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Abstract. Few of the benefits of exploiting partially reconfigurable de-
vices are power consumption reduction, cost reduction, and customized
performance improvement. To obtain these benefits, one main problem
needs to be solved is the task scheduling and placement. Existing algo-
rithms tend to allocate tasks at positions where can block future tasks
to be scheduled earlier denoted as ”blocking-effect”. To tackle this ef-
fect, a novel 3D total contiguous surface (3DTCS) heuristic is proposed
for equipping our scheduling and placement algorithm with blocking-
awareness. The proposed algorithm is evaluated with both synthetic and
real workloads (e.g. MDTC, matrix multiplication, hamming code, sort-
ing, FIR, ADPCM, etc). The proposed algorithm not only has better
scheduling and placement quality but also has shorter algorithm execu-
tion time compared to existing algorithms.

1 Introduction

Hardware task scheduling and placement algorithms can be divided into two main
classes: offline and online. Offline assumes that all tasks properties (e.g. task sizes,
execution times, reconfiguration times, etc) are known in advance. The offline ver-
sion can then do various optimizations before runtime. As a result, the offline ver-
sion has a better performance than the online version. However, the offline
version is not applicable for general multipurpose systems in which the proper-
ties of arriving tasks are unknown beforehand. In general multipurpose systems,
the online version is needed.

In the offline version, the algorithm can make offline decisions. Hence, the
time needed for making decisions in the offline version is not taken into account
for the overall application time. In contrast, the online version needs to take
decisions at runtime; as a result, the algorithm execution time is computed as
an additional time for the overall application time. Therefore, the goal of the
online version is not only to get better scheduling and placement quality but
also to have a low runtime overhead.

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 194 2010.
© Springer-Verlag Berlin Heidelberg 2010


http://ce.et.tudelft.nl

3D Compaction: A Novel Blocking-Aware Algorithm 195

Online scheduling and placement algorithms have to find a block of hardware
resources for running each arriving task on a 2D partially reconfigurable device.
When there are no available resources for allocating the hardware task at its
arrival time, the algorithms have to schedule the task for future execution. Here,
the algorithms need to find the earliest starting time and free space for executing
the task on the device in the future.

Many algorithms have been proposed to solve the scheduling and placement
issue mentioned above, such as: Horizon [I], Stuffing [I], Classified Stuffing [2],
Intelligent Stuffing [3], Reuse and Partial Reuse [4], Window-based Stuffing [5],
and Compact Reservation [6]. However, none of them has a blocking-aware abil-
ity; the existing algorithms have a tendency to block future tasks to be scheduled
earlier, referred as ”blocking-effect”. As a result, wasted area (volume), sched-
ule time, and waiting time will increase significantly. To solve this problem, we
propose a novel 3D total contiguous surface (3DTCS) heuristic to equip our al-
gorithm with blocking-awareness. The goal of the proposed algorithm is not only
to achieve better quality but also to have lower runtime overhead.

The main contributions of this paper are:

— the first blocking-aware online hardware task scheduling and placement
algorithm;

— a novel 3D total contiguous surface (3DTCS) heuristic;

— a novel 3D Compaction (3DC) algorithm.

The rest of the paper is organized as follows. In Section Bl we introduce the
problem of scheduling and placement on 2D area models. We give a short review
of existing algorithms in Section Bl In Section Fl we present basic idea of our
blocking-aware algorithm. The 3DTCS heuristic is described in Section[l In Sec-
tion [G] we present our proposed algorithm in detail. The algorithm is evaluated
in Section [ Finally, we conclude in Section Bl

2 Problem of Scheduling and Placement on 2D Area
Models

This problem definition is an extension of the definition of the problem of
scheduling and placement on 1D area models as presented in [3]. Given a task
set representing a multitasking application with their arrival times a;, life-times
lt;, widths w; and heights h;, online scheduling and placement algorithms tar-
geting the 2D area models of partially reconfigurable devices have to determine
placements and starting times for the task set such that there are no overlaps
in space and time among all tasks. The goals of the algorithms are: a) to utilize
effectively the available FPGA resources (minimize wasted volume); b) to accel-
erate the overall application on the FPGA (minimize schedule time); ¢) to start
executing arriving tasks on the FPGA earlier (minimize waiting time) and d) to
keep the runtime overhead low (minimize the algorithm execution time).

We define the total wasted volume as the overall number of area-time units
that are not utilized as illustrated in Figure Total schedule time is the total
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Fig. 1. Problem of scheduling and placement on 2D area models (a) and basic idea of
blocking-aware algorithm (b)

number of time units for the execution of all tasks. Waiting time is the difference
between starting and arrival times for each task (in time units). The algorithm
execution time is the time needed to schedule and place the arriving task.

3 Related Work

In [I], Steiger et al. proposed the Horizon and Stuffing algorithms both for 1D
and 2D area models. The Horizon guarantees that arriving tasks are only sched-
uled when they do not overlap in time or space with other scheduled tasks. The
Stuffing schedules arriving tasks to arbitrary free areas that will exist in the future
by imitating future task terminations and starts. In [I], the authors presented that
the Stuffing outperforms the Horizon in scheduling and placement quality.

To tackle the drawback of the 1D Stuffing, Chen and Hsiung in [2] proposed
their 1D Classified Stuffing. By classifying incoming tasks before scheduling
and placement, the 1D Classified Stuffing performs better than the original 1D
Stuffing.

In [3], Marconi et al. proposed their 1D Intelligent Stuffing to solve the prob-
lems of both the 1D Stuffing and Classified Stuffing. The main difference between
their algorithm and previous 1D algorithms is the additional alignment flag of
each free segment. The flag determines the placement location of the task within
the corresponding free segment. By utilizing this flag, the 1D Intelligent Stuffing
outperforms the previously mentioned 1D algorithms.

In [], Lu et al. introduced their 1D reuse and partial reuse (RPR). The
algorithm reuses already placed tasks to reduce reconfiguration time. As a result,
the RPR outperforms the 1D Stuffing.
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In [5], Zhou et al. proposed their 2D Window-based Stuffing to tackle the
drawback of 2D Stuffing. By using time windows instead of the time events, the
2D Window-based Stuffing outperforms previous 2D Stuffing. The drawback of
their 2D Window-based Stuffing is a high running time cost. To reduce the high
runtime cost of Window-based Stuffing, they proposed their Compact Reserva-
tion (CR) in [6]. The main idea of the CR is the computation of the earliest
available time (EA) matrix for every incoming task. That contains the earliest
starting times for scheduling and placing the arriving task. The CR outperforms
the original 2D Stuffing and their previous 2D Window-based Stuffing.

4 Basic Idea of Blocking-Aware Algorithm

Blocking-unaware algorithms do not care of their task placement positions
whether they will block other incoming tasks or not in the future. They be-
have like drivers who park their vehicles wherever they want. Their parking
places may be stumbling blocks for other drivers to park their cars. Figure
(left) illustrates the behavior of online scheduling and placement algorithms that
do not have blocking-awareness. In this simple example, task T3 is becoming an
obstacle for task T4 to be scheduled earlier.

To tackle this problem, we introduce an algorithm that has an awareness to
avoid placement that will be an obstacle for other future tasks. By placing task
T3 to a different location as shown in Figure[L(b)] (right), the proposed algorithm
can avoid task T3 to be an encumbrance for task T4 to be started earlier. By
scheduling T4 earlier, the FPGA can finish executing task T4 faster. To give the
algorithm the necessary knowledge to avoid this ”blocking-effect”, the algorithm
places tasks at locations as much as possible touching its prior tasks illustrated
as bold lines on the figure. In next section, we will give a more detail explanation
of this heuristic, termed 3D total contiguous surface (3DTCS).

5 3D Total Contiguous Surface (3DTCS) Heuristic

A hardware task on a 2D partially reconfigurable device using 2D area models
can be illustrated as a 3D box. The first two dimensions are the required area
(wh) on the device for running the task. The other dimension is the time di-
mension (¢). To pack hardware tasks compactly during run time at the earliest
time, we propose a new heuristic, named 3D total contiguous surface (3DTCS)
heuristic.

The 3DTCS is the sum of all surfaces of an arriving task that is contacted
with the surfaces of other scheduled tasks as depicted in Figure The 3DTCS
contains two components:

— the horizontal contiguous surfaces with previous scheduled tasks and next
scheduled tasks;

— the vertical contiguous surfaces with scheduled tasks and the FPGA
boundary.
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Fig. 2. 3D total contiguous surface (3DTCS) heuristic (a) and horizontal contiguous
surfaces (b)

Table 1. Computations of horizontal contiguous surfaces for positions in Figure

Em)1)-(14)

Positions Horizontal contiguous surfaces

(1) (w2 —1 +1)(y2 —y1 + 1)
(2) wh

(3) w(y+h—y1)

(4) (x+w—z1)h

(5) w(yz —y+1)

(6) (zg —xz + 1)h

(7) (w2 —w1 +1)(y2 —y +1)
(8) (2 —2+1)(y2 —y1 + 1)
(9) (z2 =21+ 1)(y+h—y1)
(10) (x+w—=1)(y2 —y1 + 1)
(11) (z+w—=21)(y+h—y1)
(12) (z+w—=z1)(y2 —y+1)
(13) (z2 —z+1)(y2 —y+1)
(14) (w2 —x+1)(y+h—y1)

In a simple example depicted in Figure the horizontal contiguous surfaces
with a previous scheduled task (PST) A4 and with a next scheduled task (NST)
A3 in the figure give this heuristic an awareness on avoiding ”blocking-effect”;
while the other surfaces A1 and A2 (vertical contiguous surfaces) give this heuris-
tic to better pack tasks in time and space. As a result, the proposed algorithm
has a full 3D-view of the positions of all scheduled and placed tasks.

Intuitively, a higher 3DTCS value will result in more compaction both in space
and time. This 3DTCS heuristic gives our proposed 3D compaction algorithm
with blocking-aware ability to pack tasks better as it has a more complete view
of all dimensions.

Figure [2(b){1)-(14) and Table [I show all the placement positions and their
corresponding computations of horizontal contiguous surfaces. The arriving task
(AT), with width w and height h, has a bottom-left coordinate (x,y) as shown in
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Fig. 3. Vertical contiguous surfaces with scheduled tasks (a) and the FPGA boundary
(b)

Table 2. Computations of vertical contiguous surfaces with scheduled tasks for posi-
tions in Figure [3(a)|(1)-(16)

Positions Vertical contiguous surfaces with scheduled tasks

(1),(3) w.min(lt, (ty —ts))
(2),(4) homin(lt, (ty — ts))
(5),(7) (z2 — x1 + 1).min(lt, (ty — ts))
(6),(8) (y2 — y1 + 1).min(lt, (t; — ts))
(9),(14) (z2 — x + 1).min(lt, (t; — ts))
(10),(13) (z 4+ w — x1).min(lt, (t; —ts))
(11),(15) (y2 — y + 1).min(lt, (£ — ts))
(12),(16) (y + h —y1).min(lt, (ty — ts))

Table 3. Computations of vertical contiguous surfaces with the FPGA boundary for

positions in Figure [3(b)[1)-(8)

Positions Vertical contiguous surfaces with the FPGA boundary

(1)-(4) (w + h)lt
(5),(7) h.lt
(6),(8) w.lt

Figure 2(b)[15). The arriving task can be contacted with the previous scheduled
task (PST) and (or) the next scheduled task (NST) to produce the horizontal
contiguous surfaces. The scheduled task has a bottom-left coordinate (x1, 1)
and a top-right coordinate (z2,y2) as illustrated in Figure 2(b)[16).

The arriving task can be contacted with scheduled tasks and (or) FPGA
boundary to produce the vertical contiguous surfaces. All placement positions of
the arriving task (AT) and their corresponding computations of vertical contigu-
ous surfaces with the scheduled task (ST) are shown in Figure[3(a)]and Table[2
The arriving task with a life-time [t is started execution at time t¢4; the finishing
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time of scheduled task is denoted as ty. Computations of vertical contiguous
surfaces between the arriving task with the FPGA boundary are illustrated in
Figure [3(b)| and formulated in Table

6 The 3D Compaction (3DC) Algorithm

Figure [ shows the pseudocode for the proposed 3D Compaction (3DC). The
algorithm maintains two linked lists: the execution list and the reservation list.
The execution list saves the information of all currently running tasks sorted in
order of increasing finishing times; the reservation list contains the information of
all scheduled tasks sorted in order of increasing starting times. The information
stored in the lists are the bottom-left coordinate (z1, y1), the top-right coordinate
(22,y2), the starting time t,, the finishing time ¢;, the task name, the next
pointer, and the previous pointer.

In lines 1-13, the algorithm computes the starting time matrix (STM) with
respect to the arriving task area wh on the device area W H. The algorithm
collects all possible positions that have enough space for the arriving task by
scanning the executing and reservation lists. The algorithm fills each element

1. for (y=1;y<=H-h+1;y++)
{
2. for (x=1;x<=W-w+1;x++)
{
3. STM(x,y)=a
}
}

4. for all tasks in execution list

{
5. for (y=max(1,y -h+1);y<=min(y,.H-h+1):y++)
{
6. for (x=max(1,x,-w+1);x<=min(x,, W-w+1);x++)
{
7.if (STM(x.y) < t)
{
8. STM(x.y)=t,
}

}

9. for all tasks in reservation list
{
10. for (y=max(1,y -h+1);y<=min(y, H-h+1);y++)
{
11. for (x=max(1,x|-w+1);x<=min(x2.W-w+1);x++)
{
12,4 ((STM(x,y) < l’) AND (STM(x,y)+ll>t~))
{
13. STM(x.y)=t,
)

14. collect all positions from STM that have the earliest starting time
15. for all above positions
{
16. ¢c_3DTCS=compute 3D contact surfaces
17. ¢_SFTD=compute sum of finishing time difference
18. if (c_3DTCS>3DTCS_max AND c¢_SFTD<SFTD_min)
{
19. best_position=current position
20. 3DTCS_max=c_3DTCS
21. SFTD_min=c_SFTD
}
22. else if (c_3DTCS>3DTCS_max)
{
23. best_position=current position
24. 3DTCS_max=c_3DTCS
}
25. else if (¢_3DTCS=3DTCS_max AND c_SFTD<SFTD_min)
{
26. best_position=current position
27. SFTD_min=c_SFTD
}
}
28. if best_starting_time=arrival time
{

29. add task to the execution list

30. add task to the reservation list
}
31.if the reservation list is not empty

{
32. update reservation list
}
33.if the execution list is not empty
{
34. update execution list

)

Fig. 4. Pseudocode of 3D Compaction algorithm
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of the STM with the arrival time of incoming task a (lines 1-3). The algorithm
updates groups of elements that are affected by all executing tasks in execution
list (lines 4-8) and by all scheduled tasks in reservation list (lines 9-13).

In line 14, the algorithm collects all best positions (candidates) that have the
earliest starting time (best starting time positions: best positions in terms of
starting time) from the STM.

Since the algorithm not only wants to get the best position in terms of start-
ing time (time domain) but the best position in terms of space (space domain)
as well. To pack compactly tasks, we propose to use the 3DTCS heuristic as
presented earlier in Section Bl The algorithm computes the 3DTCS (line 16)
using formulas from Table [I] to Table Bl and chooses the best position from all
the best starting time positions. Hence, the algorithm does not need to compute
the 3DTCS for all positions; it only computes the 3DTCS for the best posi-
tions (candidates) (line 15). Intuitively, the highest 3DTCS value gives the best
position in terms of packing to avoid ”blocking-effect”.

Besides the 3DTCS heuristic, the algorithm also uses the sum of finishing time
difference (SF'TD) heuristic for all scheduled tasks that vertically contacted with
the arriving task (referred as a VC set). The algorithm computes current SFTD

(¢ SFTD = > |ts+ 1t —ts]) in line 17. The SFTD heuristic gives our

VtaskseVC
algorithm an ability to group tasks with similar finishing times to get large free

space during deallocations.

The algorithm chooses the position with the highest 3DTCS value and the
lowest SFTD value for allocating the arriving task (lines 18-27). Allocating the
arriving tasks at the highest 3DTCS compacts the tasks both in time and space;
while grouping tasks with similar finishing times creates more possibility to
produce larger free space during deallocations.

The algorithm allocates the incoming task when there is available space for
the task at its arrival time; otherwise, the algorithm needs to schedule the task
for future execution. If the arriving task can be allocated at its arrival time (line
28), it will be executed immediately and added in the execution list (line 29);
otherwise, it is inserted in the reservation list (line 30).

When the tasks in the reservation list are executed, they are removed from
the reservation list and added in the execution list. The finished tasks in the
execution list are deleted after execution. These updating processes are executed
when the lists are not empty (lines 31-34).

The time complexity analysis of our 3DC is presented in Table[dl In which W,
H, Ngr, Nrr are the FPGA width, the FPGA height, the number of executing
tasks in the execution list, the number of reserved tasks in the reservation list,
respectively.

The main difference between our algorithm and existing algorithms is the
presence of the 3D compaction ability. Because of this 3D compaction ability,
our algorithm can avoid ”blocking-effect”. In contrast, the existing algorithms
do not have the blocking-awareness. Some existing algorithms only have the
2D compaction ability; instead, our algorithm has the 3D compaction ability to
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Table 4. Time complexity analysis of 3D Compaction algorithm

Lines Time Complexity
1-3 O (WH)
4-8 O(WHNEg7)
9-13 O (WHNRT)
14 O (WH)
15-27 O (WH)
28-30 O (maz (Ngr, NgrT))
31-32 O (NgrT)
33-34 O (Ngr)

Total O (W Hmax (Ngr, NrT))

compact tasks both in time and space domains. Besides, the algorithm also has
an ability to group tasks with similar finishing times to achieve larger free space
during deallocations. In the CR, every element of their EA matrix is checked to
know if it falls into the coverage rectangles of execution and scheduling tasks for
updating as shown in [6]. In contrast, our algorithm updates the STM matrix in
groups of elements affected by all executing (lines 5-6) and scheduled tasks (lines
10-11); the algorithm does not need to check each element for updating. As a
result, our algorithm computes starting times faster than the CR. Moreover, our
3DC does not need to compute boundary values for all reconfigurable units of
its free space in the periphery. As a consequence, our algorithm has less runtime
overhead compared to the CR as will be presented later.

7 Evaluation

7.1 Evaluation in Terms of Scheduling and Placement Quality

Evaluation with Synthetic Workloads. We have built a discrete-time sim-
ulation framework in C to evaluate the proposed algorithm. The framework was
compiled and run under Linux operating system on a Pentium-IV 3.4 GHz PC.
To better evaluate the algorithm with synthetic workloads, (1) we modeled re-
alistic random hardware tasks to be executed on a realistic target device; (2) we
evaluated the algorithm not only in terms of scheduling and placement quality
but also in terms of runtime overhead.

To model realistically the synthetic hardware tasks, we use a benchmark set
(e.g. MDCT, matrix multiplication, hamming code, sorting, FIR, ADPCM, etc)
from [I0] and then use the DWARV [9] C-to-VHDL compiler to translate the
benchmarks to VHDL. The VHDL code is then synthesized using the Xilinx ISE
8.2.01i PR 5 tools to obtain the information of hardware task size range as a
reference for our random task set generator. The task widths and heights are
randomly generated in the range [7..45] reconfigurable units to model hardware
tasks between 49 and 2025 reconfigurable units to mimic the results of synthe-
sized hardware units. Every task set consists of 1000 tasks, each of which has
a life-time and task size. The life-times are randomly generated in [5..100] time
units, while the intertask-arrival periods are randomly chosen between one time
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unit and a specified maximum intertask-arrival period. Total tasks per arrival are
randomly generated in [1..15]. Since the algorithms are online, the information of
arriving tasks is unknown until their arrival times. We model a realistic FPGA
with 116 columns and 192 rows of reconfigurable units (Virtex-4 XC4VLX200).

Our 3DC is designed for 2D area models. Therefore for fair comparison, we only
compare our algorithm with algorithms that support 2D area models. Since the
RPR [], the Classified Stuffing [2], the Intelligent Stuffing [3] were designed only
for 1D area models as shown in Section 3], we do not compare them with our 3DC.

Since the Stuffing outperforms the Horizon as presented in [I], we do not
compare our algorithm to the Horizon. In [6], the CR outperforms the original
2D Stuffing [I] and the 2D Window-based Stuffing [5]; therefore, we only compare
our algorithm to the CR.

To evaluate the 3DC, we have implemented three different algorithms: the CR
[6] using BL (Bottom-Left) scheme (CR BL), the CR [6] using BV (Boundary
Value) scheme [7] (CR BV), and our 3DC. The evaluation is based on three
performance parameters as defined before in Section

The CR does not have a blocking-awareness. Instead, our algorithm uses a
3D compaction for avoiding ”blocking-effect”. As a consequence, our algorithm
has a better quality than the CR. The 3DC has up to 4.8 % less schedule time,
38.4 % less waiting time, and 22.9 % less wasted volume compared to the CR as

shown in Figure
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Fig. 5. Evaluation with synthetic (a) and real workloads (b)
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The system idle time increases when the maximum inter-task arrival period
increases; as a result, the average total schedule time and the average wasted
volume increase.

The system is busier when the maximum inter-task arrival period decreases;
tasks arrive more frequently to the system. Hence, it is more difficult to schedule
tasks. Consequently, the average waiting time increases.

Evaluation with Real Workloads. To evaluate the 3DC with real workloads,
realistic hardware tasks from [I1] were used. In the simulation, we assume that
the life-time [t; is the sum of reconfiguration time rt; and execution time et;.
The experimental results with real workloads are presented in Figure

Figure [5(b)| shows that the superiority of our algorithm is not only applicable
for synthetic tasks but also for real tasks. Evaluation with real tasks shows that
our algorithm has up to 4.6 % less schedule time, 75.1 % less waiting time, and
9.9 % less wasted volume compared to the CR.

7.2 Evaluation in Terms of Algorithm Execution Time

To complete the evaluation, we also study the algorithm execution time since
the execution time of online task scheduling and placement is considered as an
overhead for the overall execution time of the applications. To show the effect
of total number of scheduled and running tasks as well as FPGA area, we do
simulation by changing these parameters as presented in Figure

Figure [ shows that our 3DC runs up to 133 times faster than the CR. The
speed up will be higher for more scheduled and running tasks as well as for larger
FPGA fabrics. Since the CR uses the boundary value heuristic for searching
placement, the CR needs to compute boundary values for all reconfigurable units
of its free space in the periphery. In contrast, our 3DC computes the 3DTCS
only in one step as presented in Section Bl Moreover, the updating is done per
each element of the matrix in the CR; each element is needed to be checked with
all executing tasks and scheduled tasks. In contrast, our algorithm updates the
matrix in groups of elements located by all executing tasks and scheduled tasks;
the algorithm does not need to check each element for updating. As a result, our
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3DC has less runtime overhead than the CR by avoiding the CR’s long boundary
value computation and speeding up the starting times computation.

More FPGA area creates additional area suitable for the arriving task (more
free volume) and more total number of scheduled and running tasks forces algo-
rithms to check more tasks; as a result, the algorithms need more time to com-
pute the matrix for finding starting time (all algorithms), all boundary values
for all more candidates (CR algorithm) and all 3DTCS for all more candidates
(3DC algorithm). Because of its long boundary value and matrix computations,
the CR execution time increases faster than our 3DC.

8 Conclusions

To avoid ”blocking-effect” of existing algorithms, we have proposed a new 3DTCS
heuristic and used it to build a novel blocking-aware algorithm, 3D Compaction
(3DC). Because of its 3D compaction, the 3DC places and schedules tasks more
compactly. Moreover, the 3DC is equipped with an ability to group similar fin-
ishing time tasks to form larger free area for better allocating future tasks. Since
the previous algorithm uses the boundary value heuristic for searching suitable
placement, it needs to compute the values for all reconfigurable units of its free
space in the periphery. In contrast, our 3DC computes the 3DTCS only in one
step. In addition, the updating is done per each element of the matrix for finding
starting time in the previous algorithm; each element is checked with all exe-
cuting and scheduled tasks. Our 3DC updates the matrix in groups of elements
located by all executing and scheduled tasks. The experimental results show that
the 3DC not only has better scheduling and placement quality but also has lower
runtime overhead compared to existing algorithms.

A possible direction for future research is to equip the algorithm with an
ability to run tasks at different clock speeds or voltages for power saving (power-
aware) and to place tasks based on required I/O positions (I/O-aware).
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