
A Novel HDL Coding Style to Reduce Power
Consumption for Reconfigurable Devices

Thomas Marconi, Dimitris Theodoropoulos, Koen Bertels, Georgi Gaydadjiev

Computer Engineering Lab, Delft University of Technology
{thomas,dtheodor,koen,georgi}@ce.et.tudelft.nl

Abstract—Power consumption has become the major factor
that has to be considered while designing systems using recon-
figurable devices, especially for battery-operated applications.
Minimizing transitions is one of the ways to reduce power
consumption. Overwriting a register with the same value occurs
frequently in real digital systems. Such unneeded transitions
increase the power consumption. To avoid this, a new HDL coding
style to reduce power consumption for reconfigurable devices is
proposed. The idea is to ”force” the CAD tool to configure the
CLB flip-flop as a T flip-flop with its T input held constantly at
logic one and drive its clock through the lookup table(LUT).
Based on an extensive evaluation using MCNC benchmark
circuits on a real FPGA and a real CAD tool, our proposal
reduces total power consumption by 13-90 % and runs 2-20
% faster with 0-45 % area overhead compared to conventional
coding style solutions. As a parallel activity we proposed a new
logic element (LE) that implements the proposed design style
directly.

I. INTRODUCTION

It is well known that dynamic power consumption is linearly
proportional to switching activity and capacitance and has
a quadratical relation to supply voltage. Therefore, one of
the ways to reduce dynamic power consumption is to reduce
switching activity. In real systems, many transitions are not
necessary. For example, rewriting a register with the same
value as its original one, is not needed. This unneeded tran-
sition increases switching activity, thus consuming power for
doing useless operations. Moreover, as reported in [17], even
low-power flip-flops consume power during logic transition
from zero-to-zero and from one-to-one.

Hardware Description Language (HDL) coding style can
affect performance, area and power consumption. We observe
that almost all existing coding styles focus on improving
performance and reducing area. In our coding style, we focus
on reducing power consumption. Another observation is that
all existing styles still use what we call it as ”conventional
coding style”. In conventional coding style, each flip-flop is
coded into one process. This process will generate a D flip-
flop (DFF) with the D input coming from the output of the
corresponding next state function. Since the clock input of
DFF is directly connected to the clock signal, the DFF is
always clocked even when it is not necessary. For example,
when the D input has the same logic value as the Q output
(D = Q), the DFF does not need to be clocked. This
unnecessary logic transition wastes power.

To avoid such unnecessary transitions, a new HDL coding
style to reduce power consumption for reconfigurable devices

is proposed. The Microelectronic Center of North Carolina
(MCNC) benchmark circuits [1] are used to evaluate the
proposed coding style compared to conventional coding style.
Our proposal can be used with any HDL. In this paper, we
illustrate it using VHDL. Each MCNC benchmark circuit
is converted into two VHDL files to represent two VHDL
coding styles (conventional coding style and our proposal).
The VHDL files are implemented in a real FPGA (Stratix
EP1S10F484C5 from Altera) using a real existing FPGA tool
(Quartus II 6.0 from Altera). The effect of the proposed VHDL
coding style on power consumption, area, and performance is
evaluated in comparison with conventional one.

The main contributions of this paper are:
• a novel low power coding style for reconfigurable de-

vices;
• reduction in total power consumption by 13-90 % with

0-45 % area overhead;
• performance improvement by 2-20 %.
The remainder of this paper is organized as follows. In

Section II, we present related work in HDL coding styles.
Our proposed coding style to reduce power is presented in
Section III. In Section IV, we evaluate our HDL coding style.
Finally, in Section V, we summarize the paper.

II. RELATED WORK

One of the early references about how HDL coding style
affects design performance is presented in [2]. The author
mainly focuses on certain VHDL constructs and how effi-
ciently are interpreted by synthesis tools. A similar work
is presented in [3], where a VHDL design methodology
adapted to FPGA architectures is described. The authors
discuss how different VHDL constructs can lead to suboptimal
implementations. Furthermore, they compare different Finite
State Machines (FSMs) encoding schemes when mapped onto
FPGAs and ASICs.

A more recent study focusing on FSMs is presented in [4].
The conclusions were that a two-block approach for FSM
designs with combinational outputs and a three-block approach
for registered ones are the best strategies respectively. Another
similar study on FSM coding styles for FPGAs is presented
in [5]. The authors designed a FSM using three different
methods, and report how area utilization is affected under each
one of them.

In [6] and [7] Xilinx and Altera provide documents to
hardware designers for crafting fast and reliable HDL code



TABLE I
RELATED WORK CATEGORIZED ACCORDING TO OPTIMIZATION GOALS

Optimization goal Reference
Performance [2], [3], [4], [5], [6], [7], [8], [10]

Area [2], [3], [4], [5], [6], [7], [8], [9], [10]
Power [11], [12], [13]

respectively. Also, the authors in [8] address many important
factors that can help improving the design by increasing the
maximum operating frequency and/or reducing area utiliza-
tion. In [9], the author describes how to reduce area utilization
up to 50% by demonstrating simple HDL coding techniques.
The conclusion of the paper is that following the signal
priorities of flip-flops, allows the synthesis tools to optimize
designs for low area utilization.

The authors in [10] describe a case study that was conducted
about how HDL coding style affects design performance. Re-
ported results demonstrate how an HDL behavioral approach
leads to more efficient implementations compared to structural
descriptions. This fact is also supported by [8], where the
authors explicitly suggest to describe designs behaviorally as
much as possible.

HDL coding style to reduce power consumption in a liter-
ature is clock gating. Clock gating is used to reduce dynamic
power consumption by selectively stop the clock signal to go
to storage elements when no state or output transition takes
place [11][12][13].

Almost all coding styles focus on improving performance
and reducing area as shown in Table I. In our coding style,
we focus on reducing power consumption. Our coding style is
different from clock gating. In clock gating [11][12][13], the
process to represent each flip-flop is modeled by DFF with the
D input from the output of the next state function; while in
our style, the flip-flop is modeled by T flip-flop (TFF) with the
T input at logic one. This is related to the fact that designing
sequential circuits using TFFs is more power efficient than
DFFs as already reported in [16]. Moreover, there is no next
state function anymore that goes to the input of T flip-flop; the
input of T flip-flop is constant at logic one. To know when to
stop clock signal, the clock gating needs a controller that has
a knowledge of the circuit behavior. In our style, the controller
has been unified with the next state function circuit.

III. PROPOSED HDL CODING STYLE

To discuss the basic idea of proposed HDL coding style,
an example of MCNC benchmark circuit in Berkeley Logic
Interchange Format (BLIF) [14] is presented in Figure 1a. This
simple example circuit (lion.blif) has two flip-flops (lines 4 and
5) and three combinational logic functions (lines 6-8). Line
6 is the output function; while lines 7 and 8 are next state
functions. In conventional coding style, each flip-flop is coded
into one process. This process will generate a DFF with the
D input from the output of corresponding next state function
(NSF) as shown in Figure 1b. In this circuit, the output of
each NSF is connected to the D input of DFF. When the D
input of DFF (in this figure, for example: n n10 and n n11)

has a different value compared to its Q output (D ̸= Q), the
DFF needs to be clocked for updating the storage data (in this
figure, for example: n n21 and n n22). Otherwise, when the
D input has the same logic value as the Q output (D = Q),
the DFF does not need to be clocked. However, since the
clock input of DFF is directly connected to the clock signal,
the DFF is always clocked. This unnecessary logic transition
wastes power.

To solve this issue, we propose a new coding style as shown
in Figure 1c. A more detailed report of this proposal can
be found in [19]. Contrary to conventional coding style, in
our approach, each flip-flop is represented into two processes.
The first process is used to model a TFF with T at logic
one; while the second process is used to create a function
for feeding the clock input of the TFF. We call this function
as a clock function (CF). The TFF is clocked when it is
needed to update storage data (in this simple example: n n21
and n n22); otherwise, it will not be clocked. In this simple
circuit, for example if present state of n n21 is different from
next state of n n21, the TFF will be clocked by clock n n21;
otherwise, it will not be clocked to save power.

Avoiding unnecessary clock transitions is one of benefits
of this new coding style compared to conventional coding
style. Each combinational circuit stops clock signal to be
propagated to an individual FF when the state of the FF does
not change. As a result, the unnecessary clock transitions are
totally avoided. In comparison to clock gating, our coding style
does not need an additional clock gating controller. As a result,
additional power and area are also saved in comparison to
clock gating approach.

Moreover, circuits generated using our proposed coding
style can run faster than circuits using conventional coding
style. This can be explained as follows. In conventional
circuits, the DFF can be clocked properly if its D input is stable
at least before its setup time (tsetup(DFF )). In our circuits,
since the T input of the TFF is always connected to logic
one, the TFF is always ready to be clocked. As a result, logic
circuits implemented using our style can be clocked faster than
logic circuits using conventional style. In order to obtain the
clock period of the circuit using conventional style, equation
(1) can be used:

TConv
c (N) ≥ Max(tpd(NSF1), tpd(NSF2), ...,

tpd(NSFN )) + tpcq(DFF ) + tsetup(DFF )
(1)

where tpd is the propagation delay of combinational logic, N
is the number of NSFs and tpcq is the clock-to-Q propagation
delay of flip-flop. Similarly, the clock period using our coding
style can be calculated using the following equation:

TOur
c (M) ≥ Max(tpd(CF1), tpd(CF2), ...,

tpd(CFM )) + tpcq(TFF )
(2)

where M is the number of CFs. In this simple example, since
there are two NSFs and two CFs we can apply to eq. (1) N=2



Output

function

In_0

In_1

n_n21

n_n22

lion_out

The first 

next state 

function

(NSF1)

DFF

In_0

In_1

n_n21

n_n22

D Q
n_n21

clock

n_n10

The second 

next state 

function

(NSF2)

DFF

In_0

In_1

n_n21

n_n22

D Q
n_n22

clock

n_n11

The second 

clock function

(CF2)

In_0

In_1

n_n21

n_n22

clock

n_n22

TFF

‘1’
T Q

clock_n_n22

The first 

clock function

(CF1)

In_0

In_1

n_n21

n_n22

clock

TFF

‘1’
T Q

n_n21

clock_n_n21

Output

function

In_0

In_1

n_n21

n_n22

lion_out

1.model top

2.inputs lion_in_0_ lion_in_1_ clock

3.outputs lion_out

4.latch    n_n10 n_n21 re clock 2

5.latch    n_n11 n_n22 re clock 2

6.names lion_in_0_ lion_in_1_ n_n21 

n_n22 lion_out

---1 1

0-1- 1

-01- 1

7.names lion_in_0_ lion_in_1_ n_n21 

n_n22 n_n10

10-- 1

-01- 1

-0-1 1

8.names lion_in_0_ lion_in_1_ n_n21 

n_n22 n_n11

1--1 1

-1-1 1

--11 1

011- 1

9.end

a. BLIF file b. Conventional coding style c. Our coding style

Fig. 1. Basic idea

and eq. (2) M=2, and obtain the speedup as SPEEDUP =
T Conv

c (2)
T Our

c (2)
.

In our style, we need to feed clock signal to combinational
circuits (implemented in LUTs in FPGAs) before it goes to
flip-flops. This can be easily applied since not all inputs of
LUTs are utilized in real FPGA designs as reported in [15].
Therefore, we can use these unused inputs to feed clock signal
for free in FPGAs.

If the input of circuit changes during clock signal at logic
one, there is a chance that this input generates a pulse that
can affect the state of TFF. The first solution of this problem
is to use the pulsed clock signal. The width of pulsed clock
signal is set to be the minimum pulsed clock width of TFF.
Since the width of the pulsed clock signal is so narrow, the
possibility that inputs change during this very short period is
kept low. If it occurs, the width of the pulse caused by this
condition is always less than the width of the original pulsed
clock signal. Since the width of this pulse is smaller than the
minimum pulsed clock width of TFF, the pulse is ignored; the
state of TFFs will not be affected. As a result, the circuit will
keep working properly. The second solution for this clocking
problem is to synchronize the input with clock signal before
it goes to the actual circuit. Since inputs are synchronized, the
changing of input during clock at logic one will be ignored
by the circuit. However, this requires additional logic, latency
and power. In this paper, we performed experiments using a
pulsed clock solution.

IV. EVALUATION

The experimental setup is shown in Figure 2. Each MCNC
benchmark circuit [1] is converted into two VHDL files
(conventional and our VHDL files) to represent the two
VHDL coding styles (conventional and our coding styles).
Each VHDL file is compiled for Stratix EP1S10F484C5 using
the Compiler Tool from Quartus II. The area needed for
implementing each circuit in the number of logic elements
(LEs) is reported by the Compiler Tool. Waveform Editor from

BLIF input file (MCNC benchmark circuit)

Conventional BLIF to VHDL converter

Conventional VHDL file

Compiler Tool

Implemented conventional/our circuit
Conventional/Our

area

Simulation ToolWaveform Editor

Timing Analyzer

Conventional/Our

speed

Conventional/Our

simulation result

Signal

activity file

PowerPlay Power 

Analyzer Tool

Conventional/Our

power consumption

Quartus II 6.0

from Altera

Verification

Our BLIF to VHDL converter

Our VHDL file

Fig. 2. Experimental setup

Quartus II is used to generate test vectors for each bench-
mark circuit. Those vectors are applied to the implemented
circuit using Simulation Tool from Quartus II. Each circuit
is verified by comparing the simulation results between the
conventional and our circuits. This step is needed to ensure that
both generated circuits are functionally correct with the same
working functionality. Besides generating simulation results,
the Simulation Tool also generates the signal activity file
(SAF). To evaluate power consumption, this SAF file and the
implemented circuit from the previous step are fed into the
PowerPlay Power Analyzer Tool from Quartus II to obtain
total power, dynamic power, and static power. To compare
the performance of the implemented circuits, Timing Analyzer
from Quartus II is used. The performance is obtained in terms
of maximum clock frequency.

The experimental results using a 50 MHz clock are pre-
sented in Table II. Our style can lead to reduction in dynamic
power and total power, but it cannot reduce static power.
Since our style can avoid unnecessary transitions by clocking
flip-flops only if needed, our style can lead to reduction in



TABLE II
EXPERIMENTAL RESULTS AT 50 MHZ

Dynamic power (mW) Total power (mW) Static power (mW) Area (#LEs) Maximum clock frequency(MHz)
Circuits conv our reduction conv our reduction conv our conv our overhead conv our improvement

(%) (%) (%) (%)
lion 39.87 4.75 88.09 227.37 192.25 15.45 187.5 187.5 7 7 0 437.06 467.07 6.87

bbara 36.2 0.78 97.85 223.7 188.28 15.83 187.5 187.5 25 29 16 305.44 340.02 11.32
bbsse 39.58 6.43 83.75 227.08 193.93 14.6 187.5 187.5 45 49 8.89 264.27 274.73 3.96
s298 45.81 10.54 76.99 233.31 198.04 15.12 187.5 187.5 740 903 22.03 93.82 95.27 1.55
dk16 51.82 16.93 67.33 239.32 204.43 14.58 187.5 187.5 85 86 1.18 219.97 226.3 2.88
dk14 55.58 16.32 70.64 243.08 203.82 16.15 187.5 187.5 28 37 32.14 276.78 331.79 19.87
tbk 40.47 4.3 89.37 227.97 191.8 15.87 187.5 187.5 69 78 13.04 139.14 153.82 10.55

beecount 44.92 9.56 78.72 232.42 197.06 15.21 187.5 187.5 11 16 45.45 367.92 390.63 6.17
cse 41.96 6.48 84.56 229.46 193.98 15.46 187.5 187.5 73 80 9.59 216.08 232.34 7.52

s1494 71.73 27.17 62.12 259.23 214.67 17.19 187.5 187.5 249 261 4.82 190.99 208.9 9.38
ex1 48.71 16.81 65.49 236.21 204.31 13.5 187.5 187.5 110 118 7.27 242.19 256.41 5.87
keyb 41.09 5.21 87.32 228.59 192.71 15.7 187.5 187.5 90 96 6.67 190.19 214.5 12.78

planet 42.33 5.88 86.11 229.83 193.38 15.86 187.5 187.5 215 231 7.44 188.82 210.7 11.59
pma 89.47 53.51 40.19 276.97 241.01 12.98 187.5 187.5 76 83 9.21 210.39 224.77 6.83
s1 52.95 21.23 59.91 240.45 208.73 13.19 187.5 187.5 140 146 4.29 117.04 120.44 2.9

styr 66.53 31.55 52.58 254.03 219.05 13.77 187.5 187.5 202 210 3.96 298.78 310.95 4.07
s1488 63.96 30.37 52.52 251.46 217.87 13.36 187.5 187.5 243 255 4.94 194.89 197.71 1.45
sand 36.14 0.49 98.64 223.64 187.99 15.94 187.5 187.5 205 213 3.9 180.08 199.48 10.77

dynamic power consumption (75 % on average) compared to
conventional style. The degree of power reduction depends
on the nature of the circuit, circuits with many unnecessary
transitions can take more advantages of our style in terms of
power consumption. This 75 % dynamic power reduction can
only produce 15 % reduction in total power consumption on
average at 50 MHz since the static power is a dominant power
in these circuits at this frequency. If the dominant power is
dynamic power, this 75 % reduction in dynamic power will
lead to reduction in total power up to 75 %.

Our style can also increase the performance of the circuits
by 7.6 % on average. This can be explained as following.
Since we force CAD tools to implement each flip-flop using a
TFF with the T input at logic one in our style, the flip-flop is
always ready to be clocked; it does not need to wait for setup
time of the flip-flop before it can be clocked. Since the setup
time is becoming far less significant compared to the longest
path for more logic level circuits, more logic level leads to
less performance improvement.

Since clock signal needs to be fed to LUTs before it goes to
flip-flops, our style suffers 0-45% (11 % on average) more area
compared to the conventional one, depending on the circuit
logic functions. If the clock signal can be fed to LUTs using
unused inputs, our style does not need additional LUTs for this
purpose. As a result, it will produce lower area overhead or
even no area overhead as shown in Table II. In our experiment,
we had considered this area overhead when we evaluated
power consumption and performance.

To investigate all implemented circuits further, we run them
using different clock frequencies: 100 MHz and 150 MHz.
The results of this experiment are presented in tables III and
IV. Since static power, area, and performance are not affected
by changing the clock frequency, these tables only show
dynamic power and total power consumptions. From these
tables, we can see that dynamic power consumption is linearly
proportional with clock frequency. These tables also show that
our coding style can reduce total power consumptions by 25
% and 32 % on average compared to conventional style at

TABLE III
EXPERIMENTAL RESULTS AT 100 MHZ

Circuits Dynamic power (mW) Total power (mW)
conv our reduction(%) conv our reduction(%)

lion 79.74 9.5 88.09 267.24 197 26.28
bbara 72.4 1.56 97.85 259.9 189.06 27.26
bbsse 79.16 12.86 83.75 266.66 200.36 24.86
dk16 103.64 33.86 67.33 291.14 221.36 23.97
dk14 111.16 32.64 70.64 298.66 220.14 26.29
tbk 80.94 8.6 89.37 268.44 196.1 26.95

beecount 89.84 19.12 78.72 277.34 206.62 25.5
cse 83.92 12.96 84.56 271.42 200.46 26.14

s1494 143.46 54.34 62.12 330.96 241.84 26.93
ex1 97.42 33.62 65.49 284.92 221.12 22.39
keyb 82.18 10.42 87.32 269.68 197.92 26.61

planet 84.66 11.76 86.11 272.16 199.26 26.79
pma 178.94 107.02 40.19 366.44 294.52 19.63
s1 105.9 42.46 59.91 293.4 229.96 21.62

styr 133.06 63.1 52.58 320.56 250.6 21.82
s1488 127.92 60.74 52.52 315.42 248.24 21.3
sand 72.28 0.98 98.64 259.78 188.48 27.45

TABLE IV
EXPERIMENTAL RESULTS AT 150 MHZ

Circuits Dynamic power (mW) Total power (mW)
conv our reduction(%) conv our reduction(%)

lion 119.61 14.25 88.09 307.11 201.75 34.31
bbara 108.6 2.34 97.85 296.1 189.84 35.89
bbsse 118.74 19.29 83.75 306.24 206.79 32.47
dk16 155.46 50.79 67.33 342.96 238.29 30.52
dk14 166.74 48.96 70.64 354.24 236.46 33.25

beecount 134.76 28.68 78.72 322.26 216.18 32.92
cse 125.88 19.44 84.56 313.38 206.94 33.97

s1494 215.19 81.51 62.12 402.69 269.01 33.2
ex1 146.13 50.43 65.49 333.63 237.93 28.68
keyb 123.27 15.63 87.32 310.77 203.13 34.64

planet 126.99 17.64 86.11 314.49 205.14 34.77
pma 268.41 160.53 40.19 455.91 348.03 23.66
styr 199.59 94.65 52.58 387.09 282.15 27.11

s1488 191.88 91.11 52.52 379.38 278.61 26.56
sand 108.42 1.47 98.64 295.92 188.97 36.14

100 MHz and 150 Mhz, respectively. Since dynamic power is
higher when the clock frequency is increased, the reduction
of total power is also increased for higher clock frequency.

To study the effect of the number of circuits (#Circuits) at
different clock frequencies on total power reduction (%), we
implement multiple circuits into the FPGA and investigate the
effect of the number of circuits on overall power reduction as
depicted in Figure 3. More working circuits means additional



0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11

#Circuits

T
o

ta
l 

p
o

w
e

r 
re

d
u

c
ti

o
n

 (
%

)

50 MHz

100 MHz

150 MHz

200 MHz

250 MHz

300 MHz

Fig. 3. Effect of the number of circuits (#Circuits) on total power reduction
(%) at different clock frequencies

TABLE V
COMPARISON WITH CLOCK GATING SOLUTIONS

Evaluation Our solution Clock Gating solutions
[11] [12] [13]

Power 13-90% 6.2-7.7% 5-33% 1.8-27.9%
lower lower lower lower

Performance 2-20% faster 0-2% slower Not available 1.1% faster
Area 0-45 % overhead Not available Not available Not available

dynamic power; the dynamic power becomes more dominant
compared to static power. Since our style can only reduce
dynamic power, it can save more dynamic power for more
working circuits. As a result, our style reduces much more total
power when the number of circuits inside the FPGA increases.
This figure indicates that our style can reduce total power by
16-65 % at 50 MHz. Total power is even much more reduced
at higher frequency, up to 90 % at 300 MHz. Total power
reduction saturates up to its ability to reduce dynamic power.

Table V shows the comparison between our solution and
clock gating solutions [11], [12], and [13]. Clock gating
solutions are obtained from the results of the original papers:
[11], [12], and [13]. Unlike clock gating, our proposal does
not need an additional controller to stop clock propagation.
As a result, it saves more power than clock gating solutions.
Moreover, since flip-flops are always ready to be clocked in
our proposal, it generates faster designs than clock gating
designs. The area cannot be directly compared due to no
information regarding area overhead in clock gating papers.

V. CONCLUSIONS

In this paper, we have proposed a novel HDL coding style to
reduce power consumption of designs targeting reconfigurable
devices. The proposed style has been evaluated using MCNC
benchmark circuits on a real FPGA and a real CAD tool. By
avoiding unnecessary transitions, the proposed style produces
circuits with 13-90 % less total power consumption compared
to conventional style. Moreover, by making ”always ready”
flip-flops, the circuits generated from our style run 2-20 %
faster than the conventional one. Since the proposed style
needs to feed clock signal to its combinational logic, the

proposed style creates circuits with 0-45 % more area.
This result motivated new proposal for a low power LE

to support this way of implementing circuits as reported
in [18]. Instead of using DFFs, we use TFFs with the T
input permanently connected to logic one value. Instead of
connecting the output of the LUT to the input of the FF, we
connect it to the clock input of the FF. The coding style in
this paper is a way for us to ”force” the existing CAD tools
using the existing FPGAs to implement circuits in a different
way than the conventional one. In the future, this new way of
implementing circuits could be integrated in the CAD tools.

ACKNOWLEDGMENT

This work is sponsored by the hArtes project (IST-035143)
supported by the Sixth Framework Programme of the Euro-
pean Community under the thematic area ”Embedded Sys-
tems”. REFERENCES

[1] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0, Tech. Rep., Microelectronic Center of North Carolina, 1991.

[2] S. Samhouri, HDL Coding Style for LUT Based FPGAs, Proceedings
of IEEE International Verilog HDL Conference and VHDL International
Users Forum, pp. 1-11, 1996.

[3] M. Gschwind and V. Salapura, A VHDL design methodology for
FPGAs, Proceedings of International Conference on Field Programmable
Logic and Applications(FPL), pp. 208-217, 1995.

[4] C. E. Cummings, The Fundamentals of Efficient Synthesizable Finite
State Machine Design using NC-Verilog and BuildGates, Proceedings
of International Cadence Usergroup Conference, pp. 1-27, 2002.

[5] N. I. Rafla and B. L. Davisy, A Study of Finite State Machine Coding
Styles for Implementation in FPGAs, Proceedings of International
Midwest Symposium on Circuits and Systems, pp. 337-341, 2006.

[6] Coding Style Guidelines, Xilinx, Tech. Rep., 2003.
[7] Quartus II Handbook Version 9.1, Altera, Tech. Rep., November 2009.
[8] P. Garrault and B. Phiofsky, HDL Coding Practices to Accelerate Design

Performance, Xilinx Corporation , Tech. Rep., January 2006.
[9] K. Chapman, Get your Priorities Right Make your design up to 50%

smaller, Xilinx Corporation, Tech. Rep., October 2007.
[10] A. Dollas, K. Papademetriou, E. Sotiriades, D. Theodoropoulos,

I. Koidis, and G. Vernardos, A Case Study on Rapid Prototyping of
Hardware Systems: the Effect of CAD Tool Capabilities, Design Flows,
and Design Styles, Proceedings of IEEE International Workshop on
Rapid System Prototyping, pp. 180-186, June 2004.

[11] S. Huda, M. Mallick, J.H. Anderson, Clock gating architectures for
FPGA power reduction, Proceedings of International Conference on
Field-Programmable Logic and Applications(FPL), pp. 112-118, 2009.

[12] Y. Zhang, J. Roivainen, A. Mämmelä, Clock-Gating in FPGAs: A Novel
and Comparative Evaluation, Proceedings of EUROMICRO Conference
on Digital System Design, pp.584-590, 2006

[13] Q. Wang, S. Gupta, J.H. Anderson, Clock power reduction for Virtex-5
FPGAs, Proceedings of International Conference on Field Programmable
Gate Arrays (FPGA), pp. 13-22, 2009.

[14] Berkeley Logic Interchange Format (BLIF), University of California
Berkeley, February 2005.

[15] S. Mondal and S. O. Memik, Fine-grain leakage optimization in SRAM
based FPGAs, Proceedings of the ACM Great Lakes Symposium on
VLSI, pp. 238-243, 2005.

[16] X. Wu, M. Pedram, Low-power Sequential Circuit Design Using T Flip-
flops, International Journal of Electronics, Vol. 88, No. 6, pp. 635-643,
June 2001.

[17] D. Markovic, B. Nikolic, R. Brodersen, Analysis and design of low-
energy flip-flops, Proceedings of International Symposium on Low
Power Electronics and Design, pp.52-55, August 2001.

[18] T. Marconi, K. Bertels, G. Gaydadjiev, A Novel Logic Element for
Power Reduction in FPDs, CE-TR-2010-01, Computer Engineering Lab,
TU Delft, January 2010.

[19] T. Marconi, D. Theodoropoulos, K. Bertels, G. Gaydadjiev, A Novel
HDL Coding Style for Power Reduction in FPGAs, CE-TR-2010-02,
Computer Engineering Lab, TU Delft, January 2010.


