
A VLIW Softcore Processor with Dynamically
Adjustable Issue-slots

Fakhar Anjam, Muhammad Nadeem, and Stephan Wong
Computer Engineering Laboratory

Delft University of Technology, Delft, The Netherlands
E-mail: {F.Anjam, M.Nadeem, J.S.S.M.Wong}@tudelft.nl

Abstract—In this paper, we present a very long instruction
word (VLIW) softcore processor implemented in an FPGA. The
processor instruction set architecture (ISA) is based on the
VEX ISA. The issue-width of the processor can be dynamically
adjusted. The processor has two 2-issue cores, which can be
run independently. If not in use, each core can be taken to a
lower power mode by gating off the source clock. The two 2-
issue cores can be combined at run-time to form one larger
4-issue core. Applications/kernels with larger instruction level
parallelism (ILP), such as matrix multiplication, FFT, DFT, etc.,
can be run on the larger 4-issue core to exploit the available
ILP. Applications with more data level parallelism (DLP), such
as AES encryption/decryption, ADPCM encode/decode etc., can
be run on the two 2-issue cores with the data divided among
the two cores. We utilize the Xilinx partial reconfiguration flow
to implement our design. The size of the partial bitstreams to
combine the two 2-issue cores to one 4-issue core or split vice
versa is 59 kbytes. The minimum time required to reconfigure
the processor or adjust the issue-slots are 0.893 ms and 0.148 ms
for the Xilinx Virtex-II Pro and Virtex-4 FPGAs, respectively.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) have become a
widely used tool for rapid prototyping, providing software-
like flexibility and hardware-like performance. To exploit
instruction level parallelism (ILP), a very long instruction word
(VLIW) processor can be utilized to increase the performance
beyond a single issue-width processor [1]. While single issue-
width processors can only take advantage of temporal paral-
lelism (by utilizing pipelining), VLIW architectures can addi-
tionally take advantage of the spatial parallelism by utilizing
multiple functional units (FUs) to execute several operations
simultaneously. In addition, VLIW processors are simpler in
design when compared to their more complex (out-of-order)
reduced instruction set computer (RISC) counterparts.

When a VLIW processor is implemented in an application-
specific integrated circuit (ASIC), its issue-width is fixed at
design time. Therefore, the issue-width of the processor can
not be adjusted after fabrication to suit a different set of
applications. A softcore VLIW processor can be implemented
in an FPGA, and its organization can be changed easily
by loading a new bitstream. Design-time reconfigurability
requires full configuration of the whole FPGA if a certain pa-
rameter of the FPGA-implemented processor is to be changed.
In literature, all of the available softcore VLIW processors
[2][3][4][5][6][7] only provide some form of design-time and
not run-time reconfigurability. In order to change the issue-

width or any parameter of a processor, a new full bitstream is
to be downloaded to configure the whole FPGA and all other
circuits in the FPGA have to be stopped.

In [8][9], we presented the design and implementation
of a parameterized and extensible softcore VLIW processor
called ρ-VEX. In this paper, we extended this design-time
reconfigurable processor to support run-time partial dynamic
reconfiguration. After the processor is implemented in an
FPGA, it can adjust its issue-width while other circuits in the
FPGA keep running. Only a small partial bitstream is loaded
to adjust the issue-slots. The processor has two 2-issue cores
which can be run independently and these can be combined
to form a larger 4-issue core or split vice versa. Hence, before
an application starts executing, the machine organization can
be changed to match the application. Applications/kernels
with more fine-grain (instruction level) parallelism such as
a discrete fourier transform (DFT) kernel can be run on the
larger 4-issue machine for better performance, and applications
with more coarse-grain (data level) parallelism such as an
encryption algorithm with a specific amount of data can be run
on the two 2-issue processors in a single instruction multiple
data (SIMD) fashion for faster execution.

The remainder of the paper is organized as follows. The
related work is discussed in Section II. Section III describes
the VEX system and the ρ-VEX VLIW processor. Section
IV presents the design of our dynamically reconfigurable
VLIW processor. The implementation details and application
development framework are presented in Section V. Results
are discussed in Section VI. Finally, conclusions are presented
in Section VII.

II. RELATED WORK

Spyder [2] appeared as the first softcore VLIW processor.
The provided toolchain was not complete and the processor
was not run-time reconfigurable. The VLIW processors pre-
sented in [3] are instance-specific implementations and hence
do not represent more general VLIW processors. An FPGA-
based design of a softcore VLIW processor based on the ISA
of the Altera NIOS-II soft processor is presented in [4]. The
compilation scheme consists of a Trimaran [10] as the front-
end and the extended NIOS-II as the back-end. Due to the li-
censed Altera NIOS-II, this VLIW design is not much flexible
and not open-source. Additionally, the design is not run-time
reconfigurable. In [5], a modular design of a VLIW processor



is reported. Certain parameters of the processor architecture
could be altered in a modular fashion. The lack of a good
software toolchain and the absence of parametric extensibility
limited the use of this architecture. In [6], the architecture and
micro-architecture of a customizable softcore VLIW processor
are presented. Additionally, tools are discussed to customize,
generate, and program this processor. The limitation is the
absence of a compiler. A VLIW processor with reconfigurable
instruction set is presented in [7]. In this case, a reconfigurable
unit is coupled to a VLIW processor. The co-processor can be
configurable for any custom instruction. We are different from
this design in the sense that we do not couple a reconfigurable
co-processor. We can add a custom unit to the general data
path of our processor at design time and reconfigure the issue-
slots at run-time. In [8][9], we present the rationale and the
design and implementation of an open-source softcore VLIW
processor. This processor is design-time parameterized and
now we have extended it to make its issue-width run-time
reconfigurable/adjustable.

III. THE BASE PROCESSOR SYSTEM

A. The VEX system: ISA and Toolchain

The VEX stands for VLIW Example [11]. The VEX is
developed by Hewlett-Packard (HP) and STMicroelectronics.
The VEX instruction set architecture (ISA) is a 32-bit clustered
VLIW ISA that is scalable and customizable to individual
application domains. The VEX ISA is loosely modeled on
the ISA of HP/ST Lx (ST200) family of VLIW embedded
cores [1]. Based on trace scheduling, the VEX C compiler is
a parameterized ISO/C89 compiler. A flexible programmable
machine model determines the target architecture, which is
provided as input to the compiler. A VEX software toolchain
including the VEX C compiler and the VEX simulator is made
freely available by the Hewlett-Packard Laboratories [12].

B. The ρ-VEX VLIW processor

The ρ-VEX is a configurable (design-time) open-source
VLIW softcore processor [8]. The ISA is based on the VEX
ISA [11]. Different parameters of the ρ-VEX processor, such
as the number and type of functional units (FUs), number of
multiported registers (size of register file), number and type
of accessible FUs per syllable, width of memory buses, and
different latencies can be changed at design time. Figure 1
depicts the organization of a 32-bit, 2-issue ρ-VEX VLIW
processor implemented in an FPGA. The ρ-VEX processor
consists of fetch, decode, execute, and writeback stages/units.
The fetch unit fetches a VLIW instruction from the attached
instruction memory and splits it into syllables that are passed
on to the decode unit. In the decode unit, instructions are
decoded and the register contents used as operands are fetched
from the register file. The actual operations take place in either
the execute unit, or in one of the parallel branch or control
(CTRL) or load/store or memory (MEM) units. Arithmetic
logic unit (ALU) and multiplier (MUL) operations are per-
formed in the execute unit. All jump and branch operations are
handled by the CTRL unit, and all data memory load and store

Instruction
Memory

Data
Memory

PC

DecodeFetch WritebackExecute

GR CTRL

BR MEM

A

A

M

M

Figure 1. 2-issue ρ-VEX VLIW processor

operations are handled by the MEM unit. All write activities
are performed in the writeback unit to ensure that all targets
are written back at the same time. The different write targets
could be the general register (GR) file, branch register (BR)
file, data memory or the program counter (PC). Additionally,
the ρ-VEX processor supports reconfigurable operations, as
the VEX compiler supports the use of custom instructions via
pragmas within an application code. The instruction and data
memories for the processor are implemented with BRAMs.
The ρ-VEX processor is utilized as a base processor in the
design of our dynamically reconfigurable processor.

IV. DYNAMICALLY RECONFIGURABLE PROCESSOR
DESIGN

In this section, we present the design of our reconfigurable
processor. Figure 2 depicts the issue slots in our processor
system. Each 2-issue machine has two ALUs and two MULs.
There is also a MEM unit as well as a CTRL unit. A 4-
issue machine has double the resources of a 2-issue machine
except that only one of the CTRL units is utilized when
the two 2-issue cores are combined. A signal called as the
issue_ctrl helps in controlling the issue-width of the processor.
When this signal is low, the two 2-issue cores can be utilized
independently. When this signal is high, the two 2-issue cores
are combined and they behave like a single 4-issue machine
with double the resources of a 2-issue machine. If any of the
two 2-issue cores is not utilized by an application, it can be
taken to a lower power mode by turning off its source clock.
In this way, the dynamic power consumption of that core is
reduced resulting in a reduced total power consumption of the
system. The signal power_ctrl is utilized for gating off the
source clocks of the two 2-issue cores for power control. The
signals issue_ctrl and power_ctrl can be controlled by some
higher level controller or scheduler, which will also handle the
reconfiguration process.

Each core (2-issue or 4-issue) consists of different units,
namely fetch, decode, execute, and writeback as depicted

ALU
MUL
MEM

ALU
MUL
CTRL

ALU
MUL
MEM

ALU
MUL
CTRL

Figure 2. Execution units in different issue-slots



in Figure 1. For the purpose of making the processor run-
time adjustable, we divided these units into two sections,
namely frontend and backend, as depicted in Figure 3. The
frontend consists of the modules which needs reconfigura-
tion/adjustment in order to combine or split the issue-slots. It
includes the fetch, decode, writeback, general-purpose register
(GR) file and the branch register (BR) file. The backend
consists of the execution units which do not require reconfig-
uration when switching from two 2-issue cores to one 4-issue
core or vice versa.

A. Frontend

The frontend of our reconfigurable processor is reconfig-
ured/adjusted at run-time for changing the issue-slots of the
processor. It consists of the fetch, decode, and writeback
units, and the multiported general-purpose register file and the
branch register file. Out of these five modules, the decode unit
is the only module that is reconfigured by loading a partial
bitstream to switch between two 2-issue cores to one 4-issue
core or vice versa. The other four modules are controlled by
the issue_ctrl signal, and they do not require a partial bitstream
to reconfigure/re-adjust. This is done in order to minimize the
number of resources to be reconfigured and hence minimize
the size of the partial bitstream. This resulted in reduced
configuration time as well as reduced memory storage for the
partial bitstreams.

1) Fetch Unit: A 2-issue fetch unit simply splits the in-
coming long instruction into two syllables (instruction (32-bit)
for individual execution unit), and then passes them to the
decode unit. Therefore, two 2-issue fetch units can be stacked
together to form a combined fetch unit to behave like two
independent 2-issue fetch units or one 4-issue fetch unit. Each
2-issue fetch unit has a program counter (PC). The only sub-
unit of the fetch units that need to be altered/reconfigured is
the PC. If the combined fetch unit is to be utilized as two
independent 2-issue fetch units, the two program counters are
running independently. If the combined fetch unit is to be
utilized as a single 4-issue fetch unit, only one of the program
counters is running and the other one is stopped. The issue_ctrl
signal is utilized for this purpose.

2) General-Purpose Register File: The VEX ISA specifies
a 32-bit 64-element multiported general-purpose register (GR)
file for a multi-issue VLIW processor. In the case of a 2-issue

Data 
Memory4-issue core

2-issue core

2-issue core

Instruction 
Memory

F
r
o
n
t
e
n
d

B
a
c
k
e
n
d

Figure 3. Frontend and backend of the reconfigurable processor

core we require a register file with 2-write and 4-read (2W4R)
ports, while for a 4-issue core we require a register file with
4-write and 8-read (4W8R) ports. The register file is one of
the most resource consuming module of the processor when
it is implemented utilizing the FPGA’s slice registers [8]. We
implemented our register file utilizing BlockRAMs (BRAMs)
based on the design presented in [13]. We need two 2-issue
register files when both the cores are utilized as independent
2-issue cores or one 4-issue register file when the two 2-issue
cores are combined to form one 4-issue core. We designed our
register file in a manner that a single register file can handle a
4-issue core or two 2-issue cores at the same time. The register
file is depicted in Figure 4.

The register file has 4-write and 8-read ports utilizing 32
BRAMs each providing 128 registers of 32-bit each. If the
system is configured as a 4-issue core, all of the ports and the
lower 64 registers are utilized. If the system is configured as
two 2-issue cores, half of the ports are utilized by one core and
the second half by the other core. The lower 64 registers are
utilized by one core and the upper 64 by the other core. Each
port has 6-bit address to access 64 registers, but each BRAM
has 7-bit address to provide 128 registers. The signal issue_ctrl
is utilized inside the register file to generate the 7th bit for the
BRAMs. By using this mechanism we avoided the register
files to be reconfigured by loading the partial bitstreams and
hence reduced the size of the partial bitstreams required to
alter the organization of the processors. Table I presents the
resource utilization for our register file for the Xilinx Virtex-II
Pro XC2VP30 FPGA.

3) Branch Register File: The VEX ISA specifies a 1-bit
8-element multiported branch register (BR) file for a multi-
issue VLIW processor. For a 2-issue core, we require a branch
register file with 2-write and 2-read (2W2R) ports and for a 4-
issue core, we require a branch register file with 4-write and 4-
read (4W4R) ports. Since the size of this register file is small,

R0-R127
0

R0-R127
1

R0-R127
7

R0-R127
0

R0-R127
1

R0-R127
7

R0-R127
0

1

7

R0-R127
0

1

7

Bank-0

Bank-1

Bank-2

Bank-3

Write Port 0

Write Port 1

Write Port 2

Write Port 3

Read Port 0

Read Port 1

Read Port 7

R0-R127

R0-R127

R0-R127

R0-R127

1

7

7

1

Direction Table

All Write Ports

All Read Ports

issue_ctrl

Figure 4. 128 × 32-bit 4W8R ports register file



Table I
RESOURCE UTILIZATION FOR THE 4W8R PORTS REGISTER FILES

Register File Design Slices BRAMs

64×32-bit 4W8R Ports
(slice-based)

8594 0

128×32-bit 4W8R Ports
(BRAMs-based)

1060 32

it is implemented utilizing slice registers instead of BRAMs.
We implemented a 16×1-bit register file with 4W4R ports.
Utilizing the issue_ctrl signal, we partition the register file
among the configured cores. When the system is configured
as one 4-issue core, all of the ports and the lower 8 registers
are utilized for the branch register file. When the system is
configured as two 2-issue cores, half of the ports and the lower
8 registers make the branch register file for one core and the
other half ports and the upper 8 registers make the branch
register file for the second core. The signal issue_ctrl handles
this mechanism. The branch register file requires 81 Virtex-II
Pro XC2VP30 FPGA slices.

4) Writeback Unit: The writeback unit has four lanes,
which can be utilized for a 4-issue core or two 2-issue cores.
Each lane can write to its corresponding port on the general-
purpose or branch register files. Since these register files can
handle the processor issue-width by themselves, the writeback
unit does not need to take care of that. The writeback unit only
takes care of the PC. If the system is configured as a single
4-issue core, lane0 of the writeback unit writes to the only
PC of the system. If the system is configured as two 2-issue
cores, lane0 of the writeback unit writes to the PC of the first
core, and lane3 writes to the PC of the second core. The signal
issue_ctrl handles the mechanism to switch between the two
cases, and hence there is no need to reconfigure/re-adjust the
writeback unit by loading a partial bitstream.

5) Decode Unit: The decode unit is reconfigured by loading
a partial bitstream. Separate bitstreams are utilized to switch
the two 2-issue cores to one 4-issue core or vice versa. The
branch/CTRL unit which calculates the offset and the branch
target addresses is included in the decode unit. The decode
unit for the 4-issue core has only one CTRL unit, while the
decode unit for the two 2-issue cores has two CTRL units.
When the system is configured as two 2-issue cores, the
configured decode unit provides two 2-issue decode units with
separate CTRL units. Each decode section decodes its own
long instruction (64-bit) and raises high its own done signal
when the last instruction in the program (STOP instruction)
is executed and the last result is written back. When the
system is configured as a single 4-issue core, the configured
decode unit provides only one 4-issue decode unit with one
CTRL unit. This 4-issue decode unit decodes the incoming
long instruction (128-bit) and raises high the first done signal
when the last instruction in the program (STOP instruction)
is executed and the last result is written back. The second
done signal is this case is tied to logic low. The decode unit
for the two 2-issue cores with two CTRL units requires 355
Virtex-II Pro XC2VP30 FPGA slices, while that for one 4-issue

core with one CTRL unit requires 293 slices. According to
the Xilinx early access partial reconfiguration (EAPR) design
methodology [14], we have to allocate area for the largest size
module, and hence the size of the partial bitstream would be
according to the size of the largest module (355 slices not 293
slices). Further details are given in sections V and VI.

B. The Backend

The backend of our reconfigurable processor does not
require re-adjustment when the issue-width is switched from
2-issue to 4-issue or vice versa. In terms of the EAPR design
methodology, it is a part of the static region of the design.
The backend consists of execution units. There are 4 ALUs,
4 MULs, and 2 MEM units. There are 4 lanes. Each lane
has an ALU and a MUL unit. Each of lane1 and lane3 has
a MEM unit. When the system is configured as two 2-issue
cores, lane0 and lane1 constitute the execution units for the
first core and lane2 and lane3 constitute the execution units for
the second core. When the system is configured as a 4-issue
core, all of the four lanes constitute the execution units for the
4-issue core. In this case, all of the ALU, MUL, and MEM
units can be utilized by the 4-issue core. Figure 2 depicts these
lanes with the available execution units. The backend is the
most resource-hungry part of the processor. It requires 8265
Virtex-II Pro XC2VP30 FPGA slices.

V. DYNAMICALLY RECONFIGURABLE PROCESSOR
IMPLEMENTATION

In general, partial dynamic reconfiguration is utilized to time
share a specific area of a chip in order to reduce the total
resource requirement of a design. Our purpose of utilizing the
partial dynamic reconfiguration is not to reduce the required
area; rather we utilized it for the purpose of changing the
functionality of a system at run-time and for making a better
utilization of the available resources based on the incoming ap-
plication. Therefore, we made the reconfigurable region to be
as small as possible, such that the size of the partial bitstreams
could be as small as possible. We utilized the Xilinx EAPR
methodology [14] for designing our reconfigurable processor
system with adjustable issue-slots. We split our design into
two regions, namely static and reconfigurable regions. Figure
5 depicts the static and dynamically reconfigurable regions
of our design. The processor system consists of the frontend,
backend, instruction memory, data memory, and a universal
asynchronous receiver transmitter (UART) module. Except the
decode unit in the frontend, all other modules in the frontend,
backend, memories, and UART are placed in the static region
as they do not need partial dynamic reconfiguration. The
decode unit in the frontend is placed in the reconfigurable
region.

The static and reconfigurable regions are connected utilizing
bus macros. In this design, we have a total of 920 signals that
need to cross the boundary between the static and reconfig-
urable regions and hence a total of 115 bus macros are required
to provide the communication between the two regions.



Decoder

Reconfigurable 
Region

Data 
Memory

Write 
Back

Execute
Instruction

Fetch
Instruction

Memory

MEM

CTRL

BR

Static Region

B
M

B
M

GR

PC

Figure 5. Static and reconfigurable regions

Using the EAPR design methodology, partial bitstreams for
the decode units are generated and can be downloaded to
the FPGA using the Xilinx iMPACT tool. A reconfiguration
controller can be implemented and can be directed by some
higher level scheduler to reconfigure the issue-slots of the
processor in order to provide the best performance for the
incoming application, by utilizing the internal configuration
access port (ICAP) in the FPGA.

A. Application Development Framework and Testing

To optimally utilize our processor, we present an application
development framework. An application program written in
C is compiled with the VEX compiler to generate the VEX
assembly. This assembly is passed through the ρ-VEX as-
sembler [8] to generate the ρ-VEX binaries/executables. Since
the VEX is a VLIW processor system, separate binaries are
generated for the 2-issue and 4-issue machines. For testing
purposes, we utilize an UART module, which is part of
our processor system. The program binaries can be loaded
from a personal computer into the instruction memories of
the processor implemented in an FPGA utilizing the UART
module. The same UART is utilized to transmit results of
a program execution in the FPGA processor to a personal
computer that can be visualized for testing and debugging
purposes.

VI. RESULTS AND DISCUSSION

A. Implementation Results and Performance Analysis

The reconfigurable region has 920 signals crossing the
boundary between the static and reconfigurable regions and
hence requires 115 bus macros. The reconfigurable region is
constrained to a total of 560 slices, in order to contain all
the required resources and provide space for the bus macros.
Table II presents the resource utilization for our design.
The reconfigurable region includes only the decode unit of
the frontend section. The static region includes rest of the
frontend, the backend, the instruction and data memories, and
the UART. The processor is running at 50 MHz but can run
correctly up to a maximum of 70 MHz in a Virtex-II Pro
XC2VP30 FPGA.

The partial bitstream size for the reconfigurable region is 59
kbytes, and is about 24 times smaller than the full bitstream
size which is about 1415 kbytes. The width of the ICAP in

the Virtex-II Pro and Virtex-4 FPGAs is 8 bits and 32 bits,
respectively. The maximum frequency for the ICAP in the
Virtex-II Pro and Virtex-4 FPGAs is 66 MHz and 100 MHz,
respectively. The minimum time needed to switch between
two 2-issue cores to one 4-issue core or vice versa is 0.893
milliseconds for a Virtex-II Pro device, and 0.148 milliseconds
for a Virtex-4 device. This value does not include the time
needed for accessing the memory in which the bitstreams are
placed. It is the time needed for the SelectMAP or ICAP to
configure the device. At 50 MHz clock, these reconfiguration
times translate to a total of 44650 clock cycles for a Virtex-II
Pro device and 7400 clock cycles for a Virtex-4 device.

We executed different applications on our reconfigurable
processor. We considered two scenarios, one that could better
exploit a 4-issue core and other that could better exploit the
utilization of two 2-issue cores.

1) Application Scenario 1: In this scenario, the application
is such that its data can not be easily divided to be able to
run on more than one cores. This scenario corresponds to
applications/kernels with large ILP such as a matrix multipli-
cation program or a discrete fourier transform (DFT) kernel.
Generally, these kernels are part of some larger applications
like MPEG video, etc., and these kernels are repeated many
times while the application is running. Therefore, running such
applications/kernels on a larger issue-width core can provide
more performance as compared to a smaller issue-width core.
Hence, in our case we can combine the two 2-issue cores to
form one 4-issue core and exploit the available ILP. We created
a C program that does a 100-by-100 matrix multiplication. We
executed the same program on a 4-issue and a 2-issue core.
Figure 6 depicts the normalized performance for the two types
of cores. In this figure, Issue_2_1 means the application is
running on one of the two 2-issue cores, and Issue_4 means
that the application is running on the combined 4-issue core.
We executed a DFT kernel on both a 4-issue and a 2-issue core.
Figure 6 depicts the normalized performance for the two types
of cores. It can be observed from this figure that running these
applications/kernels on a larger issue-width core can improve
the performance of these applications/kernels. On the other
hand, running these applications on a 2-issue core can benefit
from the lower power consumption as the other 2-issue core
can be taken to a lower power mode, if it is not executing any
application.

2) Application Scenario 2: In this scenario, the application
is such that its data set can be easily divided and can be
run on more than one cores. This scenario corresponds to
applications with large date level parallelism (DLP) such as the
advanced encryption standard (AES) encryption/decryption

Table II
RESOURCE UTILIZATION FOR THE RECONFIGURABLE PROCESSOR

Region Slices
Reconfigurable Region 560

Static Region 9944
Bus Macros 230



0

0,5

1

1,5

2

2,5

Matrix
Multiplication

DFT AES Encrypt AES Decrypt ADPCM
Encode/Decode

Applications

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Issue_2_1

Issue_4

Issue_2_2

Figure 6. Normalized performance

and the adaptive differential pulse-code modulation (ADPCM)
encode/decode. The AES algorithm is one of the most widely
used encryption algorithms in cryptography. The AES algo-
rithm takes an input data of 128 bits and a key of 128, 196
or 256 bits and produces an encrypted output data of 128
bits. For decryption the same key is utilized as was used in
the encryption process. We utilized a 128 bit key version of
the AES algorithm. We encrypted and decrypted a text of
1024 bytes. For the single 4-issue core, the C program for
the encryption and decryption are compiled and assembled
with the input data of 1024 bytes. For the two 2-issue cores,
the input data is split into two sets each of 512 bytes. Each
core is provided its own data set and the same program
for encryption/decryption runs on it. Figure 6 depicts the
normalized performance for the two types of cores. In this
figure, Issue_2_2 means the application is running on both of
the two 2-issue cores, and Issue_4 means that the application
is running on the combined 4-issue core. It can be observed
from Figure 6 that the two 2-issue core system completed the
execution of the whole application in almost half the time
compared to the single 4-issue core system.

The ADPCM audio encoding/decoding technique is utilized
for the encoding/decoding of audio (voice) in voice over
internet protocol (VoIP) telephony applications. We utilized
an application that encoded and then decoded 10000 samples.
We run the application on the single 4-issue core. We then
divided the data into two parts and run the same application on
both the two 2-issue cores with the divided data sets. Figure
6 depicts the normalized performance for the two types of
cores. It can be observed from Figure 6 that the two 2-issue
core system completed the execution of the whole application
in almost half the time compared to the single 4-issue core
system.

B. Power Analysis

We calculated the dynamic power consumption for our
reconfigurable processor design utilizing the Xilinx XPower
Analyzer tool. We executed a small program that computes
the 45th element of the Fibonacci series on a 4-issue core and
a 2-issue core with the source clock for the other 2-issue core
tied to logic low. We run these experiments at 50 MHz. We
found that turning one of the two 2-issue cores off can reduce
the dynamic power consumption of the system by up to 42%.
Hence, if one of the two 2-issue cores is not running some

application, it can be turned off and the system can be taken
to a lower power mode.

VII. CONCLUSIONS

In this paper, we presented the design and implementation of
a run-time reconfigurable/adjustable softcore VLIW processor.
The processor has two 2-issue cores, which can be run
independently. If not in use, each core can be taken to a lower
power mode by gating off the source clock. The two 2-issue
cores can be combined at run-time to form one larger 4-issue
core or split vice versa. We showed that applications/kernels
with larger ILP achieved better performance when run on
the larger 4-issue core. While applications with larger data
level parallelism (DLP) showed better performance when they
were run on the two 2-issue cores with the data divided
among them. We utilized the Xilinx partial reconfiguration
methodology to implement our design. The size of the partial
bitstreams to combine the two 2-issue cores to one 4-issue core
or split vice versa is 59 kbytes. The minimum time required
to reconfigure the processor or adjust the issue-slots are 0.893
ms and 0.148 ms for the Xilinx Virtex-II Pro and Virtex-4
FPGAs, respectively.

REFERENCES

[1] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, and F. Homewood, "Lx:
A Technology Platform for Customizable VLIW Embedded Processing",
in 27th Annual International Symposium of Computer Architecture
(ISCA ’00), pp. 203 - 213, 2000.

[2] C. Iseli and E. Sanchez, "Spyder: A Reconfigurable VLIW Processor
using FPGAs", in FPGAs for Custom Computing Machines (FCCM ’93),
pp. 17 - 24, 1993.

[3] M. Koester, W. Luk, and G. Brown, "A Hardware Compilation Flow
For Instance-Specific VLIW Cores", in 18th International Conference
on Field Programmable Logic and Applications (FPL ’08), pp. 619 -
622, 2008.

[4] A.K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, "An FPGA-
based VLIW Processor with Custom Hardware Execution", in 13th
Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’05), pp. 107 - 117, 2005.

[5] V. Brost, F. Yang, and M. Paindavoine, "A Modular VLIW Processor",
in IEEE International Symposium on Circuits and Systems (ISCAS ’07),
pp. 3968 - 3971, 2007.

[6] M.A.R. Saghir, M. El-Majzoub, and P. Akl, "Customizing the Datapath
and ISA of Soft VLIW Processors", in High Performance Embedded
Architectures and Compilers (HiPEAC ’07), LNCS 4367, pp. 276 - 290,
2007.

[7] A. Lodi, M. Toma, F. Campi, A. Cappelli, and R. Canegallo, "A
VLIW Processor with Reconfigurable Instruction Set for Embedded
Applications", in IEEE Journal on Solid-State Circuits, vol. 38, no. 11,
pp. 1876 - 1886, 2003.

[8] S. Wong, T.V. As, and G. Brown, "ρ-VEX: A Reconfigurable and
Extensible Softcore VLIW Processor", in IEEE International Conference
on Field-Programmable Technologies (ICFPT ’08), pp. 369 - 372, 2008.

[9] S. Wong and F. Anjam, "The Delft Reconfigurable VLIW Processor",
in 17th International Conference on Advanced Computing and Commu-
nications (ADCOM ’09), pp. 244 - 251, 2009.

[10] http://www.trimaran.org/.
[11] J.A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW

Approach to Architecture, Compilers and Tools. Morgan Kaufmann,
2004.

[12] Hewlett-Packard Laboratories. VEX Toolchain. [Online]. Available:
http://www.hpl.hp.com/downloads/vex/.

[13] C.E. LaForest, J.G. Steffan, "Efficient Multi-ported Memories for FP-
GAs", in 18th Annual ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA ’10), pp. 41 - 50, 2010.

[14] Xilinx, Inc. 2006. User Guide UG208: Early Access Partial Reconfigu-
ration User Guide, http://www.xilinx.com.


