Minimalistic Architecture for Reconfigurable Audio
Beamforming

Dimitris Theodoropoulos
D.Theodoropoulos @tudelft.nl

Georgi Kuzmanov
G.K.Kuzmanov @tudelft.nl

Georgi Gaydadjiev
g.n.gaydadjiev @tudelft.nl

Computer Engineering Laboratory
EEMCS, TU Delft
P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract—In this paper, we propose a minimal programming
model that is tailored to audio Beamforming applications. The
model consists of nine instructions that provide high flexibility to
customize multi-core reconfigurable beamformers. We describe
all instructions and demonstrate their functionality through pseu-
docode examples. We apply the proposed programming paradigm
to a multi-core reconfigurable Beamforming architecture. Our
approach combines software programming flexibility with im-
proved hardware performance. Experimental results suggest that
our Virtex4FX60-based solution at 100 MHz, can extract in real-
time up to 12 acoustic sources 2.6x faster than a 3.0 GHz Core2
Duo OpenMP-based implementation.

I. INTRODUCTION

The Beamforming technique is used in telecommunications
to strengthen incoming signals from a particular location. Over
the last decades, it has been adopted by audio engineers to de-
velop systems that can extract acoustic sources. Experimental
Beamforming systems based on standard PCs provide a high-
level programming environment, but they lack performance.
Custom-hardware solutions alleviate this drawback, however,
in the majority of cases, designers are primarily focused on
just performing all required calculations faster than a General
Purpose Processor (GPP). Such approaches do not provide
a high-level programming environment for exposing various
system parameters to the system programmer, like different
filter sizes and coefficients sets.

In order to combine a high-level programming environment
with improved performance, in this paper, we propose a
minimalistic processor architecture! for embedded Beamform-
ing. The supporting programming model allows a high-level
interaction with a custom-hardware Beamforming processor,
thus alleviating the need of long-time iterations to re-test
the system that is under development. More specifically, the
contributions of this paper are the following:

« We propose a unique minimalistic processor architecture,
which is specialized for Beamforming processing and

IThroughout this paper, we adopt the terminology from [1], according
to which, the computer architecture is termed as the conceptual view and
functional behavior of a computer system as seen by its immediate viewer
- the programmer. The underlying implementation, termed also as micro-
architecture, defines how the control and the datapaths are organized to support
the architecture functionality.

consists of nine instructions, a dedicated memory orga-
nization and a Special Purpose Registers (SPRs) file;

o The architecture is scalable and allows programmers’
control over the underlying micro-architectural config-
uration. Thus, once written, the same program can be
executed on various hardware implementations;

o A Virtex4dFX60 FPGA-based hardware prototype of our
embedded Multi-Core BeamForming Processor (MC-
BFP), able to extract 12 acoustic sources simultaneously
2.6x faster than a software implementation running on a
3.0 GHz Core2 Duo.

The rest of the paper is organized as follows: Section II
provides a brief background on the Beamforming technique
and references to various systems that utilize it. In Section III,
we propose our architecture, while Section IV evaluates it by
demonstrating our instructions through pseudocode. Finally,
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Background: Beamforming performs spatial filtering over
a certain recording area, in order to determine the direction
of arrival of incoming signals. Although there are various ap-
proaches to perform acoustic Beamforming [2], many systems
utilize a filter-and-sum approach, as illustrated in Figure 1.
A microphones array of C elements samples the propagating
wavefronts and each microphone is connected to an H;(z),
FIR filter. All filtered signals are accumulated, in order to
strengthen the extracted audio source and attenuate any am-
bient noise. Essentially, the FIR filters are utilized as delay
lines that compensate for the introduced delay of the wavefront
arrival at all microphones [3]. Thus, the combination of all
filtered signals will amplify the original audio source, while
all interfering ones will be suppressed.

However, in order to extract a moving acoustic source, it
is mandatory to reconfigure all filters coefficients according to
the source changing location. For example, as it is illustrated in
Figure 1, a moving source is recorded for a certain time inside
the aperture defined by the 65 — 01 angle. A source tracking
device is used to follow the source trajectory. Based on its
coordinates, all filters are configured with the proper coeffi-
cients set. As soon as the moving source crosses to the aperture
defined by the 03 — 6, angle, the source tracking device will

-, Array of Beamformer

Sound

Moving source
sound
source Source
O A Tracking
o 1 .
| Device

C=# of input
channels

Fig. 1. A filter-and-sum beamformer.

provide the new coordinates, thus all filter coefficients must
be updated with a new set. This process is normally referred
to as “beamsteering”.

Related work: The authors of [4] present a Beamforming
hardware accelerator, where up to seven instances of the
proposed design can fit in a Virtex4 SX55 FPGA, resulting
in a 41.7x speedup compared to the software implementation.
A DSP implementation of an adaptive subband Beamforming
algorithm that utilizes two microphones, is presented in [5].
Finally, an experimental teleconference system is presented
in [6], which is based on a standard PC and consists of 12
microphones.

III. BEAMFORMING ARCHITECTURE

Our proposed architecture comprises dedicated register or-
ganization, a specialized instruction set and distributed mem-
ory buffers. Furthermore, it targets a multi-core process-
ing paradigm. This allows the design of scalable micro-
architectures, with respect to the available hardware resources,
which makes the architecture suitable for reconfigurable im-
plementations.

Memory and registers organization: Figure 2 illustrates
the logical organization of the memory and the registers
of the proposed Beamforming architecture. It is assumed
that it operates as an architectural extension of a GPP in
a co-processor paradigm. The architecture assumes multi-
core processing, distributed among C processing modules that
process data from C input channels. The C parameter can
be determined both at design-time and at run-time. The latter
option makes it suitable for implementations on platforms
with partial configuration capabilities. The host GPP and
the Multi-Core BeamForming Processor (MC-BFP) exchange
synchronization parameters and memory addresses via a set of
Special Purpose Registers (SPRs). Each BeamFormer module
has an on-chip buffer and memory space for the decimator and
H(z) filters coefficients. Furthermore, there is also an on-chip
source buffer, where samples of an extracted source are stored,
and a memory space for the currently active coefficients set
of the interpolator.

The proposed memory organization of our architecture is
the user-accessible memory space illustrated in Figure 2. The
non-user addressable space is annotated with the stripe pattern.
In order to provide high-level programming environment, the
programmer is granted read and write access to the on-chip
buffers, the source buffer, the external memory and the GPP

Off-chip memory
general
purpose addressable
space
BF H(z) filter coefficients
for all channels and all
apertures

Multi-Core Beamforming Processor
N o S e e

BeamFormer,

decimator and

Flifp Lt Hy(z) coefficients

BeamFormer,

BF decimator

coefficients decimator and

poshiplriics H(z) coefficients

common bus ¢

BF interpolator
coefficients

BeamFormerc_;

GPP

decimator and
He.1(z) coefficients

on-chip buffer
GPP

I
I
I
I
I
I
I
I
I
I
I
instruction and | el
data memory

Special Purpose
Registers
(SPRs)

—_—_— e —— e — — — — —_ — =

interpolator
coefficients

buffer

I
I source
I

C = # input channels

Fig. 2. Logical organization of the registers and the memory.

on-chip memory. Furthermore, the programmer can only read
from the SPRs for debugging purposes. There is no direct
access to the memory space for the coefficients, since our
architecture provides the functionality to reload all required
coefficients from on-chip buffers to the decimators, H(z) filters
and interpolator. This way the user is shielded completely from
all low-level interactions with the hardware.

Beamforming instruction set: The design of a Beamformer
requires various tests before its final implementation. Based
on the size of the recording area and the hardware costs
limitations, the designer has to evaluate the signal-to-noise
ratio quality of the extracted sources under different number of
microphones. Furthermore, internal signal calculations, except
filtering, also require decimation and interpolation. Based on
the available hardware resources, the designer should carefully
evaluate the size and the filtering coefficients of each one of
these modules. In addition, many tests should be conducted
to decide the number of source apertures that the recording
area should be divided into. Such tests, when developing a
software Beamformer, are easily applicable, however this is
not the case when custom hardware solutions are required. In
the latter case, the designers should also be able to perform
easily experiments under different source apertures.

Taking into account these requirements, we provide nine
instructions, shown in Table I, for configuring and controlling
the MC-BFP from the host GPP software, divided into four
categories. The SPRs modified column shows which SPR
is modified by a particular instruction. The four different
categories of instructions are: I/O, system setup, data pro-
cessing and debug. The I/O instruction is used to enable
or disable audio streaming to processing units. The system
setup instructions are used to customize system parameters and
load filter coefficients to on-chip buffers. The data processing
instruction is used to process input audio samples. Finally,
the instruction that belongs to the debug category, provides
an interface to the processor, in order to read any SPR. In
the following, we describe each of the instructions and their
parameters. We assume that a Beamforming system consists
of C input channels.

InStreamEn: Enables or disables streaming of audio samples

TABLE I
PROGRAMMING MODEL FOR BEAMFORMING APPLICATIONS

[Instruction type | Full name [Mnemonic | Parameters [SPRs modified |
‘ 1/0 [Input Stream Enable | InStreamEn | b_mask [SPRO |
Clear SPRs CIrSPRs NONE SPRO - SPR[9+2-C]
Declare FIR Filter DFirF FSize, FType SPR1, SPR2, SPR3
System setup Set Samples Addresses SSA *#*puf_sam_addr SPR7, SPR[10+C] - SPR[9+2-C]
Buffer Coefficients BufCoef **xmem_coef_addr, **buf_coef_addr NONE
Load Coefficients LdCoef **puf_coef_addr SPR4, SPRS8, SPR10 - SPR[9+C]
Configure # of input channels ConfC C SPR9Y
[Data processing | Beamform Source [BESrc [aper, *xmem_read_addr, *xmem_write_addr | SPR5, SPR6 |
[Debug [Read SPR [RASPR | SPR_num [NONE \
. . . . TABLE II
from input channels to the Beamforming processing units. Its SPECIAL PURPOSE REGISTERS
parameter is a binary mask b_mask equal to the number of SPR ‘ Description
input channels C. Within the mask, each bit can be used from SPRO InStreamEn binary mask
the programmer to disable or enable a single streaming channel SPRI Decimators FIR filter size
b t 0 1 . 1 ivelv. The bi ki SPR2 Interpolators FIR filter size
Yy set lng or 1 to 1ts va }Je respectlve y. € Dinary mask 1S SPR3 H(z) FIR filter size
stored in SPRO as shown in Table II. SPR4 LdCoef start/done flag
. SPR5 aperture address offset
M. Clears the cointents of all SPRs. o SPRE BFSrc srtdone fag
DFirF: Declares the size of a filter and writes it to the SPR7 source buffer address
corresponding SPR. Its parameters are the filter size FSize Sgﬁg ‘merpl;’la“’; ?Oef?‘“]fms ﬁdd(rgs
. . . e . number o mput channels
and its type FType. The latter is used to dlStll’lgUISh among SPR10 - SPR[9+C] channel i coefficients buffer address, i=0...C-1
the three different filter types, which are decimator (FType = SPR[10+C] - SPR[9+2:C] | channel i 1024 samples buffer address, i=0...C-1

1), interpolator (FType = 2) and H(z) filter (FType = 3). Based
on the value of FType, this instruction writes the filter size to
the appropriate SPR ranging from SPR1 to SPR3, as shown
in Table II.

SSA: Specifies the addresses from where the MC-BFP
will read the input samples. Its parameter is an array of
pointers buf sam_addr to the starting address of all on-chip
buffers. SSA writes from SPR[10+C] to SPR[9+2-C] the on-
chip buffers starting addresses. Furthermore, it writes to SPR7
the source buffer address, where 1024 samples of the extracted
source signal are stored.

BufCoef: Fetches all decimator, H(z) and interpolator coeffi-
cients from external memory to on-chip buffers. Its parameters
are organized as an array xmem_coef_addr of pointers to the
off-chip memory starting addresses of the coefficients sets, and
an array buf_coef_addr of pointers within the on-chip buffers
where all coefficients will be stored. BufCoef does not write
any values to SPRs.

LdCoef: Distributes all decimator and interpolator coeffi-
cients to the corresponding filters in the system. Its parameter
is an array buf _coef_addr of pointers within the on-chip
buffers where all coefficients are stored. These addresses are
written from SPR10 to SPR[9+C], as explained in Table II.
The instruction also writes to SPR8 the on-chip address of
the interpolator coefficients from where the MC-BFP can read
them. The coefficients distribution is initiated when a start flag
is written to SPR4 by the host GPP. Once all filter coefficients
are transferred, LdCoef writes a done flag to SPR4.

ConfC: Defines the number of input channels that are
available to the system. Its parameter is the number of active
input channels C that will be enabled using InStreamEn. The
instruction writes the value of C to SPR9.

BFSrc: Processes a 1024-sample chunk of streaming data
from each input channel that is enabled with the InStreamEn

instruction, in order to extract an audio source. BFSrc requires
as parameters the current source aperture aper, the starting
read address from the external memory xmem_read_addr of
the current chunk, and the write address to the external
memory xmem_write_addr, where 1024 samples of the source
signal will be stored. Based on aper, BFSrc writes to SPRS an
on-chip buffer address offset that allows the correct selection
of H;(z) coefficients sets. In order to initiate processing,
the instruction writes a start flag to SPR6. This flag is read
by each BeamFormer; module, where i=0,..., C-1, thus
channel processing is performed concurrently. Once all data
calculations are finished, a done flag is written by the MC-BFP
to SPR6.

RdASPR: Used for debugging purposes and allows the pro-
grammer to read any of the SPRs. RdSPR requires as parameter
the number of SPR SPR_num that needs to be read.

IV. ARCHITECTURE EVALUATION

In Algorithm 1, we illustrate through pseudocode how to
setup a Beamforming system to extract an audio source. The
DISABLE _INPUTS_MASK and ENABLE_INPUTS_MASK are
binary masks that are used to disable or enable input channels,
as described above. The DECIMATOR_SIZE, H SIZE and
INTERPOLATOR_SIZE variables are used to configure the
decimator, H(z) and interpolator FIR filter sizes. Moreover, the
DECIMATOR_TYPE, H_TYPE and INTERPOLATOR_TYPE
variables are used to specify the filter type. SamplesAddr
is an array of pointers to each on-chip buffer, where a
1024-sample chunk is stored. CoefXMemAddr is an array of
pointers to the external memory where all required decima-
tor, H(z) filters and interpolators coefficients are stored, and
BufAddr is an array of destination pointers to on-chip buffers,
where all coefficients will be transferred; xmem_rd_addr and
xmem_wr_addr are pointers to the external memory that

Algorithm 1 Pseudocode for Beamforming

. {configure the number of input channels available}

: ConfC (C);

. {disable all BeamFormers until system is configured}

: InStreamEn (DISABLE_INPUTS_MASK);

: {clear the contents of all SPRs}

: CIrSPRs ();

. {configure decimators size}

: DFirF (DECIMATOR_SIZE, DECIMATOR_TYPE);

. {configure H(z) filters size}

. DFirF (H_SIZE, H_TYPE);

. {configure interpolator size}

. DFirF (INTERPOLATOR_SIZE,
INTERPOLATOR_TYPE);

13: {configure the samples addresses}

14: SSA (SamplesAddr);

15: {transfer all H(z) coefficients to on-chip buffers}

16: BufCoef (CoefXMemAddr, BufAddr);

17: {load the coefficients to all decimators and interpolator}

18: LdCoef (BufAddr);

19: {initialize external memory reading and writing pointers}

20: xmem_rd_addr=INPUT_DATA_XMEM_ADDR;

21: xmem_wr_addr=OUTPUT_DATA_XMEM_ADDR;

22: {enable BeamFormers}

23: InStreamEn (ENABLE_INPUTS_MASK);

24: {process streaming data}

25: while (1) do

©® 9 U AW =

—_—
N = O O

26: BFSrc (aper, xmem_rd_addr, xmem_wr_addr);
27: {update external memory pointers}

28: xmem_rd_addr=xmem_rd_addr+1024-C;

29: xmem_wr_addr=xmem_wr_addr+1024;

30: end while

read input channels data and write source samples respec-
tively. INPUT_DATA_XMEM_ADDR is an external memory
address, where input channels data are stored, while OUT-
PUT_DATA_XMEM_ADDR is an external memory address,
where samples of extracted sources are written back. Finally,
aper is the current source aperture.

The pseudocode starts by configuring the number C of
available input channels, and then disabling them from pro-
cessing, since the system is not yet properly setup. All SPRs
are initialized and then the decimator, H(z) and interpolator
filter sizes are configured. Afterwards, the addresses of all
samples within the on-chip buffers are specified, and all
required decimator, H(z) filters and interpolators coefficients
are distributed from the external memory to on-chip buffers.
Once this step is completed, the decimators and interpolator
coefficients are reloaded. Since the system is now configured,
all BeamFormers are enabled. Finally, in each iteration of
the while-loop, the current source aperture aper is used and
1024-C samples are read to extract 1024 source samples, which
are written to the external memory. Both external memory
read/write pointers are updated accordingly for the next while-

TABLE III
COMPARISON BETWEEN THE SOFTWARE AND HARDWARE
IMPLEMENTATIONS.

[# of sources | tsw_onmp(msec) | tarc—prp(msec) | Speedup |

4 10640 3127 3.40
8 17497 6251 2.80
12 24558 9375 2.62

loop iteration.

In order to evaluate the proposed architecture, we imple-
mented it in our hardware prototype, presented in [7], which
was significantly improved with high-level programming abil-
ities. Our implementation was mapped onto a Virtex4 FX60
FPGA device. As host processor we used one of the two
integrated PowerPC cores. We compared our prototype against
an OpenMP-annotated software implementation on a Core2
Duo processor at 3.0 GHz. Table III provides the Core2
execution time (tsw_onmp), the MC-BFP execution time
(tymo—prp) and the obtained speedup under different number
of sources to be extracted. As we can observe, our proposed
approach can extract 12 sources 2.6 times faster compared to
the Core2 Duo approach.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a minimal architecture for audio-
Beamforming applications. Our approach combines software
programming flexibility with improved hardware performance.
We demonstrated how the proposed instructions can be used
to develop a compact, yet efficient program, which can be
applied to control a reconfigurable multi-core processor for
Beamforming applications. Finally, we evaluated our proposal
using an FPGA prototype, which was found able to extract in
real-time up to 12 acoustic sources 2.6x faster than a Core2
Duo solution.

ACKNOWLEDGMENTS
This research is partially supported by Artemisia iFEST
project (grant 100203), Artemisia SMECY (grant 100230),
FP7 Reflect (grant 248976).
REFERENCES
[1

—

Gerrit Blaauw and Frederick Brooks, “Computer Architecture: Concepts
and Evolution,” February 1997.

[2] B. V. Veen and K. Buckley, “Beamforming: a versatile approach to spatial
filtering,” in I[EEE ASSP Magazine, vol. 5, April 1988, pp. 4-24.

Bill Kapralos et. al., “Audio-visual localization of multiple speakers in
a video teleconferencing setting,” in International Journal of Imaging
Systems and Technology, vol. 13(1), October 2003, pp. 95-105.

Ka-Fai Cedric Yiu et. al., “Reconfigurable acceleration of microphone ar-
ray algorithms for speech enhancement,” in Application-specific Systems,
Architectures and Processors, 2008, pp. 203-208.

Zohra Yermeche et. al., “Real-time implementation of a subband beam-
forming algorithm for dual microphone speech enhancement,” in /EEE
International Symposium on Circuits and Systems, May 2007, pp. 353—
356.

J. Beracoechea et. al., “On building Immersive Audio Applications
Using Robust Adaptive Beamforming and Joint Audio-Video Source
Localization,” in EURASIP Journal on Applied Signal Processing, June
2006, pp. 1-12.

[7]1 D. Theodoropoulos et. al., “A Reconfigurable Beamformer for Audio
Applications,” in IEEE Symposium on Application Specific Processors,
pp. 80-87.

3

[t}

[4

=

[5

—

[6

—_

