
A Minimalistic Architecture for Reconfigurable WFS-Based Immersive-Audio

Dimitris Theodoropoulos Georgi Kuzmanov Georgi Gaydadjiev

D.Theodoropoulos@tudelft.nl G.K.Kuzmanov@tudelft.nl g.n.gaydadjiev@tudelft.nl

Computer Engineering Laboratory, EEMCS, TU Delft
P.O. Box 5031, 2600 GA Delft, The Netherlands

http://ce.et.tudelft.nl

Abstract—We propose a minimalistic processor architecture
tailoring Wave Field Synthesis (WFS)-based audio applications
to configurable hardware. Eleven high-level instructions provide
the required flexibility for embedded WFS customization. We
describe the implementation of the proposed instructions and
apply them to a multi-core reconfigurable WFS architecture.
Our approach combines software programming flexibility with
improved hardware performance and low power consumption.
Experimental results suggest that our Virtex4FX60-based FPGA
prototype, running at 100 MHz, can provide a kernel speedup
of up to 4.5 times compared to an OpenMP-annotated software
solution implemented on a Core2 Duo at 3.0 GHz. Furthermore,
when larger FPGAs are utilized, we estimate that our system can
render in real-time up to 32 acoustic sources when driving 64
loudspeakers. Ultimately, we estimated that the proposed system
requires approximately 6 Watts, which is at least an order of
magnitude less power compared to x86-based approaches.

I. INTRODUCTION

The Wave Field Synthesis (WFS) is a technique that

improves substantially the sound quality over stereophony

[1]. Moreover, in order to generate the original acoustic

wavefronts [2], it requires large loudspeakers arrays that need

to be properly driven. Research on literature reveals that

the majority of experimental and commercial WFS systems

are implemented using General Purpose Processors (GPPs).

The primary reason is due to their high-level programming

environment, thus a system under development can be tested

more rapidly. For example, the designer has the option to

easily select different system parameters, such as the number

of loudspeakers or the Finite Impulse Response (FIR) filter

coefficients sets, in order to conduct various experiments.

However, two drawbacks are introduced, namely limited

processing capabilities and excessive power consumption.

In order to alleviate these obstacles, we propose a min-

imalistic processor architecture1 for embedded WFS. The

supporting programming model allows a high-level interac-

tion with a custom-hardware WFS processor, thus alleviating

the need of long-time iterations to re-test the system that

1Throughout this paper, we adopt the terminology from [3], according
to which, the computer architecture is termed as the conceptual view and
functional behavior of a computer system as seen by its immediate viewer
- the programmer. The underlying implementation, termed also as micro-
architecture, defines how the control and the datapaths are organized to
support the architecture functionality.

is under development. Moreover, our proposal combines the

programming flexibility of software approaches with the high

performance and comparatively lower power consumption of

the contemporary reconfigurable hardware. The architecture

implementation allows utilization of varying number of pro-

cessing elements, therefore, it is suitable for mapping on re-

configurable technology. More specifically, the contributions

of this paper are the following:

∙ We propose a unique minimalistic processor architec-

ture, which is specialized for WFS processing and

consists of eleven instructions, a dedicated memory

organization and a Special Purpose Register (SPR) file.

The architecture is scalable and allows programmer’s

control over the underlying micro-architectural config-

uration. Thus, once written, the same program can be

executed on various implementation configurations.

∙ We implement a hardware prototype of our architec-

ture as an embedded Multi-Core WFS Processor (MC-

WFSP) on a V4FX60 FPGA. Our prototype can render

up to 32 real-time sources when driving 56 loudspeak-

ers, while larger FPGAs could accommodate systems

that support 64 loudspeakers.

∙ Experimental results suggest that our prototype can

process data 4.5 times faster compared to an OpenMP-

annotated software implementation on a Core2 Duo

running at 3.0 GHz. Also, our hardware design provides

a power-efficient solution. It consumes approximately

6 Watts, which is an order of magnitude less power

compared to x86-based systems that require tens of

Watts when in operation mode.

The rest of the paper is organized as follows: Section II

provides a brief background on the WFS technique and

references to systems that utilize it. In Section III, we propose

our architecture, while Section IV presents its hardware im-

plementation. In Section V we compare our prototype against

a software approach and related work. Finally, Section VI

concludes the paper.

II. BACKGROUND AND RELATED WORK

Background: As it was mentioned in Section I, the WFS

utilizes loudspeaker arrays to render all acoustic sources.

In order to drive the i-th element of an L-sized array with

Figure 1. Logical organization of the registers and the memory.

coordinates I(𝑥𝑙𝑖, 𝑦𝑙𝑖), where i=0,..., L-1, so as the rendered

sound source location is at 𝐴(𝑥𝐴, 𝑦𝐴), the so called Rayleigh
2.5D operator [4] has to be calculated:

𝑄𝑚(𝜔, ∣−−→𝐼𝐴𝑖∣) = 𝑆(𝜔)

√
𝑗𝑘

2𝜋

√
𝐷𝑧

𝑧 +𝐷𝑧

𝑧

∣−−→𝐼𝐴𝑖∣
𝑒𝑥𝑝(−𝑗𝑘∣−−→𝐼𝐴𝑖∣)√

∣−−→𝐼𝐴𝑖∣
(1)

where k=𝜔/𝑐 is the wave number, c is the sound velocity,

z is the inner product between a vector −→𝑛 perpendicular

to the array and
−−→
𝐼𝐴𝑖, Dz is reference distance, i.e. the

distance where the Rayleigh 2.5D operator can give sources

with correct amplitude, 𝑆(𝜔) is the acoustic source,

√
𝑗𝑘
2𝜋

is a 3dB/octave correction filter,
√

𝐷𝑧
𝑧+𝐷𝑧

𝑧

∣−−→𝐼𝐴𝑖∣
is the source

amplitude decay, and 𝑒−𝑗𝑘𝑟 is a time delay that has to be

applied to the particular loudspeaker. Further details on WFS

can be found in [4], [5], [11], and [12].

Related work: References [6] and [7] present two similar

audio systems that can be used for teleconferencing scenar-

ios. In both cases, the authors have employed microphone

arrays to record audio sources. The latter are sent through

Ethernet to a remote location and rendered using a loud-

speaker array. Both implementations are based on desktop

PCs. Another experimental WFS system is the Binaural Sky

[8], which utilizes a Linux PC to synthesize focused sound

sources around the listener through a 22-loudspeaker array.

SonicEmotion [9] and Iosono [10] are two companies

that produce audio systems based on the WFS technology.

SonicEmotion develops its unit on Core2 Duo-based WFS

product, which supports rendering up to 64 real-time sound

sources, while driving a 24-loudspeaker array. Iosono also

follows a standard PC approach that supports up to 32 real-

time sources while driving 32 loudspeakers. A cinema in

Ilmenau, Germany2 has been equipped with 192 loudspeakers

since 2003, which are driven by six Iosono PCs.

III. WFS ARCHITECTURE

Memory and registers organization: Figure 1 illustrates

the logical organization of the memory and the registers of

the proposed WFS architecture. It is assumed that it operates

in a co-processor architectural paradigm. The architecture

2http://www.idmt.fraunhofer.de/eng/about us/facts figures.htm

assumes multi-core processing, distributed among R Ren-

dering Units (RUs), coupled to the GPP architecture, each

processing data for 𝐿
𝑅 output channels, where L is the total

number of loudspeakers. The R parameter can be determined

both at design-time and at run-time. The latter option makes

it suitable for implementations on platforms with partial

configuration capabilities. The host GPP and the MC-WFSP

exchange synchronization parameters and memory addresses

via a set of Special Purpose Registers (SPRs). Each RU has

its own RU buffer and memory space for the loudspeakers

coordinates and filtered source samples, namely loudspeaker
coordinates buffer (LCB) and filtered samples buffer (FSB)

respectively. Furthermore, there is a source buffer, where

samples of an acoustic source are stored, and a memory

space for the currently active coefficients set of the WFS

filter. The non-user addressable space is annotated with the

stripe pattern.
WFS instruction set: Table I summarizes the eleven

proposed high-level instructions, divided into four categories.

The SPRs modified column shows which SPR is modified

by a particular instruction. Table II provides each SPR

functionality. The four different categories of instructions are:

I/O, system setup, data processing and debug. The I/O in-

struction is used to enable or disable audio streaming to RUs.

The system setup instructions are used to customize system

parameters and reload coefficients to the WFS filter. The data
processing instruction is used to process loudspeakers audio

samples. Finally, the instruction that belongs to the debug
category, provides an interface to the processor, in order to

read any SPR. In the following, we describe each of the

instructions and their parameters. We assume that a WFS

system consists of R RUs and L loudspeakers.
OutStreamEn: Enables or disables streaming of audio

samples from the RUs to the output channels. Its parameter

is a binary mask b mask equal to the number of RUs R.

Within the mask, each bit can be used from the programmer

to disable or enable RU streaming by setting 0 or 1 to its

value respectively. The binary mask is stored in SPR0.
ClrSPRs: Clears the contents of all SPRs.
ConfL: Defines the number of loudspeakers that will be

processed from a single RU. Its parameter is the number of

loudspeakers per RU spkr num that will be enabled using

OutStreamEn. The instruction writes the value of spkr num
to SPR2.

ClrRUBufs: Clears the contents of all RU buffers that are

currently configured to the system. Its parameter is an array

RUs addresses of pointers to each RU buffer. No SPR is

modified during its execution.
StC2RUs: Reads the loudspeakers coordinates from the

external memory, re-arranges their order based on the num-

ber of RUs at the system, and writes them to each RU
buffer. Its parameters are the external memory address

xmem spkr coordinates where the loudspeakers coordinates

are stored, and an array of pointers buf spkr coordinates
to the on-chip RU buffers. The instruction uses SPR3 to

Table I
PROGRAMMING MODEL FOR WFS APPLICATIONS

Instruction type Full name Mnemonic Parameters SPRs modified
I/O Ouput Stream Enable OutStreamEn b mask SPR0

System setup

Clear SPRs ClrSPRs NONE SPR0 - SPR[10+2⋅R]
Configure loudspeakers per RU ConfL spkr num SPR2

Clear RU buffers ClrRUBuf ** RUs addresses NONE
Store coordinates to RU buffers StC2RUs *xmem spkr coordinates, **buf spkr coordinates SPR3, SPR11 - SPR[10+R]

Declare FIR Filter DFirF FSize SPR1
Set Samples Addresses SSA **buf sam addr SPR7, SPR[11+R] - SPR[10+2⋅R]

Buffer Coefficients BufCoef *xmem coef addr, *buf coef addr NONE
Load Coefficients LdCoef *buf coef addr SPR4, SPR8

Data processing Render Source RenSrc
Srcx1y1, Srcx2y2, **RUs addresses, source id num,

SPR4, SPR5, SPR9, SPR10
*xmem read addr, *xmem write addr

Debug Read SPR RdSPR SPR num NONE

communicate with the MC-WFSP and writes to SPR11 -

SPR[10+R] the address within each RU buffer where the

arranged coordinates will be stored.

DFirF: Declares the size of the WFS 3dB/octave correc-

tion filter. Its parameter is the filter size FSize, which is

written to SPR1.

SSA: Specifies the addresses from where the MC-WFSP

will read the source samples and write the output data. Its

parameter is an array of pointers buf sam addr to the starting

address of the source buffer and all RU buffers. SSA writes

from SPR[11+R] to SPR[10+2⋅R] the RU buffers starting

addresses. Furthermore, it writes to SPR7 the source buffer
address, where 1024 samples of the source signal are stored.

BufCoef : Fetches all WFS filter coefficients from the

external memory to the source buffer. Its parameters are

a pointer xmem coef addr to the off-chip memory starting

addresses of the coefficients set, and a pointer buf coef addr
within the source buffer where all coefficients will be stored.

BufCoef does not write any values to SPRs.

LdCoef : Loads the WFS filter coefficients to the 3dB/oc-

tave correction FIR filter of the system. Its parameter is a

pointer buf coef addr within the source buffer where all

coefficients are stored. This address is written to SPR8. As

soon as all coefficients are transferred to the source buffer,

their distribution is initiated when a start flag is written to

SPR4. Once all coefficients are reloaded to the filter, LdCoef
writes a done flag to SPR4.

RenSrc: Processes a 1024-sample chunk of streaming

source data using every RU that is enabled with the OutStrea-
mEn instruction. RenSrc requires as parameters the source

coordinates (x1,y1) and (x2,y2), which designate the initial

and final source location within the listening area respectively

for a 1024
𝑓𝑠

time interval (𝑓𝑠 is the sampling frequency), and

are stored to variables Srcx1y1 and Srcx2y2. Also it requires

an array RUs addresses of pointers to each RU buffer, the

source identification number source id num, the starting read

address from the external memory xmem read addr of the

current chunk, and the write address to the external memory

xmem write addr, where 1024⋅L output samples will be

stored. In order to initiate processing, the instruction writes

a start flag to SPR9. This flag is read by each RU, thus

loudspeaker processing is performed concurrently. Once all

Table II
SPECIAL PURPOSE REGISTERS

SPR Description
SPR0 OutStreamEn binary mask
SPR1 WFS filter size
SPR2 Loudspeakers per RU
SPR3 StC2RUs start/done flag
SPR4 LdCoef start/done flag
SPR5 x1, y1 source coordinates
SPR6 x2, y2 source coordinates
SPR7 source buffer address
SPR8 WFS filter coefficients address
SPR9 RenSrc start/done flag
SPR10 source ID number

SPR11 - SPR[10+R]
loudspeakers coordinates address

inside 𝑅𝑈𝑖 buffer, i=0,...,R-1

SPR[11+R] - SPR[10+2⋅R]
loudspeakers samples address
inside 𝑅𝑈𝑖 buffer, i=0,...,R-1

data calculations are finished, a done flag is written to SPR9.

RdSPR: Reads any of the SPRs. It requires as parameter

the number of SPR SPR num that needs to be read. It does

not modify any SPR.

IV. RECONFIGURABLE WFS MICRO-ARCHITECTURE

WFS system description: Figure 2 illustrates in more

detail the implementation of the architecture from Figure 1.

We should note that it is based on our previous MC-WFSP

processor, originally presented in [12], however significant

design improvements have been made, in order to support a

high-level programming ability.

A GPP Bus is used to connect the on-chip GPP memory

and external SDRAM with the GPP via a standard bus

interface (BUS-IF). Furthermore, in order to accelerate data

transfer from the SDRAM to on-chip buffers, a Direct
Memory Access (DMA) controller is employed, which is

also connected to the same bus. A partial reconfiguration

controller is used to provide the option of reloading the

correct bitstreams based on the currently available RUs. All

user-addressable spaces inside the MC-WFSP, like SPRs, RU
buffers and the source buffer, are connected to the GPP Bus.

This fact enhances our architecture’s flexibility, since they

are directly accessible by the GPP. The main controller is

responsible for initiating the coefficients reloading process to

the WFS filter and distributing the loudspeakers coordinates

to all RUs. Furthermore, it broadcasts all filtered data to each

RU, enables output data processing from the selected RUs,

�
��
��
��
�	

�
���

��
��
��

��

���	
��	����
������	�
����
�

�
�
��
��

	���
�

���

���
���	
����

�
�
��
��

�
�
��
��

���

���
��
������

�
�
��
��

�
�
��
��

��
�
�

�����

�
�
��
��

������
������

	���
�

�����
�
�
��
��
������

������

�
�
��
��

������
�����������������

���	����
�� !���
������

������"��

�	���
���	
����
 �

�
��
��

	����������
�
����������

 ��!
��"#��
�
������
�
����������

Figure 2. Detailed implementation of the WFS system.

and acknowledges the GPP as soon as all calculations are

done.

Within each RU, there is a WFS Processing Element
(WFS-PE) module, illustrated in Figure 3. The StCoord
controller is connected to the main controller and is re-

sponsible for transferring the loudspeakers coordinates from

the RU buffer to the internal LCB. The Render controller
reads the coordinates of each loudspeaker from the LCB
and forwards them to the Preprocessor. The latter reads

the loudspeaker coordinates and calculates the amplitude

decay, source velocity and source distance from a particular

loudspeaker based on the source current position inside the

listening area. The WFS Engine module integrates the FSB
to store all filtered samples. Furthermore, it employs two

cores that select the proper samples, based on the source

distance from the same loudspeaker, and multiply them with

the amplitude decay. All output samples are written back to

the RU buffer. Further details on the hardware specifications

of the Preprocessor and WFS Engine modules can be found

in [12].

Instructions implementation: The instructions are di-

vided into four different categories based on whether they

access an SPR or not, and are described in details below:

GPP reads from SPR: RdSPR is the only instruction that

belongs to this category. The GPP initiates a GPP Bus read-

transaction and, based on the SPR num value, it calculates

the proper SPR memory address.

GPP writes to SPR: OutStreamEn, ClrSPRs, ConfL, Clr-
RUBufs, DFirF, and SSA are the instructions that belong

to this category. When the OutStreamEn instruction has to

be executed, the GPP initiates a bus transaction and writes

the binary mask b mask to SPR0. Similarly, in ClrSPRs the

GPP performs consecutive bus transactions to access all SPRs

and writes the zero value to them. The ConfL instruction

writes the L/R parameter to SPR2 and also forwards the R
parameter to the partial reconfiguration controller, in order to

Figure 3. The WFS-PE structure.

load from the external memory the bitstream that includes R
RUs. The ClrRUBufs instruction performs DMA transactions

to initialize all available RU buffers with zeros. The DFirF
also performs a bus transaction to write to SPR1 the WFS

filter size. Finally, the SSA instruction accesses the GPP Bus
to write the source buffer address to SPR7 and all RU buffer
addresses to SPR[11+R] - SPR[10+2⋅R].

GPP reads and writes to SPR: StC2RUs, LdCoef and

RenSrc instructions belong to this category. When the

StC2RUs instruction is executed, the GPP performs a DMA

transaction to read all loudspeakers coordinates from the

external memory address xmem spkr coordinates and store

them the GPP on-chip memory. The loudspeakers coordinates

are re-arranged based on the number of RUs of the system

and stored to the RU buffers. The GPP writes a start flag to

SPR3 and remains blocked until a done flag is written to the

same register. The start flag is read by the MC-WFSP and

the main controller invokes the StCoord controller to load

the coordinates from the RU buffers to the internal LCBs. As

soon as all loudspeakers coordinates have been transferred,

the MC-WFSP writes the done flag to SPR3, which is read

by the GPP to continue further processing.

When the LdCoef instruction is executed, the GPP per-

forms a bus transaction to write to SPR8 the WFS coordinates

address inside the source buffer. Furthermore, it writes to

SPR4 the start flag and remains blocked until a done flag

is written to the same SPR. The MC-WFSP reads the start

flag and the main controller starts the coefficients reloading

to the FIR filter. Once all coefficients are loaded, the MC-

WFSP writes a done flag to SPR4, which is read by the GPP

to continue further processing.

Finally, when the RenSrc is executed, the GPP writes to

SPR5 and SPR6 the (x1,y1) and (x2,y2) source coordinates.

Furthermore, it writes to SPR10 the source identification

number and performs a DMA transaction to read a 1024-

sample chunk from the external memory and store it to the

source buffer. The GPP then writes to SPR9 a start flag and

remains blocked until a done flag is written to the same

register from the MC-WFSP. The latter reads the start flag

and the main controller invokes the render controller within

each RU to start data processing. For every loudspeaker that

is processed within a specific RU, the render controller reads

its coordinates from the LCB and forwards them to the Pre-

Table IV
MEASURED AND ESTIMATED EXECUTION TIMES WHEN 32 SOURCES ARE RENDERED USING 4 RUS.

Columns → 1 2 3 4 5 6 7 8 9 10 11 12
Rows # of (msec) (msec) (msec) (msec) (msec) Kernel speedup
↓ loudspeakers 𝑡𝐶𝑜𝑟𝑒2𝐷𝑢𝑜 𝑡𝑃𝑃𝐶−𝑆𝐷𝑅𝐴𝑀 𝑡𝑜𝑝𝑡𝑃𝑃𝐶−𝑆𝐷𝑅𝐴𝑀 𝑡𝑀𝐶−𝑊𝐹𝑆𝑃 𝑡𝑜𝑝𝑡𝑀𝐶−𝑊𝐹𝑆𝑃 𝑡𝑃𝑃𝐶−𝑆𝑊 𝑡𝑜𝑝𝑡𝑃𝑃𝐶−𝑆𝑊 𝑡𝐻𝑊 𝑡𝑜𝑝𝑡𝐻𝑊 Meas. Est.

1 16 6854 8752 2917 1495 997 370 248 10617 4162 4.58 6.87
2 32 9398 14978 4993 2481 1654 367 246 17826 6893 3.78 5.68
3 48 12050 21329 7110 3468 2312 370 248 25167 9670 3.47 5.21
4 56 13391 24467 8156 3967 2645 370 248 28804 11048 3.37 5.06

Table III
RESOURCE UTILIZATION OF EACH MODULE

Module Slices DSP Slices Memory(bytes)
Single RU (100 MHz) 3566 26 36864

Common modules among all RUs 6734 0 2048
MC-WFSP with 4 RUs 20998 104 149504
System infrastructure 3213 0 227328

Complete system with 4 RUs 24211 104 376832

processor to calculate the amplitude decay, source velocity

and source distance from the particular loudspeaker. Once

these parameters are computed, the render controller invokes

the WFS Engine, which selects the proper audio samples,

multiply them by the amplitude decay and store them back

to the RU buffer. As soon as all assigned loudspeakers to

all RUs are processed, the main controller writes a done

flag to SPR9, which is read by the GPP to continue further

processing.

GPP does not access any SPR: BufCoef is the only in-

struction that belongs to this category. The GPP reads all

source and destination addresses from the xmem coef addr
and buf coef addr pointers respectively. Then it performs a

DMA transaction to transfer all WFS filter coefficients to the

source buffer.

V. FPGA PROTOTYPE AND EVALUATION

FPGA prototype: Based on the above study, we used the

Xilinx ISE 9.2 and EDK 9.2 CAD tools to develop a VHDL

hardware prototype and map it on a Xilinx ML410 board.

As host GPP processor, we used one of the two integrated

PowerPC processors of the V4FX60 FPGA. Furthermore,

we used the Processor Local Bus (PLB) to connect all

peripherals, which are all RU buffers, the source buffer,

all SPRs, and the DMA and SDRAM controllers. For the

partial reconfiguration, we have used the Xilinx Internal

Communication Access Port (ICAP), which is also connected

to the PLB. The PowerPC runs at 200 MHz, while the rest

of the system is clocked at 100 MHz. Our prototype is

configured with R=4 RUs.

The first line in Table III provides the required resources

for a single RU. The second line indicates all required

resources to implement the common modules among all RUs.

The third line contains all hardware resources occupied by

the MC-WFSP. In the fourth line, we provide the resources

required to implement the PLB, DMA, ICAP and all memory

controllers with their corresponding BRAMs. The fifth line

summarizes all required resources from the entire WFS sys-

tem. As it can be observed, a single RU requires 3566 slices,

which makes it feasible to integrate more such modules

within a single chip. According to the data provided in

Table III, it is possible for even a medium-sized FPGA to host

complete WFS systems with one RU. Moreover, we estimated

that larger chips, such as the V4FX100 and V4FX140, could

accommodate up to six and seven RUs respectively.

Performance evaluation: We conducted a performance

comparison of our hardware prototype against an OpenMP

optimized software implementation on a Core2 Duo proces-

sor at 3.0 GHz. In both cases, we used audio data with

duration of 11264 msec, which implies that each real-time

implementation must finish all required calculations within

this time frame.

We divided the hardware execution time into the time spent

on accessing the external memory (𝑡𝑃𝑃𝐶−𝑆𝐷𝑅𝐴𝑀), the ac-

tual hardware processing time (𝑡𝑀𝐶−𝑊𝐹𝑆𝑃) and the elapsed

time when the PPC is running the software (𝑡𝑃𝑃𝐶−𝑆𝑊).

We performed experiments and measured these times for

32 sources to be rendered under 16-, 32-, 48- and 56-

loudspeaker setups, shown in columns 3, 5, and 7 respectively

of Table IV. Columns 2 and 9 present the total Core2 Duo and

hardware execution times, 𝑡𝐶𝑜𝑟𝑒2𝐷𝑢𝑜 and 𝑡𝐻𝑊 respectively.

The numbers in bold represent the systems that fail the

aforementioned real-time constraint.

In column 11 of Table IV, we provide the measured WFS

kernel speedup that our FPGA-based system achieved against

the Core2 Duo approach. As we can see, the MC-WFSP can

process data up to 4.5 times faster. Furthermore, 𝑡𝑃𝑃𝐶−𝑆𝑊

occupies only a small portion of the overall execution time.

In contrast, 𝑡𝑃𝑃𝐶−𝑆𝐷𝑅𝐴𝑀 dominates the total hardware

execution time. This timing analysis leads to the conclusion

that the existing memory subsystem introduces a performance

bottleneck. Therefore, a faster external memory interface is

required, in order to to balance the overall system.

Since the PowerPC405 can operate up to 450 MHz [14]

and the PLB v4.6 at 200 MHz with 128 bits width [13], we

considered an optimized system with a 128-bit wide PLB at

150 MHz, connected to a 300-MHz PowerPC. We estimated

the optimized application execution time 𝑡𝑜𝑝𝑡𝐻𝑊 , which was

divided into the external memory access time 𝑡𝑜𝑝𝑡𝑃𝑃𝐶−𝑆𝐷𝑅𝐴𝑀 ,

hardware execution time 𝑡𝑜𝑝𝑡𝑀𝐶−𝑊𝐹𝑆𝑃 and PPC software

execution time 𝑡𝑜𝑝𝑡𝑃𝑃𝐶−𝑆𝑊 . The latter are provided in columns

4, 6, 8 and 10 of Table IV respectively. As it can be observed

from column 12, the optimized system achieves a kernel

speedup up to 6.87 times. Moreover, based on column 10,

it can render in real-time up to 32 sources when driving 56

loudspeakers. In contrast, based on column 2, the software

approach supports up to 32 sources to be rendered using less

than 48 loudspeakers.

�

����

�����

�����

�����

�����

� � �� �� �� �� �� 	�

���������	
�

�

	

��

�

��
�
�

�
��

�

	�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

����
	��
�����

���

��
�����
 ��
������������ ��
���������� ��
���������
���������� ���������� � ���������� � ��������!� �

�����

�
�

�

� �
�

�
�

�
�

�
� �

�
� �

�
�

�
� �

�
�

�

!
!

!
!

!
! !

!

Figure 4. Estimated execution time and application speedup against the
software implementation for 64 loudspeakers.

Figure 4 shows the estimated execution time comparison

against the Core2 Duo implementation and the achieved

speedup, when utilizing a varying number of RUs. The num-

ber above each column indicates the number of RUs that each

hardware system utilizes. As it can be observed, when there

are 32 sources to be rendered from 7 RUs, the 𝑡𝑜𝑝𝑡𝑃𝑃𝐶−𝑆𝐷𝑅𝐴𝑀

occupies 82% of the total hardware execution time. Even

though, by applying the aforementioned improvements, the

MC-WFSP with 7 RUs can render up to 32 sources through

64 loudspeakers, while the Core2 Duo implementation fails

to meet the timing constraints.

Power consumption: Based on the Xilinx XPower utility,

our prototype requires approximately 6 Watts. This is an

order of magnitude less compared to the Core2 Duo, which

requires up to 65 Watts when in operational mode [15]. The

power benefits of our approach can be even more substantial

in cases where larger WFS systems need to be build. For

example, as it was mentioned in Section II, the six rendering

PCs that drive the 192 loudspeakers of a cinema in Ilmenau,

Germany, and consume hundreds of Watts power, could be

replaced by four V4FX60 FPGAs that accommodate our MC-

WFSP, which would consume an order of magnitude less

power.

Comparison to related work: As it can be observed from

Table V, due to the high-level developing environment of the

x86, all systems are based on standard PCs. Our FPGA-based

solution provides a similarly versatile programming inter-

face, but combines it with high-performance and low power

consumption. As we can see from Table V, the MC-WFSP

can perform calculations faster or equally well compared to

commercial products, and consume an order of magnitude

less power than any other x86-based system. Finally, we

should note that newer FPGAs, such as the Virtex6 families,

provide the potential to increase performance by fitting more

RUs functioning at higher frequencies, while reducing power

consumption up to 30% [16].

VI. CONCLUSIONS

In this paper, we proposed a highly customized processor

architecture consisting of eleven instructions for WFS-based

audio applications. We described the implementation of the

Table V
RELATED WORK SUMMARY FOR WFS IMPLEMENTATIONS.

Reference # of loudspeakers Platform Sources
[8] 22 x86 N/A
[9] 24 x86 64
[10] 32 x86 32
[6] 10 x86 N/A
[7] 24 x86 N/A

MC-WFSP 4 RUs 56 FPGA 32
MC-WFSP 7 RUs 64 FPGA 32

instructions in the context of a multi-core reconfigurable

WFS architecture. Our approach combines software program-

ming flexibility with improved hardware performance and

low power consumption. Experimental results suggested that

the presented MC-WFSP can provide a kernel speedup of

up to 4.5 times compared to Core2 Duo-based solutions.

Ultimately, larger FPGAs can be utilized to implement more

complex WFS audio systems, which at the same time, would

require an order of magnitude less power compared to x86-

based software solutions.

ACKNOWLEDGMENT

This research is partially supported by Artemisia iFEST

project (grant 100203), Artemisia SMECY (grant 100230),

FP7 Reflect (grant 248976) and FP6 hArtes (IST-035143).

REFERENCES

[1] A. Berkhout, et al., “Acoustic Control by Wave Field Synthesis,”
in Journal of the Acoustical Society of America, vol. 93, May
1993, pp. 2764–2778.

[2] G. Theile and H. Wittek, “Wave field synthesis: A promising
spatial audio rendering concept,” in Acoustical Science and
Technology, 2004, pp. 393–399.

[3] Gerrit Blaauw and Frederick Brooks, “Computer Architecture:
Concepts and Evolution,” February 1997.

[4] J. van Dorp Schuitman, “The Rayleigh 2.5D Operator Ex-
plained,” Laboratory of Acoustical Imaging and Sound Control,
TU Delft, The Netherlands, Tech. Rep., June 2007.

[5] W. P. J. D. Bruijn, “Application of Wave Field Synthesis in
Videoconferencing,” Ph.D. dissertation, TU Delft, The Nether-
lands, October 2004.

[6] J. Beracoechea, et al., “On building Immersive Audio Appli-
cations Using Robust Adaptive Beamforming and Joint Audio-
Video Source Localization,” in EURASIP Journal on Applied
Signal Processing, June 2006, pp. 1–12.

[7] H. Teutsch, et al., “An Integrated Real-Time System For Immer-
sive Audio Applications,” in IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, October 2003, pp.
67–70.

[8] D. Menzel, et al., “The Binaural Sky: A Virtual Headphone
for Binaural Room Synthesis,” in International Tonmeister
Symposium, October 2005.

[9] SonicEmotion Company, “http://www.sonicemotion.com.”
[10] Iosono Company, “http://www.iosono-sound.com.”
[11] M. Boone, et al., “Spatial Sound Field Reproduction by Wave

Field Synthesis,” in Journal of the Audio Engineering Society,
vol. 43, December 1995, pp. 1003–1012.

[12] D. Theodoropoulos, et al., “Reconfigurable Accelerator for
WFS-Based 3D-Audio,” in IEEE Reconfigurable Architecture
Workshop, May 2009.

[13] Xilinx Inc, “Processor Local Bus (PLB) v4.6,” December
2009.

[14] ——, “Virtex-4 Family Overview,” January 2007.
[15] Intel Corporation, “http://ark.intel.com/Product.aspx?id=33910.”
[16] Xilinx Inc, “Power Consumption at 40 and 45 nm,” April 2009.

