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Abstract. In this paper, we present the Quantitative Usage Analysis of Data
(QUAD) tool, a sophisticated memory access tracing tool that provides a compre-
hensive quantitative analysis of memory access patterns of an application with the
primary goal of detecting actual data dependencies at function-level. As improve-
ments in processing performance continue to outpace improvements in memory
performance, tools to understand memory access behaviors are inevitably vital
for optimizing the execution of data-intensive applications on heterogeneous ar-
chitectures. The tool, first in its kind, is described in detail and the benefit and
the qualities of the presented tool are described on a real case study, the x264
benchmarking application.

1 Introduction

With the increased proliferation of Chip Multiprocessors (CMP), there is a compelling
need for utility tools to facilitate the application development process, tuning and opti-
mization. This requirement becomes more critical with the introduction of hybrid archi-
tectures incorporating reconfigurable devices [1]. Since the applications form the basis
of such designs, the need to tune the underlying architecture for extracting maximum
performance from the software code has become imperative [2]. As the size of recon-
figurable fabrics increases, mapping an entire application onto a reconfigurable device
does not seem elusive anymore. Traditionally, FPGAs contained the logic and some
temporary memory for a kernel, or even the logic for the whole application, but never
the logic and memory for an entire application [3]. Although this in itself is an impor-
tant step towards decreasing the processor-memory gap, there is an inevitable demand
for tools that can help users to have a clear understanding of the memory requirements
of an application. To accomplish this goal, a thorough analysis of the memory access
behavior of an application is vital. This demand proves to be even more crucial consid-
ering the fact that the main obstacle limiting the performance of reconfigurable systems
is the memory latency [4].

Even in the best case scenario, when all the memory addresses can fit on a single
chip, the latency to access memory locations from different parts imposes a substantial
delay. In [3], the memory access behavior of an application (g721 e) whose logic and
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memory was entirely mapped onto a reconfigurable device, is discussed. The idea of
mobile memory is also investigated to dynamically move the memory closer to the
location where it is accessed. It justifies the motivation to lessen the distance between
the accessors and the memory locations.

Inspecting the behavior of an application in general, and the actual pattern of mem-
ory accesses in particular, is an essential aspect of carrying out effective optimizations
for the application development of reconfigurable systems. As a result, many research
initiatives are emerging that target support tools for application behavior analysis from
different perspectives.

The main contributions of this paper are the following:

– the description of an efficient tool, QUAD, to provide information that can be used
in addressing memory-related bottlenecks in reconfigurable computing systems

– the detection of actual data dependency between functions compared to conven-
tional data dependency discovered by similar memory access analysers

– the validation of the proposed tool in a real case study

The rest of the paper is organized as follows. Section 2 gives an overview of the related
research. In Section 3, we present an overview of the Delft Workbench (DWB) and
the profiling framework which includes QUAD as a dynamic memory access profiler.
Section 4 introduces QUAD and describes some of the design and implementation is-
sues. In Section 5, a real application case study is examined. Finally, Section 6 provides
concluding remarks and an outline of the future research.

2 Related Research and Problem Definition

Profilers are tools that allow users to analyze the run-time behavior of an application
in order to identify the types of performance optimizations that can be applied to the
application and/or the target architecture. Generally, profiling refers to a technique for
measuring where programs consume resources, including CPU time and memory. Gen-
eral profiling tools such as gprof [5], can provide function-level execution statistics for
the identification of application hot-spots. However, they do not distinguish between
computation time and memory access time. As a result, they can not be employed to
locate potential system bottlenecks regarding memory-related problems.

In [6,7], the authors provide target independent software performance estimations.
However, they lack a thorough memory access analysis, which is vital in tuning perfor-
mance optimizations in hybrid reconfigurable architectures. [8] describes an approach
for evaluating the performance and memory access patterns of multimedia applications
through profiling. The tool is only utilized for algorithmic complexity evaluation and its
accuracy in performance estimation is not investigated. The way an algorithm interacts
with memory has a large impact on performance. More precisely, the memory reference
behavior of an application, at the most basic level, depends on the intrinsic nature of the
application. However, the developer still has considerable flexibility in manipulating
the algorithm, data structures and program structure to change the memory reference
patterns [9].

Most existing memory access analysis tools only focus on detecting memory bottle-
necks, or faults/bugs/leaks and provide no detailed information regarding the inherent
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data dependencies in a program’s memory reference behavior [10,11]. One of the early
simple tools developed for understanding memory access patterns of Fortran programs
is presented in [12]. The tool instruments a program and produces a flat trace file of all
memory accesses which can be visualized later. Similarly, a tool set is presented in [13]
to reveal the pattern of memory references. It generates a set of histograms for each
memory access in a program regarding the strides of references.

In [14], the authors present a quantitative approach to analyze parallelization oppor-
tunities in programs with irregular memory access patterns. Applications are classified
into three categories with low, medium and high dependence densities. Similar to our
work, Embla [15] allows the user to discover the data dependencies in a sequential pro-
gram, thereby exposing opportunities for parallelization. Embla performs a dynamic
analysis and records dependencies as they arise during program execution. However, in
this work, we intend to discover the actual data dependency, which is different from the
conventional data dependency referred to in Embla and other similar tools. By defini-
tion, data dependency is a situation in which a program segment (instruction, block,
function, etc.) refers to the data of a preceding segment. Actual data dependency arises
when a function consumes data that is produced by another function earlier. In other
words, the common argument passing by the caller function to the callee regarding data
distribution does not necessarily imply that the data will be used later in the called func-
tion. Furthermore, in our approach the usual restriction of data dependency detection
based on hierarchies of function calls (commonly depicted with call graphs) is relaxed
as we merely trace the journey of bytes through memory addresses and do not rely on
the control dependencies of tasks to detect potential data dependencies.

In this paper, we present QUAD (Quantitative Usage Analysis of Data), a memory
access tracing tool that provides a comprehensive quantitative analysis of the memory
access patterns of an application with the primary goal of detecting actual data de-
pendencies at function-level. To the best of our knowledge, this is the first tool that
addresses the actual data dependency detection and abstracts away from the properties
of data dependency detection of an application on a particular architecture. In addition,
previous research into data dependency detection has mainly focused on the discovery
of parallelization opportunities. However, we do not necessarily target parallel appli-
cation development. Even though QUAD can be employed to spot coarse-grained par-
allelism opportunities in an application, it practically provides a more general-purpose
framework that can be utilized in various reconfigurable systems’ optimizations by esti-
mating effective memory access related parameters, e.g. the amount of unique memory
addresses used in data communication between two cooperating functions. QUAD can
also be used to estimate how many memory references are executed locally compared
to the amount of references that have to go to the main memory.

Accessing memory locations sequentially, or within predefined strides, can be
considered very efficient on cache-based computing systems. This information can be
useful in the presence of memory hierarchies on a system and can be a source of per-
formance improvement. Frequently, it is possible for the programmer to restructure the
data or code to achieve better memory reference behavior. Inefficient use of memory
remains a significant challenge for application developers. QUAD can also be utilized
to diagnose memory inefficiencies by reporting useful statistics, such as boundaries of
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memory references within functions, detection of unused data in memory, etc. QUAD
can be easily ported to different architectures as long as there exists a primitive tool
set that can provide the basic memory read/write instrumentation capabilities, like BIT
[16] for instrumenting java byte codes.

The main features of the tool proposed in this paper, are listed in the following.

– QUAD detects the actual data dependency at function-level in an application, which
involves a higher degree of accuracy compared to the conventional data dependency
detected by other similar tools.

– QUAD does not require any modification of the binaries and it has no compiler
dependence other than debug information. It also abstracts away from the properties
of a particular architecture.

3 Profiling Framework in DWB

This work has been carried out in the context of the Delft WorkBench (DWB) [17]
and the hArtes [18] projects. The DWB is a semi-automatic tool platform for integrated
hardware/software co-design targeting heterogeneous computing system containing re-
configurable components. It aims to be a comprehensive platform supporting develop-
ment at all levels starting from profiling and partitioning to synthesis and compilation.
Conversely, the closely related hArtes project targets the same heterogeneous systems.
However, it also takes into account digital signal processing hardware and provides its
own heterogeneous platform.

The Delft Workbench focuses on four main steps within the entire heterogeneous
system design.

– Code Profiling and Cost Modeling - focuses on identifying application hot-spots
and on estimating implementation costs for different components [19].

– Graph Transformations - aim to use the profiling information and estimates for
clustering tasks, partitioning tasks over components, optimizing tasks, or restruc-
turing the task graph [20,21,22].

– VHDL Generation - When tasks need to be implemented on Reconfigurable com-
ponents, this tool allows to automatically translate the high level language descrip-
tions into VHDL [23].

– Retargetable Compiler - schedules and combines all the implemented parts of the
application and it generates the executable binary [24].

The work in this paper mainly revolves around code profiling. Figure 1 depicts in de-
tail the profiling framework envisioned by the DWB platform. We distinguish between
static and dynamic profiling paths. Static profiling can provide estimates in a small
amount of time, whereas dynamic profiling provides accurate measurements of several
aspects like execution time and memory access behavior. The dynamic profiling path
focuses on run-time behavior of an application and, therefore, is not as fast as the static
profiling. Furthermore, the dynamic profiling requires representative input data in order
to provide relevant measurements. gprof is used to identify hot-spots and frequently
executed functions, while QUAD is concerned with tracing and revealing the pattern of
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Fig. 1. Profiling Framework within DWB

memory references with the primary aim to detect actual data dependencies between
functions. In this paper, we only focus on the representation and implementation details
necessary for the description of QUAD.

4 QUAD Design and Implementation

4.1 Pin

QUAD is a Dynamic Binary Analysis (DBA) tool which analyzes an application at the
machine code level as it runs. DBA tools can be built from scratch or be implemented
using a Dynamic Binary Instrumentation (DBI) framework. Instrumentation is a tech-
nique for inserting extra code into an application to observe its behavior. This process
can be performed at various stages either in the source code, or at compile-time, or at
post-link time, or at run-time. QUAD is implemented as a tool using the Pin [25] run-
time binary instrumentation system. By using Pin, we have the benefit of working trans-
parently with unmodified Linux, Windows and MacOS binaries on Intel ARM, IA32,
64-bit x86, and Itanium architectures. Thanks to the instrumentation transparency, Pin
preserves the original application behavior. The application uses the same addresses
(both instruction and data) and the same values (both register and memory) as it would
in an uninstrumented execution. This transparency, vital for correctness, results in more
relevant information collected by the instrumentation. Dynamic instrumentation is par-
ticularly beneficial for this type of tools. It captures the execution of arbitrary shared
libraries in addition to the main program and it has no dependence on the instrumented
application’s compiler. Requiring only a binary and being compiler-independent does
not imply that the source code is not needed for program revisions. Instead, it provides
flexibility for the tool to be language-independent and it can be used with any compiler
toolchain that produces a common binary format. Furthermore, it does not require the
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user to modify the build environment to recompile the application with special profiling
flags.

Since QUAD relies on dynamic instrumentation and it is compiler-independent, de-
tecting the producers/consumers of the data being stored/loaded via memory addresses
must be done in the absence of any kind of control/data flow or call graphs. As a conse-
quence, the detection is based only on the dynamic execution of the program. In order
to provide some degree of flexibility, QUAD also implements and maintains its own
call graph during the execution of a program.

4.2 QUAD Overview

QUAD has been designed as a base system to provide useful quantitative information
about the data dependence between any pair of cooperating functions in an application.
Data dependence is estimated in the sense of producer/consumer binding. More pre-
cisely, QUAD reports which function is consuming the data produced by another func-
tion. The exact amount of data transfer and the number of Unique Memory Addresses
(UMA) used in the transfer process are calculated. Based on the efficient Memory Ac-
cess Tracing (MAT) module implemented in QUAD, which tracks every single access
(read/write) to a memory location, a variety of statistics related to the memory access
behavior of an application can be measured, e.g. the ratio of local to global memory
accesses in a particular function call.

Figure 2 illustrates the architectural overview of QUAD along with the components
in Pin. At the highest level, there is a Virtual Machine (VM), a code cache, and an
instrumentation API. The main component inside QUAD is the MAT module, which
is responsible for building and maintaining dynamic trie [26] data structures to provide
relevant memory access information as fast as possible. The trie data structure acts as a
shadow memory for each byte accessed within the address space of an application.
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Fig. 2. Architectural overview of QUAD

The VM consists of a Just-In-Time (JIT) compiler, an emulator, and a dispatcher. Af-
ter Pin gains control of the application, the VM coordinates its components to execute
the application. The JIT compiles and instruments the application code, which is then
launched by the dispatcher. The compiled code is stored in the code cache. Entering
(leaving) the VM from (to) the code cache involves saving and restoring the application
register state. The emulator interprets instructions that cannot be executed directly. It
is used for system calls which require special handling from the VM. Since Pin does
not reside in the kernel of the operating system, it can only capture user-level code. As
Figure 2 shows, three binary programs are present when an instrumented program is
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running: the application, Pin, and QUAD. Pin is the engine that instruments the appli-
cation. QUAD contains the instrumentation and analysis routines and it is linked with a
library that allows QUAD to communicate with Pin.

4.3 QUAD Implementation

The interfaces to most run-time binary instrumentation systems are API calls that al-
low developers to hook in their instrumentation routines. In Pin, the API call to INS
AddInstrumentationFunction() allows a user to instrument programs based on a single
instruction while the RTN AddInstrumentFunction() provides instrumentation capabil-
ity at routine granularity. QUAD uses these two API routines to set up calls to the
instrumentation routines Instruction() and UpdateCurrentFunctionName(). These two
instrumentation routines, in turn, call the two main analysis routines RecordMemRef()
and EnterFunc() which are responsible for updating tracing information of memory
references and maintaining an internal call graph respectively. Figure 3 illustrates an
implementation overview of QUAD. The detailed algorithms associated with each mod-
ule are not included in this paper for brevity. Nevertheless, in the following we provide
some description highlights.

The initialization process in the main module includes Pin system initialization, com-
mand line options parsing, internal call graph initialization, and some output XML file
preprocessing. The Instruction() instrumentation routine sets up the call to RecordMem-
Ref() routines every time an instruction that references memory is executed. When Pin
starts the execution of an application, the JIT calls Instruction() to insert new instruc-
tions into the code cache. If the instruction references memory (read or write), QUAD
inserts a call to RecordMemRef() before the instruction, passing the Instruction Pointer
(IP), Effective Address (EA) for the memory operation, a flag indicating whether it is a
read or write operation, number of bytes read or written, and a flag showing whether or
not the instruction is a prefetch. The analysis routine returns immediately upon detec-
tion of a prefetch state for an instruction. INS InsertPredicatedCall() injects the analysis
routine and ensures that the analysis routine is invoked only if the memory instruction
is predicated true. There is also a separate RecordMemRef() analysis routine for the
case that we are interested to trace local memory references within the stack region.
In this case, the value of stack pointer is also passed to the analysis routine for fur-
ther investigation. Instruction() also monitors the ret instruction to leave a function and
upon detection calls a different analysis routine that updates the internal call graph if
necessary.
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Fig. 3. Implementation overview of QUAD
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The main objective of RecordMemRef() is to identify the function responsible for the
current memory reference and to pass the required information to the MAT module. The
instrumentation at the routine granularity in QUAD is responsible for pushing the name
of the currently called function onto an internal call stack. Note that the respective pop
operation is later performed upon detection of the ret instruction. QUAD needs to main-
tain its own call graph because a user may not be interested to dive into library routines
or routines that are not included in the main binary image file. In these cases, QUAD
assumes the most recent caller routine from the main binary as the one responsible for
issuing memory references.

4.4 Memory Access Tracing (MAT) Module

In order to spot and to extract memory reference information during the execution of
an application, an efficient memory access tracing module is implemented. The trac-
ing process utilizes trie data structures for fast storage and retrieval. MAT defines trie
structures with base 16 that is representative of memory addresses in hexadecimal for-
mat. Each hexadecimal digit in a 32-bit memory address corresponds to one level in the
trie data structure, leaving 8 levels deep in the hierarchy for complete address tracing.
The trie data structure is designed to grow dynamically on demand for reducing mem-
ory usage overhead as much as possible. This means that if a particular memory address
is fed to MAT for the very first time, the levels required to trace that particular address
are created in the trie. Hence, no space is allocated for unused memory addresses. The
saving is considerable because the complete data structure is expected to be gigantic
and may result in memory overflow in some systems.

The memory reference recording process is accomplished in two distinct phases.
In the first phase, we trace an 8-level trie for a particular memory address. For each
memory reference three different arguments are specified: memory address, function
ID, and read/write flag. In case of a write access, the corresponding shadow memory
address in the trie is labeled with the caller (producer) function ID. When a read flag is
detected, the function ID responsible for the most recent write in the memory address
is retrieved and passed along with the consumer function ID to the second phase where
a data communication record is created.

The memory reference information gathered by QUAD during the execution of an
application are reported in two separate formats. The producer/consumer binding infor-
mation is saved in a text file using standard portable XML format. This makes it easy
for third-party applications to import data for further interpretation and processing. The
actual data dependency bindings between functions is also provided in the form of a
graph data structure, which is called Quantitative Data Usage (QDU) graph.

5 Case Study

We used x264 [27] as a benchmark to test QUAD in a series of experiments. The goal is
to have an initial understanding of the application behavior regarding the data commu-
nication patterns, memory usage, and memory requirements. The information provided
by QUAD can be used later in HW/SW partitioning and mapping as well as to hint
application developers how to revise and optimize the code for a specific architecture.
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x264 is a free library for encoding H.264/AVC video streams. The version used in this
work is a modified x264 r654 encoder tailored to the MOLEN [28] paradigm taking
into account the restrictions in terms of coding rules accepted by the DWARV hardware
compiler [23].

5.1 Experimental Setup

All the experiments were executed on an Intel 64-bit Core 2 Quad CPU Q9550 @
2.83GHz with the main memory of 8GB, running Linux kernel v2.6.18-164.6.1.el5.
The x264 source code was compiled with gcc v3.4.6 and with the profiling option en-
abled. We need to use gprof as an auxiliary tool to interpret the data and to make some
conclusions. The standard command line options used to run the 64-bit compiled ver-
sion of x264 was the following:

1. –no-ssim - to disable the computing of structural similarity (SSIM) index;
2. rate control -q1 - to indicate almost lossless compression;
3. –no-asm - to disable all stream processing optimizations based on CPU capabilities.

The 64-bit version of QUAD was used with the following command line options:

1. ignore stack access - to ignore all the memory accesses to the stack region. This
gives a clear view of the data transferred via non-stack region.

2. use monitor list - to include only some critically potential functions in the report
files, due to the high complexity and the size of the x264 application.

akiyo qcif was used as the input data file for encoding. It is a raw YUV 4:2:0 file with
the resolution of 176x144 pixels containing 300 frames. The output was in raw byte
stream format.

5.2 Experimental Analysis

x264 contains over two hundreds functions. The set of functions to be called are de-
termined based on different options selected by the user or by the input/output file
specifications. On the basis of the computation-intensive kernels identified in the flat
profile provided by gprof, we chose a number of functions (or series of functions) for
further inspection. The main criterion adopted here was the suitability for the DWARV
compilation tool. Table 1 presents part of the flat profile.

Table 1. Flat profile for x264

function name % time self seconds calls total ms/call self ms/call
pixel satd wxh 34.51 0.49 1361024 0 0
x264 cabac encode decision 8.45 0.12 10808084 0 0
get ref 7.75 0.11 1165182 0 0
block residual write cabac 7.04 0.1 400643 0 0
x264 pixel sad x4 16x16 5.63 0.08 88506 0 0
x264 frame filter 5.63 0.08 2700 0.03 0.03
x264 pixel sad x4 8x8 3.52 0.05 243588 0 0
refine subpel 2.82 0.04 151014 0 0
motion compensation chroma 2.11 0.03 442213 0 0

% time is the percentage of the total
execution time of the program used
by the function; self seconds is the
number of seconds accounted for by
the function alone; calls is the num-
ber of times a function is invoked;
total ms/call is the average number
of milliseconds spent in the func-
tion and its descendants per call; self
ms/call is the average number of mil-
liseconds spent in the function per
call.
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Table 2. Summary of data produced and consumed by satd- and sad-related kernels

function name IN IN UMA OUT OUT UMA
pixel satd wxh 326310528 137425 91578266 5126
x264 pixel satd 16x16 40607660 1523 26133254 1233
x264 pixel satd 16x8 5795852 1009 2849136 722
x264 pixel satd 4x4 34342432 2745 18099806 2318
x264 pixel satd 4x8 3091448 1953 1610194 1644
x264 pixel satd 8x16 6248933 1053 3152620 650
x264 pixel satd 8x4 3019905 1937 1568928 1594
x264 pixel satd 8x8 91709500 3307 46203830 3049

function name IN IN UMA OUT OUT UMA
x264 pixel sad 16x16 59965275 103924 5704610 624
x264 pixel sad 16x8 9159212 55626 1736556 480
x264 pixel sad 4x4 0 0 0 0
x264 pixel sad 4x8 0 0 0 0
x264 pixel sad 8x16 8924130 53174 1709404 566
x264 pixel sad 8x4 0 0 0 0
x264 pixel sad 8x8 53730341 89155 10838624 664

IN represents the total number of bytes read by the function; IN UMA indicates the total number of unique memory addresses used in reading; OUT represents the total
number of bytes read by any function in the application from memory locations that the specified function has written to those locations earlier; OUT UMA indicates the
total number of unique memory addresses used in writing.

As presented in the Table 1, pixel satd wxh is the main kernel of the application
accounting for 35% of the total execution time. It was initially selected as the main can-
didate kernel for hardware mapping along with sad-related functions. Although x264
cabac encode decision is the most frequently called function, each call has a smaller
contribution compared to pixel satd wxh. As a result, the overall contribution of x264
cabac encode decision drops considerably. There are several satd-related functions
defined in the form of Macros corresponding to various block sizes. These macros,
when expanded, create different functions calling the main pixel satd wxh making it
a very critical function on the execution path. Table 2 summarizes the results of mem-
ory access tracing for satd- and sad-related functions. As expected, pixel satd wxh is
the top consumer on the list (in total more than 300MB) as all the other satd-related
functions call this kernel to perform their primary tasks.

It is worth noting that some sad-related functions (the ones with 4 rows and/or
columns) do not exhibit any data transfers, which is an indication that they are not
called. This depends on the input file characteristics and options used. Although the ker-
nels are intensely reading (writing) data from (to) memory, the number of unique mem-
ory addresses used in the data transfer is limited (MBs data transfer vs. KBs locations).
This indicates the possibility of allocating memory buffers, e.g. on FPGA BRAMs to
gain better performance. QUAD can also provide a detailed map of the used memory
addresses for the examination of mapping opportunities on a target architecture. The
auxiliary functions communicating with kernels are recognized and presented in the
QDU graph. These auxiliary functions can be sources of further investigation. For ex-
ample, one might investigate mapping tightly coupled functions on FPGA and creating
a buffer to facilitate the data transfer, or merging auxiliary function(s) with the primary
kernel to cut off data transfers between functions. In case of pixel satd wxh, mc copy
w16 is tightly coupled with the main kernel and it is responsible for producing approxi-
mately 130 MB of data (75k UMA). Further inspection of mc copy w16 reveals that it
belongs to the motion compensation library and merely calls the built-in memcpy rou-
tine of the C language library in a loop in order to create a block of pixels from a flat set
of pixels with a predefined stride. It seems feasible to rewrite the routine from scratch
and to combine it with the kernel.

sad-related routines are also defined in the form of Macros corresponding to various
block sizes. Unlike satd-related functions, these macros, when expanded, create differ-
ent functions with separate bodies. In order to evaluate the impact of an identical kernel
routine for the sad-related functions, we created a new function called pixel sad wxh
and revised all the sad-related functions to call this critical kernel. It is a more likely
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Table 3. Flat profile for the revised x264 (non-instrumented and QUAD-instrumented binaries)

function name % time self seconds calls rank % time(+QUAD) self seconds rank(+QUAD)
pixel sad wxh 33.45 0.5 2646060 1 22.94 546.53 1
pixel satd wxh 24.32 0.36 1361024 2 7.61 181.18 4
x264 frame filter 8.11 0.12 2700 3 9.96 237.21 3
get ref 7.43 0.11 1165182 4 7.49 178.41 5
motion compensation chroma 5.41 0.08 442213 5 3.25 77.53 7
block residual write cabac 4.73 0.07 400643 6 2.64 62.96 8
x264 cabac encode decision 2.03 0.03 10808084 8 14.62 348.32 2
x264 macroblock cache load 2.03 0.03 29700 9 1.49 35.39 12
x264 cabac encode bypass 1.35 0.02 2234007 10 4.84 115.29 6

Table 4. Data produced/consumed by pixel satd wxh & sad-related functions in the revised x264

function name IN IN UMA OUT OUT UMA
pixel sad wxh 816414788 245781 100154164 2976
pixel satd wxh 326389008 137389 91580364 5108
x264 pixel sad 16x16 16169821 885 7275066 614
x264 pixel sad 16x8 4588984 793 2122520 510
x264 pixel sad 8x16 4480742 843 2066828 552
x264 pixel sad 8x8 39174841 1011 17382666 732

candidate for implementation on FPGA devices. Table 3 depicts part of the flat profile
for x264 after the introduction of the new pixel sad wxh kernel. pixel sad wxh now
gets the dominant position with the contribution of about 33.5% to the whole applica-
tion’s execution time. Note that it is also called nearly double of the times compared
to the second dominant kernel, pixel satd wxh. The gprof flat profile of the QUAD-
instrumented binary is also provided. The considerable increase in the self-seconds
contribution of each kernel is due to the overhead introduced by the QUAD instrumen-
tation code routines. However, the ranking provided in this respect is somehow more
representative of real execution time regarding the data communication between func-
tions via non-local memory. It is due to the fact that we do not take into consideration
stack-region memory accesses and only upon detection of a non-local memory access,
a time-consuming routine to parse the trace trie is called.

Table 4 summarizes the results of memory access tracing for pixel satd wxh and
sad-related kernels in the revised version of x264. As expected, the communication load
of pixel sad wxh dominates the former main kernel pixel satd wxh. However, there is
a substantial increase in the total amount of bytes consumed by this new kernel (about
800MB) compared to the collective number of bytes consumed by the sad-related func-
tions in the original version. This is due to the fact that the sad-related functions have
to pass extra arguments to the new kernel. The new kernel uses the extra information to
distinguish between different sad-related functions. The number of bytes consumed in
pixel sad wxh can be further reduced by a revision of the code to minimize this over-
load. The total number of bytes produced and consumed beside the unique memory
addresses used inside individual sad-related functions are significantly reduced since
the load is shifted to the new pixel sad wxh kernel.

Including the local memory accesses in the tracing would also reveal notable ob-
servations. By including stack region accesses, pixel satd wxh becomes the dominant
kernel once again (22.15% of the whole contribution). This indicates that if there is no



280 S.A. Ostadzadeh et al.

intention to map the local temporary memory into the hardware and fetching data from
external memory is expensive, there is a high probability that mapping pixel satd wxh
onto hardware is preferable compared to pixel sad wxh.

6 Conclusions

The gap between processors and memory performance will be a major challenge for
the optimization of memory-bound applications on hybrid reconfigurable systems. This
demands the development of utility tools to help users in tuning applications for maxi-
mal performance gain of these systems. In this paper, we have presented QUAD, a tool
that provides a comprehensive quantitative analysis of the memory access patterns of an
application. QUAD can be employed in detecting coarse-grained parallelism opportuni-
ties as well as providing information about the memory requirements of an application.
The information is particularly useful in buffer size estimation for local memory reallo-
cation to store data in case of mapping kernels onto reconfigurable devices that initially
cause memory bandwidth problems. QUAD has been tested on a real x264 benchmark-
ing application and a detailed discussion was presented based on the extracted statistics.
In the future work, we are planning to utilize the information provided by the tool for
task clustering in heterogeneous reconfigurable systems.

References

1. Kwok, T.O., Kwok, Y.K.: On the design, control, and use of a reconfigurable heterogeneous
multi-core system-on-a-chip. In: Proc. of PDP, pp. 1–11 (2008)

2. Kempf, T., Karuri, K., Wallentowitz, S., Ascheid, G., Leupers, R., Meyr, H.: A sw perfor-
mance estimation framework for early system-level-design using fine-grained instrumenta-
tion. In: Proc. of DATE, pp. 468–473 (2006)

3. Yan, R., Goldstein, S.C.: Mobile memory: Improving memory locality in very large recon-
figurable fabrics. In: Proc. of FCCM, pp. 195–204 (2002)

4. Hauck, S., Dehon, A.: Reconfigurable Computing: The Theory and Practice of FPGA-Based
Computation (Systems on Silicon). Morgan Kaufmann, San Francisco (2007)

5. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution profiler. SIG-
PLAN Not. 17(6), 120–126 (1982)

6. Giusto, P., Martin, G., Harcourt, E.: Reliable estimation of execution time of embedded soft-
ware. In: Proc. of DATE, pp. 580–589 (2001)

7. Bammi, J.R., Kruijtzer, W., Lavagno, L., Harcourt, E., Lazarescu, M.T.: Software perfor-
mance estimation strategies in a system-level design tool. In: Proc. of CODES, pp. 82–86
(2000)

8. Ravasi, M., Mattavelli, M.: High-level algorithmic complexity evaluation for system design.
J. Syst. Archit. 48(13-15), 403–427 (2003)

9. Martonosi, M., Gupta, A., Anderson, T.: Memspy: analyzing memory system bottlenecks in
programs. In: Proc. of Sigmetrics/Performance, pp. 1–12 (1992)

10. Venkataramani, G., Doudalis, I., Solihin, Y., Prvulovic, M.: Memtracker: An accelerator for
memory debugging and monitoring. ACM Trans. Archit. Code Optim. 6(2), 1–33 (2009)

11. Choudhury, A.N.M.I., Potter, K.C., Parker, S.G.: Interactive visualization for memory refer-
ence traces. Comput. Graph. Forum 27(3), 815–822 (2008)



QUAD – A Memory Access Pattern Analyser 281

12. Brewer, O., Dongarra, J., Sorensen, D.: Tools to aid in the analysis of memory access patterns
for FORTRAN Programs. Parallel Computing 9(1), 25–35 (1988)

13. Balle, S., Steely Jr., S.: Memory Access Profiling Tools for Alpha-based Architectures. In:
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