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Abstract

There is today little doubt on the fact that a high-performance
and cost-effective Network-on-Chip can only be designed in 45nm
and beyond under a relaxed synchronization assumption. In this di-
rection, this paper focuses on a GALS system where the NoC and
its end-nodes have independent clocks (unrelated in frequency and
phase) and are synchronized via dual-clock FIFOs at network in-
terfaces. Within the network, we assume mesochronous synchro-
nization implemented with hierarchical clock tree distribution. This
paper contributes two essential components of any practical design
automation support for network instantiation in the target system.
On one hand, it introduces a switch design which greatly reduces the
overhead for mesochronous synchronization and can be adapted to
meet different layout constraints. On the other hand, the paper illus-
trates a design space exploration framework of mesochronous links
that can direct the selection of synchronization options on a port-
by-port basis for all the switches in the NoC, based on timing and
layout constraints. A final case study illustrates how a cost-effective
GALS NoC can be assembled, placed and routed by exploiting the
flexibility of the architecture and the outcomes of the exploration
[framework, thus proving the viability and effectiveness of the design
platform.

1. Introduction

Network-on-chip communication architectures are being widely
adopted in System-on-Chip design to ensure scalability and fa-
cilitate a component-based approach to large-scale heterogeneous
system integration. As technology advances into aggressive
nanometer-level scaling, a number of design challenges emerge
from technology constraints which require a continuous evolution
of NoC implementation strategies at the circuit and architectural
level. Synchronization is today definitely among the most critical
challenges in the design of a global on-chip communication infras-
tructure, as emerging variability, signal integrity, power dissipation
limits are contributing to a severe break-down of the global syn-
chronicity assumption when a logical structures spans more than
a couple of millimeters on die [23]. NoCs typically span the en-
tire chip area and there is now little doubt on the fact that a high-
performance and cost-effective NoC can only be designed in 45nm
and beyond under a relaxed synchronization assumption [24].

A number of NoC research proposals have tackled the syn-
chronization challenge in recent years, leading to a rich research
field which could be coarsely clustered in purely asynchronous vs.
globally-asynchronous, locally synchronous (gALS) approaches.
This work can be classified in the latter group. More pre-
cisely, we assume that the NoC and its end-nodes have inde-
pendent clocks (unrelated in frequency and phase) and are syn-
chronized via dual-clock FIFOs at the network interface. Within
the network, we assume mesochronous synchronization imple-
mented with hierarchical clock tree synthesis [2]. This mixed asyn-
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chronous/mesochronous approach is considered very promising as
it limits the performance and area overheads associated with purely
asynchronous implementations and, more importantly, is fully com-
patible with the current generation of design implementation tools.

Our contribution is two-fold.  First we introduce a new
switch design which greatly reduces the overhead in supporting
mesochronous synchronization. In a nutshell, we merge the in-
put buffering logic with the mesochronous synchronizer, thereby
achieving major savings thanks to the sharing of expensive buffers,
at the expenses of a reduction of the link delay budget and phase
shift margin. Our design is still fully synthesizable and does not
even require ad-hoc library support (e.g. synchronizer cells). More-
over, we can choose on a port-by-port basis if the mesochronous
synchronizer will be merged with the input port or be sim%)lty added
immediately outside the switch. This additional degree of freedom
enables us to select the external synchronizer when two switches
are connected with a very long link which would not be compatible
with the delay and phase constraints of the merged synchronizer.

Our second contribution is a design space exploration of
mesochronous NoC links providing selection guidelines of synchro-
nization options on a port-by-port basis for all the switches in the
NoC. As a result, target timing and phase margins can be reliably
enforced in the NoC while adapting to the layout constraints at hand.
Our exploration framework also captures the implications of syn-
thesis directives on the skew tolerance of mesochronous links, so
that performance optimization of the NoC design can be performed
without loosing control on key synchronization parameters. Our
exploration framework is an essential component of any practical
design automation support for network instantiation in the target
GALS system aiming at a cost-effective implementation and at less
design respins. It would be extremely labor-intensive for a designer
to instantiate an entire network manually while checking design
constraints which determine switch instantiation options. Above
all, it would be difficult for him to capture the implications of his
design choices across a number of design parameters and layers.

Our network architecture and design flow is finally tested on a
complete (from architecture to fully placed and routed layout) NoC
design case study, demonstrating the superior area properties of
GALS NoCs designed with our platform and the area-performance-
skew tolerance trade-off spanned by the possible architecture vari-
ants.

2. Related Work

Many systems deploying concepts of the GALS philosophy can

be found in literature.
In [25] a many-core heterogeneous computational platform em-
gloying GALS compatible circuit switching on-chip network has
een presented. [18] presents an example of mesh-connected GALS
chip multiprocessor. The work shows that the typical performance
penalties of GALS systems (mainly due to additional communica-
tion latency) can be hidden by using large FIFO buffers. In [2],
the physical implementation of the DSPIN network-on-chip in the
FAUST architecture has been presented. In [19] a cost effective so-
lution for asynchronous delay-insensitive on-chip communication
is proposed. The solution is based on the Berger coding scheme
and allows to obtain a very low wire overhead. [20] proposes a new



Asynchronous Network-On-Chip (NOC) architecture aiming at low
latency transfers.

At interfaces level, many GALS wrappers have been proposed in
[21], [22], [16], [14], [15] to provide fast and reliable async%ronous
communication services.

GALS modularity has been used also along with the concept
of volt?e—frequency islands (VFIs) which has been recently in-
troduced for achieving fine-grain system-level power management.
[13] proposes a design methodology for partitioning a NoC architec-
ture into multiple VFIs. [11] and [12] proposes a complete dynamic
voltage and frequency scaling architecture for IP units integration
within a GALS NoC.

Examples at industrial level are presented in [10], [9], [17],
[5]. In [9] authors examine the use of GALS techniques to ad-
dress on-chip communication between different synchronous mod-
ules on a bus. Issues related to validation, module interfaces and
tool flows, while looking at advantages in power savings, timin,
closure and Time-to-Market/Time-to-Money (TTM) are explored.
[17], [5] both suggest to implement the boundary interface with a
source-synchronous design style and propose some form of ping-
pong butfering to counter timing and metastability concerns.

In this context, we advocate for tight integration of synchroniza-
tion interfaces into NoC building blocks to cut down on latency,
area and power. The feasibility of this challenging yet promising
approach to NOC design has been first explored in our previous
work in [3]. That work describes architecture design principles of
a tightly coupled synchronization architecture and provides switch-
level insights on area/power savings. This paper significantly ex-
tends that work. First, it provides a wider range of architecture al-
ternatives and even port-level configuration capability (flexibility).
Above all, it identifies the distinctive design constraints of the new
schemes and performs a design space exploration of mesochronous
NoC links and switches to capture how timing margins can be
preserved for different combinations of synthesis and layout con-
straints. Finally, we Erovide a system-level demonstration of the
cost-effectiveness of the proposed GALS NoC.

3. Target GALS architecture

The focus of this work is on the building process of GALS sys-
tems, where processing blocks can be separated from each other
such that each of them can be clocked by an independent clock do-
main. This approach is a promising strategy to address global clock
desién challenges. There are a number of implementation solutions
for GALS systems. One method consists of asynchronous clock-
less handshaking, which uses multiple phases of signal exchange to
transfer data. Due to the round-trip signal exchange, the transfer la-
tency between two consecutive data words is high. Besides that, the
asynchronous clockless circuits are difficult to verify in traditional
CAD flows, and they also demand a comparatively large area and
energy requirements [1,21].

The one addressed in this work consists of implementing the on-
chip network as an independent clock domain, and therefore to place
circuitry to reliably and efficiently move data across asynchronous
clock boundaries between NoC switches and connected network in-
terfaces. These latter are assumed to be part of the clock domain
of the IP core that they serve. Dual-clock FIFOs are an effective
solution to provide asynchronous boundary communication, espe-
cially in throughput-critical interfaces. However, many designers
are skeptical about their utilization due to the relevant latency, area
and power overhead they incur. Beyond urging research activities
aiming at the optimization of dual-clock FIFO architectures, this
fact emphasizes the need for their conscious use in GALS systems.

Aware of this, we try to minimize their usage as much as pos-
sible by instantiating them only at IP core boundaries, after their
respective network interfaces. This choice however moves many
chip-wide timing concerns to the on-chip network. In fact, this lat-
ter ends up spanning the entire chip and might be difficult to clock
due to the growing chip sizes, clock rates, wire delays and parameter
variations. There 1s little doubt on the fact that a high-performance
and cost-effective Network-on-Chip can only be designed in 45nm
and beyond under a relaxed synchronization assumption.

We find that mesochronous synchronization can relieve the bur-
den of chip-wide clock tree distribution while requiring simpler and
more compact synchronization interfaces than dual-clock FIFOs.
Hierarchical clock tree synthesis is an effective way of exploiting
mesochronous links, as already experimented in [3/]_ During the

first step, a clock tree is synthesized for each network switch with
a tightly controlled skew (e.g.,5%). Then, each clock tree is char-
acterized with its input delay, skew and input capacitance. This
information is used ]la)y the clock tree synthesis (CTS) tool to in-
fer a top clock tree balancing the leaves with a much looser skew
constraint (e.g., 30/40%). The ultimate result is a global clock tree
which consumes less power then the traditional one generated by
enforcing chip-wide skew constraints. For future large multiproces-
sor systems-on-chip, the use of this methodology can be not just an
issue of power efficiency but even of CTS feasibility.

However, power savings with this methodology should not
be taken for granted, since it involves some overheads: the
transmission of the clock signal across mesochronous links, the
mesochronous synchronizers themselves (implementing power-
hungry buffering resources) and the increased number of buffer slots
needed at link end-nodes to cover the larger round-trip time (associ-
ated with the synchronization latency) for correct flow control man-
agement.

Our design platform aims at minimizing such overheads through
a novel mesochronous architecture taking advantage of the tight in-
tegration of the synchronizer into the NoC architecture. Since how-
ever these solutions give rise to timing constraints that might not
be verified for specific layout conditions, we provide architecture
variants for these cases as well, thus coming up with a flexible NoC
suitable for many design instances.

3.1 Baseline Switch Architecture

The basic building block of the proposed GALS NoC is the base-
line switch architecture of the xpipesLite library [8]. It leverages
wormhole switching and source-based routing, with shifting of rout-
ing bits in packet headers at each hop. It is an output buffered switch
which however implements a retiming and flow control stage also
at the input ports. Arbitration is not centralized, i.e., there is a mod-
ular round-robin arbiter for each output port serializing conflicting
access requests from all input ports. The critical path starts from
the switch input buffer, goes through the arbiter, the crossbar selec-
tion signals, some combinational logic and finally includes a library
setup time for correct sampling at the switch output port.

This switch uses a stall/go flow control protocol [6]. It requires
two control wires: one going forward and flagging data availability
("valid”) and one going backward and signaling either a condition
of buffer filled (”stall”) or of buffer free ("go”). The sender only
needs two buffer slots to cope with stalls. With this scheme, power
is minimized since any congestion issue simply results in no un-
needed transitions over the data wires. Moreover, recovery from
congestion is instantaneous. In the fully synchronous variant of the
switch architecture, the input buffer is used to break the timing path
going across the upstream link. It has to manage flow control as
well, therefore it must consist of 2 slots.

The basic scheme for mesochronous synchronization consists of
placing a mesochronous synchronizer in front of the switch input
port (see e.g. [7]). We call this approach Loosely Coupled Synchro-
nizer. This way, one more hop is introduced across the link. It
should not be ignored that also the backward propagating flow con-
trol signal (the stall) should be synchronized before reaching the
upstream switch, therefore a 1-bit synchronizer should be placed
on this link (in front of the upstream switch) as well, thus further
increasing the round-trip latency. By using the simple FIFO-based
synchronizers presented in [3, 5], the one-way latency would be 2-
cycles, therefore a stall condition would not be notified immediately
to the sender and the flits in flight while the receiver is busy might
simply get lost. We found that only enhancing the upstream switch
input buffer from 2 to 4 slots enables lossless full-bandwidth oper-
ation, which leads to a significant 40% power overhead for a 2x2
switch of the xpipesLite architecture [3].

3.2 Tightly Coupled Synchronizer

We found in [3] that the key principle for reducing the latency,
area and power overhead of switches with loosely coupled synchro-
nizers is to co-design the synchronizer with the downstream switch
input port. The co-optimization consists of using the buffering re-
sources of the switch input stage not only for retiming and flow con-
trol as in the synchronous architecture, but also for synchronization
purposes, thus practically merging this stage with the synchronizer.
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Figure 1. Variants for tight integration of mesochronous synchronizers into the switch architecture.

The basic architecture of a new switch input port is illustrated is
Fig.1(a) and denoted Tightly Coupled Synchronizer.

The switch port interface is source synchronous: it receives from
the upstream switch a regular NoC link (carrying data and forward
flow control) and a copy of the transmitter clock signal. Since the
latter wire should be routed so to experience the same routing delay
as the link, it can be used as a strobe signal for data.

The circuit is composed by a front-end and a back-end. The
front-end is driven by the sender clock signal, and strobes the in-
coming data and flow control wires onto a set of parallel latch banks
in a rotating fashion, based on a counter. The back-end of the circuit
leverages the local clock, and through a multiplexing logic driven by
a counter it selectively forwards sta%le data from latch outputs to the
switch datapath and stable valid signals to the switch arbiter. The
rationale is to temporarily store incoming information in one of the
front-end latches, using the incoming clock wire to avoid any tim-
ing problem related to the clock phase offset. Once the information
stored in the latch is stable, it can be used in the target clock do-
main. The ultimate sampling of this data will occur at the switch
output port.

Counters in the front-end and back-end are initialized upon reset.
3 latch banks in the front-end of the synchronizer suffice for short-
range (single cycle) mesochronous communication. They allow to
keep latched data stable for a time window long enough to enable a
unique and safe bootstrap configuration of the counters that proves
robust in any é)hase skew scenario (from -360° to +360°). This
avoids the need for a costly phase detector.

As regards latency, while the fully synchronous switch takes 1
cycle in the upstream link and 1 cycle in the switch itself, the novel
tightly integrated switch takes from 1 to 3 clock cycles to cross the
same path, depending on the negative or positive skew. Interest-
ingly, the link is always crossed in 1 cycle, therefore there is no
need of increasing the buffer size of the switch input port since the
round-trip latency is unaffected.

Our architecture adogts a special solution for backward flow
control. In fact, since the latching elements of the synchronizer
also act as the switch input buffer, the stall/go signal needs to be
brought to both front-end and back-end counters in order to freeze
synchronizer operation when a stall is asserted. However, while this
signal is already in synch with the back-end counter, it should be
synchronized with the transmitter clock before driving the front-end
counter. This is done in the lower part of Fig.1(a) by synchronizing
the stall/go signal with the transmitter clock already available at the
switch front-end. The output of this simple 1-bit synchronizer can
then be directly sent to the upstream switch where it will be immedi-
ately sampled since it is already in synch with the transmitter clock.
This scheme leads to a compact and modular implementation with-
out any external synchronizer between NoC building blocks and has
therefore to be preferred whenever possible.

3.3 Architecture flexibility

Unfortunately, the way the tightly coupled architecture synchro-
nizes the stall signal incurs a severe constraint on the round trip
time. In fact, the transmitter clock used for stall synchronization at
the downstream switch has already undergone a link delay 77y,
and the stall signal itself takes another link delay to go back to the
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Figure 2. Basic mechanisms affecting skew tolerance.

upstream switch:

2. ,lenk + Tcounter + Tmua: + Tsetup S Tclock (1)

Whenever this constraint cannot be met, then our architecture
proves flexible enough to provide an alternative solution which
meets the constraints at a small cost in area and modularity. The
solution, denoted as Hybrid, is illustrated in Fig.1(b). In practice,
the simple 1-bit synchronizer can be replicated in front of the up-
stream switch, thereby breaking the round-trip dependency of the
timing. The hybrid architecture now exposes a new timing path go-
ing from the switch arbiter to the upstream switch through the stall
sifgnal, which is a one-way path, not a round-trip one. Implications
(5) this path on global system timing will be highlighted 1n section

Another degree of flexibility of our architecture is that a switch
can be assemb%ed out of a mix of synchronous and mesochronous
ports. In fact, the output architecture of the tightly coupled synchro-
nizer resembles that of a synchronous switch input bu%)fer, therefore
for the switch datapath and control logic it is irrelevant whether the
input port is synchronous or mesochronous. A flexible heteroge-
neous switch architecture can therefore be built, where input ports
are either the conventional 2-slot buffer of synchronous switches or
the tightly coupled synchronizer. Finally, an external mesochronous
synchronizer can also be instantiated in front of the synchronous
switch input ports to infer, whenever needed, the loosely coupled
synchronization architecture.

4. Design Space Exploration of the

Mesochronous Link Architecture

The above architecture provides degrees of freedom for port-
level selection of the most suitable synchronization option based
on timing and layout constraints. The following design space ex-
ploration of a mesochronous link implemented with our architec-
ture will provide the guidelines for such port-level selection, and is
therefore an essential enabler for automatic assembly of the target
GALS NoC.
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Figure 3. Setup and hold times for the loosely vs. tightly coupled architectures as a function of clock phase offset.

For the loosely coupled architecture, an external synchronizer
will be considered that features the same architecture of the upper
part of Fig.1(a). Its multiplexer output directly feeds the input port
of a synchronous switch for correct sampling of synchronized data.
Also, an external 1-bit synchronizer is needed in the backward flow
control link.

4.1 Skew Tolerance

Skew tolerance of our architecture schemes depends on the rel-
ative alignment of data arrival time at latch outputs, multiplexer se-
lection window and sampling edge in the receiver clock domain.
A few basic definitions help to assess the interaction among these
parameters in determining skew tolerance. For the loosely coupled
synchronizer, such definitions are pictorially illustrated in Fig.2(a).

During the mux window, data at latch outputs is selected for for-
warding to the sampling flip flop in the switch input port. Its du-
ration closely follows that of the clock period. Sampling occurs on
the next rising edge of the receiver clock inside the mux window.
We denote the time between the starting point of the mux window
and such sampling instant as the Setup time. Conversely, after an
Hold time since the rising edge of the clock the mux window termi-
nates. This is the time required by the back-end counter to switch
the multiplexer selection signals.

When we consider the tightly coupled architecture (Fig.2(b)),
then the same metrics are taken at the switch output port rather than
at the multiplexer output of the synchronizer. Therefore, the startin,
time of the mux window is delayed due to the worst case timing pat
between the synchronizer output and the switch output port, which
includes the arbitration time, crossbar selection time and some more
combinational logic delay for header processing. At the same time,
the sampling rising edge of the receiver clock remains unaltered,
therefore the ultimate effect is a shortening of the Setup time for the
tightly integrated mesochronous switch architecture.

Fig.3(a) quantifies these timing margins for the loosely coupled
switch architecture. Results are referred to a 2x2 switch working
at 660 MHz after place&route. x-axis reports negative and positive
values of the skew, expressed as percentage of the clock period.
Setup and hold times have been experimentally measured by driving
the switch under test with a clocked testbench, by inducing phase
offset with the switch clock and by monitoring waveforms at the
switch. The connecting link between the testbench and the switch
is assumed to have zero delay. A positive skew means that the clock
at the switch is delayed with respect to the one at the testbench. The
figure also compares setup and hold times with the minimum values
re%uired by the technology library for correct sampling (denoted
Lib_setup and Lib_hold).

First of all, we observe that both times are well above the li-
brary constraints, thus creating some margin against variability. For
the whole range of the skew, the hold time stays the same. The
result is relevant for positive skew, since its effect is to shift the
mux window to the right, close to the region where latch output data
switches. However, the stability window of the latch output data is
long enough to always enable correct sampling of stable data before
the point in time where it switches.

In contrast, a negative skew causes the mux window to shift to the
left, therefore as the negative skew grows (in absolute values) the
latch output data ends up switching inside the mux window, which
corresponds to the knee of the setup time in Fig.3(a). From there

on, the switching transient of data becomes closer to the sampling
edge of the receiver clock and correct sampling can be guaranteed
until the setup time curve equals the Lib_setup one. However, even
for -100% skew synchronizer operation is correct.

Fig.3(b) illustrates the same results for the tightly coupled
mesochronous switch. As anticipated above, the setup time is de-
creased by 370Es, corresponding to the time for arbitration, crossbar
selection and shifting of routing bits. Interestingly, the knee of the
setup time occurs for the same value of the negative skew, in that
the switching instant of the latch output data enters the mux window
at exactlly the same point in time. The ultimate implication is that
the tightly coupled synchronizer cannot work properly with -100%
skew, since the crossing point with the Lib_setup occurs at around
-95%. In practice, we can conclude that a 2x2 switch with tight cou-
pling of the synchronizer on each port consumes 40% less area and
power than its loosely coupled counterpart while incurring a 23%
degradation of the maximum skew tolerance.

4.2 Interconnect delay

Skew tolerance is usually assessed by measuring the phase offset
between the clock at the synchronizer front-end and the one at its
back-end. However, the front-end clock is the one of the transmitter
(i.e., the upstream switch) which has been sent across the connecting
link together with data. Unfortunately, in the hierarchical clock-tree
synthesis process of GALS systems it is not possible to precisely
control the exact phase of such a front-end clock, but rather that of
the clock at the upstream switch [2]. In fact, the synthesis step of the
top clock tree in the hierarchical methodology enforces a maximum
skew between leaves in different switches. However, this is not the
actual phase offset measured between the front-end and the back-
end of the synchronizer, which differs for the interconnect delay and
even for other contributions such as the clock propagation time and
the combinational logic in the output buffer of the upstream switch.

This deviation of the enforced clock phase offset by the actually
measured one should be taken into close account when designing
the skew tolerance of the synchronizer. The following analysis aims
at quantifying this effect.
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The impact of the interconnect delay on the setup time curves in
Fig.3(a) and Fig.3(b) is to shift them to the right. In fact, such a de-
lay implies that new data appears later at the output of synchronizer
latches. As a consequence, the knee of the setup time will occur
earlier, when moving from a condition of null skew towards more
negative skews, hence the maximum tolerated negative skew will be
reduced as well. How fast the curve moves to the right and nega-
tive skew tolerance is degraded depends on the link length, on the
target fre(ﬁlency and on how effectively the physical synthesis tool
enforces the timing constraint on that specific link.

Fig.4 shows how skew tolerance is impacted by the length of the
upstream link in the tightly coupled architecture. It is derived from
a post-layout analysis of two connected 2x2 switches synthesized
at a target speed of 660 MHz. Skew tolerance of the downstream
switch 1s analyzed. It should be observed that by playing with the
input/output delay constraints for switches during the synthesis pro-
cess, we were able to demand 20% more performance to the switch-
to-switch wires to conservatively meet the constraint in equation 1.

Each point represents the percentage of negative skew at which
the setup time curve intersects the Lib_setup one, i.e., it shows how
the maximum tolerable negative skew degrades with link length.
Not only interconnect delay, but also clock propagation time and a
small combinational logic delay at the output of the upstream switch
contribute to degrade negative skew robustness of the downstream
switch. The irregular decay of the skew tolerance curve depends on
the interconnect delay enforced by the physical synthesis tool for
each value of the link length. Skew tolerance remains always above
50% for links of less than Smm.

However, correct operation of the tightly coupled synchronizer
depends not only on skew tolerance, but also on the satisfaction
of the constraint in equation 1. The timing path indicated by that
equation is displayed in Fig.4 as Round-Trip Delay. The intersec-
tion of this curve with a yvalue of 100% indicates that from there
on equation 1 is violated, and the stall signal cannot reach the 1%[)—
stream switch within one clock cycle. In practice, a link length of 2
mm is the feasibility range for the tightly coupled synchronization
architecture in this experimental setting. For longer links, our archi-
tecture however provides the hybrid solution as an additional degree
of freedom, which implies a looser timing constraints to be met, also
illustrated in Fig.4. This solution leaves the skew tolerance of the
tightly coupled synchronizer unaffected but extends the feasibilit
range to around 5.5mm at the small area cost of an additional 1-bit
synchronizer.
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Figure 5. Setup time as a function of negative skew.

4.3 Target frequency

We now extend the above results to the case where the same
RTL design (a 2x2 switch) is synthesized for a higher and lower
target frequency and observe implications on the timing margins
of a tightly coupled mesochronous NoC architecture. Fig.5 shows
setup time as a function of negative skew for different target cycle
times. The skew is expressed as percentage of the cycle time, and
the assumption behind this plot is that as we relax the cycle time
also the maximum skew constraint can be proportionally relaxed.

If we assume that by relaxing the target speed all delays scale
proportionally in the design, then we would expect that by relaxing
the speed from 1.5ns to 2ns the setup time increases by 1.33x (see
dashed line). This is not the case, since the real setup time increases
much more, as the figure shows. The reason for this is that the
arbitration and switching logic inside the switch can be optimized
for area as the timing constraint is relaxed only up to a certain point,

beyond which no more netlist transformations are feasible. So, the
shlftinlg1 of the mux window to the right, illustrated in Fig.2(b) for
the tightly coupled architectures, scales ideally only up to a certain
point, beyond which we observe a more-than-linear increase of the
setup time. This is what happens for the 2ns target period.

Another deviation of the ideal curve from the real one regards the
knees. In fact, although the target period increases from 1.25 to 2ns,
a given skew percentage on the x-axis actually means a different ab-
solute phase offset for the different cases. Therefore, the switching
instant of synchronizer latch outputs should enter the mux window
at the same percentage skew for all target periods (see dashed line
in Fig.5 for a 2ns target).

This is again not the case, indicating that a delay has not scaled
proportionally to the clock period. The responsible for this is the
time to generate the latch_enable signals in the synchronizer front-
end. For a tight 1.25ns constraint, this net was already non-critical,
therefore by relaxing the timing constraint its delay stays more or
less the same. Therefore, the knee appears later for large cycle
times, as the real curve for a 2ns target proves. The key ta%e—away
from this characterization is that by relaxing the target clock fre-
quency for the same RTL design an improvement of the skew tol-
erance and of the timing margins can be generally achieved for the
tightly cougled architecture. In addition, a larger cycle time pro-
vides the physical synthesis tool more margin to enforce the feasi-
bility constraint of equation 1.

4.4 Switch radix

A last degree of freedom that we explored is the switch radix.
We assume that for the same given target frequency, the switch radix
is increased from 2 to 5. The effect on the timing margins is sim-
ilar to what happens when we move from a loosely coupled to a
tightly coupled mesochronous architecture. In fact, an increase of
arbitration and crossbar selection time takes place, which results
in a decrease of the setup time. Conversely, the knee occurs for the
same amount of negative skew, since the modification concerns only
the switch internal architecture, not the time at which latch outputs
switch. Overall, by combining the two effects we have an additional
reduction of the maximum (negative) skew tolerance, which is equal
to the increase in delay of the combinational logic described above.
In general, for high radix switches it has to be verified that the re-
duced setup time is still above the minimum value required by the
technology library.

In contrast, synthesis constraints help relieve the above limita-
tion. In fact, for both the 2x2 and the 5x5 switch, the synthesis tool
tries to meet the same target cycle time and to exploit the available
slack to save area. In practice, the syntheses of both the 2x2 and the
5x5 designs converge with almost no slack. Therefore, control logic
with 5 and 2 inputs takes almost the same delay with a large differ-
ence in area. In this way, the setup time in the two cases is almost
unaffected because of the netlist transformations performed by the
synthesis tool in the area-performance 111)1ane. In our experiments, a
5x5 switch exhibits a setup time which is only 5% lower than the
one in the 2x2 switch. For those NoC architectures where the above
netlist optimizations are ineffective or for very high radix switches,
itis necessarf/ to verify that the reduced setup time is still above the
minimum value required by the technology library.

Another implication of the switch radix concerns timing closure
of the hybrid synchronization architecture. As already noted while
commenting Fig.1(b), the critical path starts in the switch arbiter
(which generates the stall signal) and includes the propagation of
the stal? signal to the upstream switch. As the switch radix in-
creases, the delay for stall generation by the arbiter increases, and
might make this timing path critical for the entire NoC. This tim-
ing path is compared with those of the tightly and loosely coupled
architectures in section 5.

5. Experimental results

It has been demonstrated in [4] that as technology keeps scaling
to sub-65nm technologies, it is more and more likef/y that the crit-
ical path moves from the switch internal microarchitecture to the
switch—to—switch links due to the reverse scaling of on-chip inter-
connects. Therefore, it is essential to assess the pressure that each
synchronization interfaces puts on the propagation delay of such
links. Our first experiment assesses this property. In practice, we
consider a 5x5 switch (ideally extracted from the center of a 2D
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Figure 6. Post P&R operating frequency and rela-
tive tolerated link delay for different synchronization
schemes.

mesh) after place&route. The switch has been synthesized with a
very tight timing constraints (1 GHz), so that after place&route the
critical path for all architectures will be certainly in the switch—to—
switch link. The switch is connected to a tester injecting clock and
data with an increasing delay. The utilized testbench assumes an
ideal alignment between clock signal and data as well as no routing
skew. This way, we can assess for a certain operating frequency,
the relative link delay supported by each architecture. Obviously, a
certain link delay corresponds to a relative channel length depend-
ing on how the link synthesis policy is chosen. Figure 6 reports
various operating speeds of all the architectural solutions and the
relative link delay they are able to tolerate. Given a certain working
frequency, the tightly coupled architecture supports a smaller link
delay with respect to the Ioosely coupled solution due to the more
stringent round trip timing constraint discussed in Section 3.3. In-
deed, an increment of either frequency or delay would result in a
loss of packets due to the late arrival of the backward propagating
signal. However, such supported link delays enable the tightly cou-
pled architecture to sustain a correct communication within a typical
range of link length in nanoscale technologies. In fact, our early ex-
ploration pointed out that a link delay of 550ps after place&route
corresponds to 4mm channel by using a commercial 65nm technol-
ogy library. Limitations suffered by the tightly coupled architecture
can be removed by adopting a hybrid solution (Section 3.3). In fact,
by using a small single-bit synchronizer at transmitter end for the
backward signal, round trip dependency can be removed thus in-
creasing maximum achievable frequency while keeping area cost as
low as that of the tightly coupled architecture. Figure 6 proves that
the hybrid architecture can tolerate a link delay similar to that of the
loosely coupled solution but at a much lower area cost.
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Figure 7. Area of 4x4 2D meshes.

We now prove the ability of our design platform to build a cost-
effective GALS NoC. We designed a 4x4 2D mesh topology in the
tightly coupled, loosely coupled and hybrid architecture variants.
We aimed at the same target speed in order to assess system-level
area savings with the tightly coupled approach. The three solutions
have been synthesized at the same frequency, particularly, in order
to carry out a fair comparison, synthesis have been aligned at the fre-

quency of the slower scheme (tightly coupled). Therefore, loosely

coupled and hybrid architectures have been synthesized with re-
laxed performance constraints with respect their maximum achiev-
able speed. This results in a more area-efficient gate-level netlist.
Switches were placed 1 mm apart from each other. We achieved
timing closure of the three platforms at 600 MHz. Post-P&R area
figures are compared in Fig.7. Clearly, the hybrid and the tightly
ouJ)led variants provide a 40% area saving over the loosely cou-
one. This latter has to implement 2 more slots in the input
uffer, which makes area of the vanilla switches larger than that of
the tlghtly coupled ones. The hybrid architecture limits its area over-
head with respect to the tightly coupled one because of the low foot-
print of 1-bit external synchronizers on the stall wires. In contrast,
external synchronizers at receiver switches in the loosely coupled
architecture consume about 12% of total mesh area.

6. Conclusions

This paper provides a contribution to the automated design and
configuration of GALS NoCs and to their timing closure. On one
hand, it proposes a compact mesochronous NoC architecture which
can greatly reduce the area and latency overhead. On the other hand,
it assesses timing margins and phase offset budget for the new solu-
tion, and provides an architecture variant for those cases where lay-
out and timing constraints cannot be met. This paper does not just
propose a new flexible mesochronous architecture, but explores its
design space in the context of on-chip networks. Outcomes of this
exploration can be used to direct the selection of synchronization
options on a port-by-port basis for all the switches in the NoC. A
final case study proves the cost-effectiveness of the NoCs obtained
with the proposed design platform.
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