet,

the query sequence is used along the top row. This means

that for a given database character, the substitution matrix

is not random anymore: multiple substitution scores can

be loaded simultaneously when aligning the query with a

database character. Furthermore, query sequence lookups are
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Fig. 4. Query profile

not required anymore; only the current position within the

query is needed to index into the profile. A query profile

is generated once for every query sequence. Each query

profile column stores values for 23 characters. The number

of columns and hence the memory requirement for a query

profile depends on the length of the query sequence. The

GTX 275 GPU used for our implementation has 8KB of

texture cache per multiprocessor. This means that a query

sequence having more than ⌊8 × 1024/23⌋ = 356 characters

will result in increased cache misses, as described in [14].

Tests were performed to quantify the texture cache miss rate,

which was shown to be very low. For example, aligning an

8000 character query sequence resulted in 0.009% miss rate.

For smaller sequences, the miss rate was reported to be even

lower. Using this query profile method resulted in a 17%

performance improvement with Swiss-Prot.

III. DISCUSSION OF RESULTS

The experimental setup used to test the implementation

and measure its performance is as follows:

• Intel Core 2 Quad Q6600 (2.4 GHz) with 4GB of RAM

• NVIDIA Geforce GTX 275 graphics card with 896 MB

of memory and clock speeds of 633, 1134 and 1404

MHz for its core, memory and shaders respectively

• 64 bit Microsoft Windows 7 Professional

• CUDA toolkit version 3.1

• Swiss-Prot release October 2010

• Substitution matrix BLOSUM62

• Gap penalty: -10 and gap extend penalty: -2 (these do

not influence the execution time though)

The run time is measured using the C clock() instruc-

tion, the accuracy of which is verified using the CUDA pro-

filing application. Table I displays the performance results,

where the execution time in seconds and the performance

in GCUPS are given for query sequences of varying lengths

taken from Swiss-Prot and aligned against the same database.

Figure 5(a) shows that the execution time increases lin-

early with sequence length, resulting in an almost constant

performance of around 21.4 GCUPS, shown in Figure 5(b).

The comparison of our optimized implementation with

other solutions is shown in Figure 6 and is described in the

following subsections.

A. Comparison with ssearch

Ssearch (SSE2) is an accelerated and multi-threaded ver-

sion of ssearch, where ssearch is a CPU-based S-W align-

TABLE I

PERFORMANCE RESULTS WITH SWISS-PROT

Query Length Execution time Performance

P02232 144 1.24 21.35

P05013 189 1.65 21.06

P14942 222 1.93 21.15

P07327 375 3.24 21.28

P01008 464 3.99 21.38

P03435 567 4.89 21.32

P27895 1000 8.60 21.38

P07756 1500 12.91 21.36

P04775 2005 17.27 21.35

P19096 2504 21.54 21.37

P28167 3005 25.88 21.35

P0C6B8 3564 30.67 21.37

P20930 4061 34.97 21.35

Q9UKN1 5478 47.15 21.36
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Fig. 5. (a) Execution time, (b) performance, for various query sequences

ment tool that can be found in the FASTA suite of applica-

tions [21]. The SSE2 optimizations, described in [22] utilize

modern CPU’s vector extensions for a performance increase.

When run on the same system, using the same settings,

our implementation performs 2.14 times better in terms of

GCUPS than this accelerated and multi-threaded version of

ssearch.

B. Comparison with a less optimized version

In the less optimized version, sequences are only sorted,

concatenated and interlaced. However, no equal length sets

were used, making the length of each sequence set depend on

the longest sequence within that set. When run on the same

experimental setup as the fully optimized version, this less

optimized version results in a performance of around 12.5

GCUPS. The comparison in Figure 6 shows that our fully

optimized GPU implementation performs around 1.7 times

better than the less optimized version.

C. Comparison with CUDASW++ 2.0

When run on the same setup as our implementation,

CUDASW++ 2.0 achieves a performance of around 19

GCUPS. Thus our fully optimized implementation performs

1.13 times better than CUDASW++ 2.0 in terms of GCUPS.

Both approaches are sensitive to the structure of the database

used. Like our implementation, CUDASW++ 2.0 also uses

16-bit score values, as discussed in Section II-C. Table II

summarizes the optimization steps undertaken by our fully

optimized implementation in comparison with CUDASW++

2.0.
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TABLE II

A COMPARISON WITH CUDASW++ 2.0

# Optimization Ours CUDASW++ 2.0

1 Database sorting + +

2 Concatenation + −

3 Interlacing + +

4 Equal length sequence sets + −

5 Query profile + +

Additionally, our implementation also brings in the fol-

lowing improvements:

• In comparison with CUDASW++ 2.0, our implementa-

tion is simpler, as it uses just one search kernel instead

of two, requiring no inter-processor communication.

• The optimized database organization scheme used in

our implementation allows an equal workload for each

thread block, while CUDASW++ 2.0 uses a hand-

picked point at which it switches from one kernel to

the other for its work distribution.

• Our implementation exports the top scoring sequences

for full alignment with ssearch. CUDASW++ 2.0 does

not provide this facility. Our implementation also pro-

vides a web interface that allows it to be used conve-

niently and remotely.

In comparison with CUDASW++ 2.0, our less optimized

implementation performs 1.52 times slower in terms of

GCUPS, as shown in Figure 6. This is because CUDASW++

2.0 switches to its secondary systolic array based alignment

stage for long sequences. Long sequences in a database

inherently have the largest length differences, specifically

true for Swiss-Prot. Thus, aligning them using systolic array

based approach reduces the workload differences.

IV. CONCLUSION

This paper presented a GPU-accelerated Smith-Waterman

based implementation for protein sequence alignment. The

new implementation improves the performance by reducing

the number of memory accesses and optimizing the database

organization. The database is organized in equal length se-

quence sets resulting in an equal workload distribution for all

the threads of each multiprocessor on the GPU. The perfor-

mance achieved by our new implementation is 21.4 GCUPs.

In comparison with the state-of-the-art implementation on an

NVIDIA GTX 275 graphics card, our implementation reports

a 1.13 times performance improvement in terms of GCUPS.
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