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Abstract—In this paper we introduce a fine-grain fault di-
agnosis approach for reconfigurable logic blocks. As opposed
to previous works, we propose to reuse rather than to discard
defective blocks. We describe methods to analyze deeper a
defective Xilinx Virtex2Pro slice and diagnose the fault, out
of a set of 150, that causes the malfunction. The outcome of
the fault diagnosis is subsequently used to characterize the
defective slice functionality and then match it with a suitable
design configuration. The proposed methods are implemented
and prototyped in a Virtex2Pro-30. A single-phase fault diagnosis
covers 95% of the faults and takes 170-390 nsec to test a single
slice and 27-62 µsec for a frame of 160 slices. A two-phase
approach uses reconfiguration and covers the entire set of faults
requiring up to 8.5 µsec and 80 µsec for a single slice and an
entire frame, respectively.

I. INTRODUCTION

As feature size continues to shrink, transistors become less

reliable while their count on a single chip rapidly increases.

The combination of these two technology trends make the

use of reconfigurable hardware ever more attractive. On one

hand, the reconfigurable substrate is an excellent solution for

defect tolerance; it is an array of identical substitutable units

which can be configured and interconnected on demand to

bypass defects. On the other hand, the area overhead of the

reconfigurable hardware is becoming less significant due to

the plethora of available on-chip resources.

A large number of related works advocate the use of FPGAs

to provide fault tolerance, such as the works described in

[1]–[7]. Most of them describe techniques for testing and

locating defective units and subsequently substitute them with

spare, correctly functioning ones. Naturally, a substitutable

unit is a logic block (i.e. CLB, Slice or logic cell) or, at

minimum, a LUT or Flip-flop. Such approaches are shown

to be efficient for low defect-rates, however, they can be

overly costly when defect-rates increase. In the coming nano-

scale era, it is projected that a significant number of units

will be defective at manufacture time and many more will

degrade and fail over the expected lifetime of a chip [8], [9].

Consequently, even with the above granularity of substitutable

units, significant part of the resources will be marked as

defective and get discarded. A defective unit however, may still

be useful; for example, a LUT with one defective SRAM-cell

can still accommodate a large number of functions.

In our attempt to exploit the remaining capabilities of

defective FPGA logic blocks, we investigate a finer-grain

approach for defect-tolerance than previous works. We propose

to perform (after testing) more detailed fault diagnosis and

characterization of such logic blocks. In so doing, we identify a

set of functions which can still be supported in a defective sub-

stitutable unit. A subsequent matching between these functions

and the design configuration will potentially determine the

way to successfully utilize the defective blocks. Our primary

objective is to minimize the latency of the diagnosis and

maximize the number of faults being diagnosed. As expected,

similarly to FPGA testing, latency is dominated by the recon-

figuration delay required between different diagnostic phases.

Consequently, reducing the number of diagnostic phases will

result is significant speedup.

In this paper we introduce two methods for fine-grain fault

diagnosis of a FPGA Slice. More precisely, the following is

performed:

• We propose a finer-grain fault diagnosis approach com-

pared to related works to determine a single fault in a

defective FPGA Slice out of a set of 150 possible faults.

The fault diagnosis is subsequently used to characterize

the capabilities of the slice.

• A two-phase method of fault diagnosis is described first,

which requires a single reconfiguration and is able to

cover 96% of the faults in a few µsec.

• A more sophisticated single-phase diagnosis method is

subsequently proposed which covers 95% of the faults,

does not need reconfiguration, and hence requires only a

few tens of nsec. Adding a second phase to this method

covers 100% of the faults.

• We designed and prototyped in a Virtex2Pro-30 device a

tester for each of the above fault diagnosis methods and

measure latency, diagnostic accuracy, and area cost.

The remainder of the paper is organized as follows: in

Section II we provide some background on testing and fault

diagnosis and discuss related works. In Sections III and IV we

present our fault diagnostic methods and our characterization

approach, respectively. In Section V, we evaluate our solutions

and in Section VI we draw our conclusions.

II. BACKGROUND

The two general approaches for FPGA defect tolerance are

sparing and matching as described by A. DeHon in [9]. The

first step for both of them is FPGA testing. Testing identifies

whether each substitutable unit is defective, locates and returns

a list of all defective units. Several approaches have been

proposed for FPGA testing most of which are summarized in

[1]. A recent work in FPGA testing is the method by Dutton



and Stroud in [2] which tests a Virtex5 using 17 configurations

to locate defects at the resolution of a LUT or flip-flop.

Sparing approaches use techniques to discard defective units

and replace them with spare defect-free units. The defects

are avoided either using defect-maps, which mark defective

units, or creating perfect-components, discarding entire rows

and columns of the reconfigurable array similarly to memories.

Subsequently, spare, defect-free units are selected from a

local cluster (local sparing) or from the entire device (global

sparing) to substitute the defective ones. Cheatham et al.

provide a detailed survey of works using sparing for FPGA

fault tolerance in [3].

As opposed to sparing, matching analyzes further the units

which according to the testing were reported as defective. This

process is called fault diagnosis and identifies the exact fault

that causes the unit to malfunction out of a set of faults. Such a

set of possible faults is defined for a Circuit-under-Test (CUT)

based on specific fault models. After fault diagnosis, the unit

is characterized determining a list of functions which can be

still supported correctly. These functions are then matched

with possible configurations that may be mapped to the unit.

Obviously, matching is a substantially more complex process

than sparing, as it involves multiple comparisons between

the possible functions and the available configurations, rather

than a simple defect/defect-free decision required in sparing.

Matching, however, is a more efficient process and therefore it

is expected to (or alternatively can be forced to) have a small

search space; that is, the number of different configurations

checked before finding a match (or before failing to find one).

Next, we offer a brief overview of fault diagnosis ap-

proaches as they were categorized in [10] and [11]. Fault

diagnosis may follow an effect-cause or a cause-effect method-

ology. The first one is based on the erroneous response of the

CUT (the effect) to exclude one-by-one faults (causes) out

of the set of possible faults until the fault which caused the

response is found. On the contrary, the cause-effect diagnosis

simulates a priori the faulty behavior (effect) of the CUT for

each one of the faults (cause) in the predefined set of faults,

and subsequently attempts to match the faulty behavior. A

common cause-effect diagnosis approach uses diagnostic trees

to analyze the responses of the CUT. A diagnostic tree is built

based on the set of the suspected faults and the simulated

response of the CUT for each fault. Each non-leaf node of the

tree stores a test vector to be applied at the CUT and according

to the CUT response the appropriate branch to the next level

is selected. When a leaf is reached the diagnosis is completed

and the fault causing the erroneous response is detected.

One of the most interesting works on FPGA testing, local-

ization and diagnosis is the one by Abramovici, Stroud, Em-

mert et. al. in the framework of the Roving STARs paradigm

[4]. This work, among other contributions, attempts to reuse

FPGA faulty resources, having a small area of a few basic

blocks roving around the whole FPGA for testing, diagnosis

and fault tolerance purposes. These few logic blocks test each

other through 15 different configuration phases. Abramovici

et. al. identify defects at the granularity of a LUT and a flip-
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Fig. 1. The Virtex2-Pro slice diagram considered in our diagnosis methods.

flop, considering as substitutable unit an ORCA-2C FPGA

logic block. They discard defective resources (LUTs and/or

flip-flops) rather than matching them to suitable functions.

However, we consider that they implicitly perform some

kind of coarse-grain characterization, as they go below the

substitutable unit granularity and attempt to match the defect-

free resources of a unit to the requirements of a neighboring

configuration.

In this work, we perform fault diagnosis in a higher resolu-

tion compared to previous works, and attempt to characterize

and map configurations to defective resources. To exemplify,

a multiplexer with a stuck-at-one fault at the select bit can

be used when it fits a given configuration. As a logic block,

we consider the Xilinx Virtex2-Pro Slice, illustrated in Figure

1, which consists of two LUTs, two flip-flops, and some

additional multiplexers. For simplicity, the considered slice de-

scription omits the fast carry chain circuit and some arithmetic

dedicated gates. Our fault model considers functional faults

of two types, the first ones are stuck-at-zero and stuck-at-one

faults for every wire depicted in Figure 1. The second type of

faults is related to the storage elements of the Slice (LUTs

and flip-flops), described based on the 3-tuple definition:

<sensitizing-sequence/fault-effect/read-value> (< S/F/R >)

by Al-Ars, van de Goor et. al. in [12]. According to [12],

each bit of storage may experience 10 different faults, e.g.,

< 0w1/0/− > describes the fault of writing 1 to a memory

cell that stores a 0 and the state remains 0. Our fault model

contains in total 150 (merged1) faults, each one affecting

directly the functions that can be supported in the slice.

1E.g. all faults related to a single LUT-cell are merged to one entry in our
fault model.
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(a) Phase-1 of the FG method.
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(b) Phase-2 of the FG method.
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Fig. 2. The CUT partitioning for the phase-1 and 2 of the FG method, as well as for the SR method.

III. FAULT DIAGNOSIS METHODS

Based on the above Slice description and its fault model

definition, we have developed two methods for fault diagnosis

to detect a single fault out of the 150 faults in the set. We

follow a cause-effect methodology using diagnostic trees. In

order to minimize the latency of the methods we aim at

reducing the number of reconfiguration phases and the latency

of each phase by reducing the depth of the diagnostic trees. To

achieve this and to reduce the diagnosis complexity we divide

the Circuit-under-Test (CUT) into partitions which can be

checked independently. Then, a diagnostic tree is constructed

for each partition, aiming at excluding as many faults possible

at the earliest possible step. Obviously, the component that has

higher diagnostic complexity is the LUT; there lies the primary

difference between the two proposed methods.

In order to form our diagnostic approaches, we first ob-

served how each fault of our model appears at the outputs of

the CUT. The following useful conclusions were derived:

• A fault at a LUT-cell appears only when its content is

read; this singular effect makes them easy to diagnose.

• When reading all LUT contents one by one, faults at an

LUT address-line appear during half the cycles (eight) of

the process. Whether or not the appearance manifests at

an output, depends on the contents of the intended-to-be-

read cell and the actually-being-read cell.

• Multiplexer faults have been reduced to faults of their

selects. In essence, we are interested to check whether

the multiplexer selects the correct input. To do so, we

keep the inputs of each multiplexer complementary.

• Faults of wires force an output in their transitive fanout

to be fixed to a steady value.

• Flip-flop faults are diagnosed on the cycle that the faulty

transition (0→1, 1→0, 0→0, 1→1) occurs.

• Multiple faults may temporarily have the same faulty

response. The diagnostic method will distinguish them

in a subsequent step using the proper test vectors.

A. The Function-Generator Method

The main characteristic of this method is that the LUTs

of the slice are configured as function generators (FG) that

support any 4-to-1 boolean function. Given that we need to

check every LUT-cell for faults in storing ‘0’ and ‘1’, it is

obvious that this approach requires at least two phases and one

reconfiguration. We explain below how the CUT is partitioned,

how the LUT configuration is determined, and describe the

diagnostic trees construction in the FG method.

As illustrated in Figure 1, the CUT has 6 outputs. Each

fault on a component of the circuit can affect a subset of

these outputs, which belong to the transitive fanout of the

fault. For example, output Y is in the transitive fanout of the

faults in YMUX2 wire, whereas output X is not. We follow

the natural partitioning of the functionality among the parts of

the slice and let each output be responsible to diagnose a well-

defined subset of the faults. Partitioning is further affected by

the position of some multiplexers. The selects of multiplexers

ROUTING-Y, ROUTING-X, DY-MUX, and DX-MUX are

driven by a configuration bit. Therefore, these selects are

forced to be fixed during a single diagnostic phase. Essentially,

in a single phase, the multiplexer output is fixed to a single

input and at the same time the non-selected input is cut-off.

By this cutting-off, the circuit is separated in independent

parts. Figures 2(a) and 2(b) depict the partitioning of the

CUT during the first and second phase of the FG method,

respectively. It is worth noting, that the implementation of the

above multiplexers has as a consequence the cut-off MUX-

input to be untestable during the respective phase requiring

the second phase to completely test it.

An interesting observation is that the inputs of some of

the partitions are not primary inputs of the Slice and there-
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Fig. 3. Diagnostic Trees of the FG method, phases 1 and 2, for the partitions that include the LUTs of the Slice under test.

fore cannot be explicitly controlled; we call such partitions

“passive” as opposed to “active” ones. In order to diagnose

passive partitions, we need to indirectly create the proper test-

vectors through partitions that drive their inputs. Such passive

partitions are the YQ and XQ of Figure 2(a). The inputs of

the passive partitions are still exposed for read access to the

tester, otherwise diagnostic tests would not be possible. For

example, the YQ partition has one primary input (BY) and

one internal (DY) which is however exposed since it is also

the output Y of the slice.

The configuration of the LUT is based on a number of

requirements posed by our fault models:

1) each LUT cell has to be read once during each phase in

order to check whether it stores its value correctly.

2) in order to detect faults at the address lines of an LUT,

at least two faulty reads need to be detected (out of the

8 that an address-line fault causes).

3) to test a multiplexer we need to keep their two inputs

complementary; since the two LUTs provide input to

MUXF5, we then configure the LUTs of the slice with

complementary contents to test MUXF5.

4) in order to check the flip-flops at the output we need to

feed them through the LUTs with the correct sequence

of bits; that sequence is 10011 or 01100.

Based on the above constraints, we determine the LUT

configurations and use a 4-bit counter to read the LUT contents

one-by-one. An LUT configuration that satisfies the above

constraints is (from bit 0 to 15) “0110001110000000” for G-

LUT and its compliment for F-LUT, respectively. During the

second phase, the two configurations are interchanged. Table I

shows the addresses read and the responses of the fault free

TABLE I
LUT CONTENTS AND ACTUAL ADDRESSES READ IN THE FAULT-FREE

CASE, AND IN CASE OF ADDRESS-LINE FAULTS. IN BOLD: WRONGLY READ

ADDRESSES OBSERVED AT THE OUTPUT, UNDERLINED: WRONGLY READ

ADDRESSES NOT OBSERVED DUE TO THE LUT CONTENTS.

LUT contents (0-15) 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1

Fault Type Actual Addresses Read

Fault-free case 0 1 2 3 4 5 6 7 8 9 101112131415

ADDR(0) s.a. 0 0 0 2 2 4 4 6 6 8 8 101012121414

ADDR(0) s.a. 1 1 1 3 3 5 5 7 7 9 9 111113131515

ADDR(1) s.a. 0 0 1 0 1 4 5 4 5 8 9 8 9 12131213

ADDR(1) s.a. 1 2 3 2 3 6 7 6 7 1011101114151415

ADDR(2) s.a. 0 0 1 2 3 0 1 2 3 8 9 1011 8 9 1011

ADDR(2) s.a. 1 4 5 6 7 4 5 6 7 1213141512131415

ADDR(3) s.a. 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

ADDR(3) s.a. 1 8 9 101112131415 8 9 101112131415

case for F-LUT, as well as the cases where there is a fault in

an address line. When the fault is in a specific LUT-cell then

the detection is trivial since the fault will appear in a single

read out of the 15. In case of an address-line fault, the table

shows in bold the observed faulty responses and underlined the

faulty reads that go unnoticed. Each address-line fault requires

at least two observed faulty responses to be detected. Finally,

the multiplexers with configurable selects are configured as

shown in the partitioning of the slice in Figure 2 to select one

input and cut-off the remaining one.

Having completed the formulation of the testing configu-

ration (consisting of the LUT contents and the multiplexer

selects), we construct the diagnostic trees for each partition

and each phase of the diagnosis process. Partitioning the CUT

allows as to have a Response Analyzer (RA) for each partition

implementing the corresponding diagnostic tree, rather than

having a common and substantially more complex RA for the
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entire CUT. Figure 3 illustrates the largest diagnostic trees of

our FG method; these are the trees for F5-partition in phase-1

(for X-partition is identical), and for Y and X partitions in

phase-2, in Figures 3(a), 3(b), and 3(c), respectively.

To exemplify, we briefly describe the F5 diagnostic tree of

phase-1. This tree is responsible for diagnosing all address-

line faults of the G-LUT and also half of the LUT-cell faults.

It is also responsible for only the stuck-at-0 (s.a.0) fault for

the select of MUXF5 and for the faults in GD, F5IN1, F5OUT

and F5 wires. To achieve that, a 4-bit counter addresses the

G-LUT resulting in a read operation on every LUT entry.

After phase-1 of the method, some of the faults are com-

pletely diagnosed, others are partially resolved, while some

remain to be checked in phase-2. In phase-1 all LUT address-

line faults are checked as well as half of the LUT-cell faults,

the MUXFX multiplexer, and faults in wires FXINA, FXINB,

FXOUT and FX. The flip-flop and the remaining multiplexers

are partially checked in phase-1 and completed in phase-2

together with the remaining LUT-cell and wire faults. Each

phase takes 16 cycles, due to the LUT diagnostic tree, while

the phase-2 requires two additional cycles for the ROUTING-

X multiplexer. Consequently, the total latency of the FG

method is 34 cycles plus the reconfiguration time of the slice.

B. The Shift-Register Method

Although our first method offers good diagnostic resolution,

especially on the wires and multiplexers, its primary drawback

is the need for reconfiguration between the two diagnostic

phases; this essentially increases the diagnosis delay from a

few hundreds of nsec to several µsec. In order to overcome

this limitation we choose in our second diagnosis method to

configure the LUTs as SRL16 shift registers. This enables

us to shift in the LUTs new contents without requiring to

reconfigure. This way, we are also able to diagnose memory

faults in the LUT cells that previously were not checked. That

is that the FG method was checking whether the LUT cells can

store correctly their static contents; it could not check faults

related to dynamic writes in the cells, e.g. < 0w1/0/− >,

since the LUT contents could not change dynamically dur-

ing a diagnosis phase. On the other hand, performing the

diagnosis in a single phase has some drawbacks which affect

the diagnostic accuracy2 and resolution3 of the Shift-Register

(SR) method. More precisely, the absence of a second phase

prevents us from checking most multiplexers4 with both values

of their select. We can overcome this limitation by adding

a second phase to the SR method; this variation of the

method is henceforth called SR2. However, the short latency

of the SR method is substantially more important than the

diagnostic accuracy and resolution. On one hand, being able

to perform the diagnosis on the fly without reconfiguration

makes SR method more attractive to be used online with the

minimum overhead for a reconfigurable system. On the other

hand, worsening the diagnostic accuracy and/or resolution may

reduce the efficiency of the subsequent slice characterization,

but does not affect its correct functionality. While a method

for testing cannot afford to miss a defect, reducing the quality

of fault diagnosis only affects the efficiency of the subsequent

characterization and matching.

Our partitioning for the SR method is shown in Figure 2(c).

As opposed to the FG method, the multiplexer MUXF5 is

not used for the partitioning, but its select signal (F5CTRL)

2Diagnostic Accuracy is the percentage of all CUTs that are diagnosed
correctly. When a CUT is known to be defective and all faults have equal
probability to occur, diagnostic accuracy is the percentage of faults covered.

3Diagnostic Resolution is the average number of faults that cannot be
distinguished with each other by a diagnostic method; the optimal diagnostic
resolution is ‘1’ corresponding to always detecting a single diagnosed fault.

4These are the multiplexers with configurable select.



TABLE II
THE LUT CONTENTS ON EVERY CYCLE OF THE SR METHOD.

Read

Addr

15/0/0/0001234 5 6 7 8 9 101112131415 0 0 1 2 3 4 5 6 7 8 9 101112131415

lut15 1 000000 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

lut14 0 000000 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

lut13 0 000000 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

lut12 0 000000 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

lut11 0 000000 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

lut10 0 000000 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

lut9 0 000000 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

lut8 0 000000 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

lut7 0 000000 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lut6 0 000000 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

lut5 0 000001 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

lut4 0 000011 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

lut3 0 000110 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lut2 0 001100 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lut1 0 011000 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lut0 0 110000 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cycle 0-3 45678910111213141516171819202122232425262728293031323334353637

is used as a variable input, in order to facilitate its testing.

In order to test the flip-flops in a single phase, we need to

choose whether to drive them directly or by the LUTs, since

this cannot change dynamically during the single phase of the

method. We choose to drive them by the LUT outputs in order

to test the use of LUT and flip-flop in the same configuration.

However, this choice adds a limitation to the possible functions

mapped on the slice during matching; that is that a flip-flop

needs to be always driven through the LUT regardless of it

implementing or not a useful function. Finally, the G and F

LUT outputs are propagated to the Y and X slice outputs,

respectively. This way we check the basic functionality of

realizing 4-input boolean functions in LUTs. Together with

the complete MUXF5 test, this means that also the ability to

accommodate 5-input boolean functions in the slice is checked.

The most important aspect of the SR method is the way

in which it deals with memory (LUT-cell) faults. Since now

we have access to the contents of the LUTs, we opted for

developing a variation of a march memory test, described in

[10], to cover the memory faults. The march test performs

the following sequence of actions in a memory cell in order

to detect all 10 memory fault types in our fault model:

{↑ (w0, w1, w1, r1); ↑ (w0, w0, r0)}. To apply the march test,

we shift in the LUT the corresponding values (01100), and

perform the appropriate reads in each LUT cell in order to

check it. Before the march test, we initialize properly the

contents of the LUTs, and spend four cycles to check the

enable and shift-in pins of the shift register as well as to

partially check for LUT address-line faults. Finally, the values

shifted in the LUT after the ones of the march test are not

important for the march test. We make use of these values

to complete the diagnosis of the LUT address-line faults. The

sequence of bits shifted in the LUT as well as its contents

in each cycle are illustrated in Table II; the two LUTs are

checked in an identical way with complimentary contents.

After partitioning the slice and defining the diagnosis ap-

proach for the LUTs, we construct the diagnostic tree of each

partition similarly to the first method. Figure 4 depicts the most

complex tree used for the response analysis of the X-partition

which includes the F-LUT (the tree for the Y-partition is

Fig. 5. Tester Block Diagram

identical). The fault-free scenario is the longest one requiring

38 cycles. The tree has three subtrees followed in the case if

address-line faults and faults at the enable and shift-in pins of

the LUT. The X and Y diagnostic trees determine the overall

latency of the method, which is 38 cycles.

C. Tester

Each fault diagnostic method is performed by a tester

implemented inside the FPGA. This allows to perform the

diagnosis online and support a BIST approach. Figure 5 shows

the block diagram of the tester which consists of a centralized

control unit and a number of Response Analyzers (RA). Each

RA implements the diagnostic tree corresponding to a CUT

partition. The RAs provide feedback to the control unit which

implements the top-level Finite State Machine of the tester,

feeds the CUT with the proper test-vectors, and reports the

detected faults. The basic advantage of this approach is that it

can support an adaptive diagnostic strategy, by identifying the

set of suspected faults after each fragment of the CUT response

and by making a decision as soon as possible. In some cases,

it is even profitable to modify the upcoming test vectors in

order to target the suspected faults specifically and reach the

conclusion even sooner. This means that the RA should give

some feedback to the controller, in order to determine the

subsequent steps.

IV. CHARACTERIZATION

The results of the fault diagnosis process provide a list

of faults for the slice under test. This information is then

used for the characterization step to indicate the functionality

supported by the defective slice. Previous works determine

the subset of functions supported by the defective block based

on the reported faults. In this work, we opted for a slightly

different approach. We defined a priori a set of modes which

would allow the defective device to gracefully degrade based

on the fault diagnosis. Each fault maps to one of the above

modes, while each mode constraints the configuration of the

block to a predefined subset of supported functions. This

way matching can be relatively simpler, by inspecting a few

bits of the intended configuration bit stream. All modes of

degradation and the faults that result to each of them according

to the FG, SR and SR2 methods are listed in Table IV.

Finally, the characterization is independent from the diagnosis;

consequently, it is simple to choose another set of modes of

degradation, or another manner of characterization, and still

use the same results of our diagnostic methods.



TABLE III
MODES OF GRACEFUL DEGRADATION

modeFG faults SR faults SR2 faults Description

M0.0- - Fault-free The CUT is fault-free.

M0.1Fault-free - - The CUT is fault-free. Limitations: the LUTs are

not configured as shift-registers.

M0.2- Fault-free - The CUT is fault-free. Limitations: a flip-flop is

driven through the respective LUT, some MUXs

can be used only with the tested configuration.

M1 f0-7 f0-9 f0-7 MUXFX not functional, output FX not usable.

Signal YMUX1 not usable, hence ROUTING Y

multiplexer usable only with MUXCTRLY = ‘1’.

M2 f8-9 - f8-9 Output FX not usable.

M3 f10-11,

f15

- f10-11,

f15

ROUTING Y multiplexer usable only with MUX-

CTRLY = ‘1’.

M4 f12-14 - f12-14 ROUTING Y multiplexer usable only with MUX-

CTRLY = ‘0’.

M5 f16-17 f12-13,

f16-17

f16-17 Output Y not usable. Y flip-flop only usable

directly through input BY (DYCTRL = ‘1’).

M6 GLUT 8 addr faults G-LUT only usable as a 3-variable FG, excluding

the faulty address line. M6 has 8 different modes

depending on the address line that is faulty and

whether it is s.a.0 or s.a.1 fault.

M7 GLUT 32 mem faults G-LUT entry needs to be configured to the faulty

value. M7 has 32 different modes depending on

the faulty memory cell and s.a value of the cell.

M8 f60-61 G-LUT not usable. MUXCTRLY has to be con-

figured to ‘0’.

M9 f64-71 f64-73 f64-71 MUXF5 not usable. Output F5 not usable. Output

X can only be driven by the F-LUT (MUXCTRLX

= ‘1’).

M10 f72-73 - f72-73 Output F5 not usable.

M11 FLUT 8 addr faults F-LUT only usable as a 3-variable FG, excluding

the faulty address line. M6 has 8 different modes

depending on the address line that is faulty and

whether it is s.a.0 or s.a.1 fault.

M12 FLUT 32 mem faults F-LUT entry needs to be configured to the faulty

value. M7 has 32 different modes depending on

the faulty memory cell and s.a value of the cell.

M13 f116-117 F-LUT not usable. Outputs F5 and X not usable.

X flip-flop only usable directly (DXCTRL = ‘1’).

M14 f118-119,

f123

- f118-119,

f123

ROUTING MUX X can only propagate the F-LUT

output to output X (MUXCTRLX = ‘1’).

M15 f120-122 - f120-122 ROUTING MUX X can only propagate MUXF5

output to output X (MUXCTRLX = ‘0’).

M16 f124-125 f120-121,

f124-125

f124-125 Output X not usable. X flip-flop only usable

directly, through input BX (DXCTRL = ‘1’).

M17 f126-127,

f129

f129 f126-127,

f129

Y flip-flop only usable directly, through input BY

(DYCTRL = ‘1’).

M18 f128 - f128 Y flip-flop only usable through logic output Y

(DYCTRL = ‘0’).

M19 f130-137 f126-127,

f130-137

f130-137 Y flip-flop not usable. YQ output not usable.

M20 f138-139,

f141

f141 f138-139,

f141

X flip-flop only usable directly, through input BX

(DXCTRL = ‘1’).

M21 f140 - f140 X flip-flop only usable through logic output X

(DXCTRL = ‘0’).

M22 f142-149 f138-139,

f142-149

f142-149 X flip-flop not usable. XQ output not usable.

M23 - f18-19 f18-19 G-LUT unable to be used as shift register.

M24 - f114-115 f114-115 F-LUT unable to be used as shift register.

M25 - f62-63 f62-63 Both LUTs unable to be used as shift registers.

M26 - - - Slice not usable at all.

V. EXPERIMENTAL RESULTS

We have implemented the FG and the SR methods, as

well as a third method of the Shift-Register approach with

a second phase to cover the remaining multiplexer faults

(SR2), using a Xilinx Virtex2Pro device. After simulating

the faults in our fault model and constructing the diagnostic

trees for each partition of the methods, we implemented the

testers for the three methods. The testers were prototyped in

a Virtex2Pro-30 and performed the fault diagnostic tests in

real FPGA slices. In this Section, we report the percentage of

covered faults, the diagnostic latency, as well as the diagnostic
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Fig. 6. Cumulative percentage of diagnosed faults on every cycle.

accuracy and resolution of each case. We further present the

area cost and operating frequency of the three testers. Finally,

we measure latency when testing an entire FPGA frame; that is

the minimum Virtex2-Pro reconfigurable block that spans the

entire device height and a fraction of one column and consists

of 160 slices.

Figure 6 depicts the cumulative percentage of faults diag-

nosed by each method at every cycle; obviously, the fault-free

cause is only detected at the last cycle of the process. The FG

method, in Figure 6(a), detects 47% of the faults in phase-

1 and goes up to 96% at the end of phase-2, since it is not

able to resolve faults related to the shift-register mode of the

LUTs. As depicted in Figure 6(b), the SR method detects in

a single phase 95% of the faults in our fault model, covering

only partially the multiplexer faults. After adding a second

phase, the SR2 method is able to cover the remaining 5% of

the faults using two additional cycles.

Table IV shows the implementation results of the testers

and summarizes the characteristics of the three methods. In

all cases the area cost of the tester is 250-280 Slices while the

operating frequency is above 100 MHz. The latency of each

method depends on the specific fault diagnosed. The process

is terminated when a fault is detected, otherwise it continues

until the last step which determines the CUT fault-free. We

consider equal probability for each fault in the set and measure

latency for two cases: (i) when we know that the CUT is

always defective, and (ii) when the probability for the CUT to

be faulty is Pfaulty = 1/4; that is e.g. when the testing and

locating process detects faulty CLB rather than slices. In the



TABLE IV
IMPLEMENTATION RESULTS

Measure FG methodSR methodSR2 method

Tester Area 250 slices 272 slices 280 slices

Tester Frequency 110Mhz 103Mhz 103Mhz

Latency (faulty CUT) 4,769 ns 170 ns 607 ns

Latency (Pfaulty = 1/4) 7,869 ns 348 ns 6,911 ns

Diagnostic Accuracy (faulty CUT) 0.96 0.947 1

Diagnostic Accuracy (Pfaulty = 1/4) 0.99 0.987 1

Diagnostic Resolution 1.25 1.37 1.24

fist case, the latency of the FG method is substantially greater

than that of the SR and SR2 due to the reconfiguration5; that

is 28 and 8× slower, respectively. The SR2 method has only

3.5× more latency than the SR, since only 5% of the faults

require a second phase. In the second case latency doubles for

the FG and SR method, while for the SR2 increases more

than 11× since the higher probability to have a fault-free

CUT increases the probability of reconfiguration. Furthermore,

Table IV offers the diagnostic accuracy and resolution of the

methods. The accuracy of the SR2 is 1 since it covers all the

faults, while for the other two methods the accuracy increases

for lower Pfaulty . The diagnostic resolution of the methods is

1.24-1.37 as some faults are not distinguished.

We next evaluate in more detail the latency of the three

fault diagnostic approaches. Latency in FG an SR2 methods

is dominated by the reconfiguration delay mainly because in

Virtex2Pro-30 we cannot reconfigure a single slice alone, but

only large frames of 160 slices. We consequently measure

the latency of the three methods when testing a single slice

as well as when testing sequentially all slices in an entire

frame and share the reconfiguration penalty. We further vary

the probability of the CUT to be defective from Pfaulty = 1
to 1/16 depending on the accuracy of the (former) localization

step. Figure 7 shows the latency for the first case; as expected

the SR method is faster requiring only 170 ns and up to 393 ns

for lower Pfaulty . SR2 and FG methods require up to 8.6 µsec

due to the reconfiguration overhead. In the case of diagnosing

an entire frame, the results are more comparable between the

three methods (Figure 8). SR is still faster requiring 27-63

µsec, but for low Pfaulty FG is as fast; The SR2 that covers

100% of the faults requires 37-80 µsec.

VI. CONCLUSIONS

As technology scaling increases defect-rates, characterizing

and reusing, rather than discarding, defective blocks is a more

efficient solution. In this work, we proposed a finer-grain

FPGA defect tolerance approach compared to previous works.

We introduced new fault diagnostic methods for Virtex2Pro

logic blocks to determine a single fault, out of a set of

150 faults, in a slice. The detected fault is subsequently

used for the characterization step which defines the possible

functions still supported by the defective slice. We prototyped

and evaluated our proposal using a Xilinx Virtex2Pro-30

and discussed the tradeoff between diagnostic accuracy and

5We consider that the reconfiguration of a single frame is 8.547 µsec, as
accurately measured in [13], considering that the configuration is preloaded
in the ICAP.
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Fig. 8. Comparative Latency graph for the FG, SR, and SR2 methods.

latency. Our FG method configures the LUTs as function

generators, and requires two phases to detect 96% of the faults

taking several µseconds. The diagnostic latency of the more

advanced single-phase Shift-Register (SR) method, is a few

tens of nanoseconds and detects 95% of the faults. In order

to cover 100% of the faults a two-phase SR2 approach is

introduced requiring 8.5 µsec to analyze a single slice and

and 80 µsec for an entire frame of 160 slices.
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