
A Runtime Profiler: Toward Virtualization of Polymorphic Computing Platforms

Hamid Mushtaq, Mojtaba Sabeghi, Koen Bertels
Computer Engineering Laboratory

Delft University of Technology
Delft, the Netherlands

{H.Mushtaq, M.Sabeghi, K.L.M.Bertels}@tudelft.nl

Abstract—Runtime multitasking support on Reconfigurable
Computers requires complicated resource management tech-
niques in which the FPGA area has to be shared between
multiple concurrent tasks dynamically. Such a resource alloca-
tion mechanism needs to know the current configuration and
load of the system in order to decide about the allocation
of the resources. In such systems, A runtime profiler is an
important tool which can give vital information about the
running applications on the system. In this paper, we present
the design and implementation of a runtime profiler which is
responsible to produce statistics about the code running on the
system. We have performed a set of experiments in order to
show the overhead of our proposed profiler. The evaluation
results show that the overhead imposed by the profiler is less
than 1.5% of the total execution time and the information
generated by the profiler is almost as accurate as a design
time profiler such as gprof.

I. INTRODUCTION

Limited commercial success of Reconfigurable systems
has been due to difficulty in programming them. Usually
separate tools are used for writing software and designing
hardware. Compilers which can partition software and hard-
ware are rare and cumbersome to use. Also, synthesis tools
are required to program the reconfigurable logic. Therefore,
the overall design and implementation cycle is difficult and
demands care from the designers and implementers of the
system.

Furthermore, when moving towards multi applications,
multi tasking scenarios, it is even more difficult for the
designers to deal with such systems as the exact configu-
ration of the system is not known at design time. These
requirements necessitate the existence of a runtime system
which is responsible for operating the system and performs
the resource management [1]. The resource management by
itself is a very complicated task and is dependent on the
available information for decision making [2].

One important tool required to achieve this is a runtime
profiler which can give vital statistics about the code running
on the reconfigurable computer. Those statistics can then be
used by the runtime system to decide which parts of the
code need to be translated into hardware.

In this paper, we present a runtime profiler, which is
intended to be running concurrently with the applications
in the actual application execution time. Therefore, one key

difference between such a profiler and traditional design time
profilers such as gprof is that it has to be very low overhead.
Furthermore, the information collected by such a runtime
profiler needs to be stored in special data structures in such
a way that storing and retrieving them can be performed
very fast. The major contribution of this paper is therefore
proposing a very light weighted runtime profiler with a well
defined interface which enables it to be integrated in any
runtime system.

The rest of the paper is organized as follows. In Section
II, we give a brief overview over the background and
motivations behind the proposed profiler. Section III presents
the design and implementation of the proposed runtime
profiler followed by the section IV, which shows the results
of the empirical evaluation. Finally, the conclusion of the
paper is given in section V.

II. MOTIVATION AND BACKGROUND OVERVIEW

The MOLEN runtime environment [3] is intended to com-
pletely virtualize the underlying hardware and thus relieve
the program developers from the difficulties of hardware
design issues. This runtime system deals with the mapping
of the computation intensive parts of the program code to
the reconfigurable fabric. The block diagram of MOLEN’s
runtime system is shown in figure 1. The scheduler reads
statistics from the profiler about the profiled kernels and
decides which to allocate the hardware. In this paper, by
kernel we mean computation intensive functions which can
be mapped into hardware. The scheduler uses the services
of the Transformer to replace the software implementation
of a kernel to its hardware implementation. The Kernel
Library contains a precompiled set of tasks, saved in form
of metadata and containing information such as execution
time, power consumption and configuration latency among
others. In this paper, we focus on the profiler component
which has a very important role in the runtime system.

Our profiler has to communicate with the scheduler at
runtime and therefore it needs to use data structures which
allow for fast writing and reading of the profiled statistics.
Furthermore, it has to be able to continuously profile the
applications behavior. This is a fundamental difference be-
tween our profiler and profilers used in virtual machines
like Java. In Virtual machines, once a function is optimized,
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Figure 1. MOLEN’s Runtime Environment

it no longer needs to be profiled. On the other hand, in
our case, there is limited available hardware, and kernels
may be swapped several times. Therefore, they need to be
continuously profiled.

Until now, the trend for profiling reconfigurable systems
was to use hardware based profilers, but our profiler takes
mature instrumentation and sampling techniques from exist-
ing off line profilers and apply them for profiling reconfig-
urable systems. This solves the portability problem of the
hardware based profilers. Moreover, using a software based
profiler we can easily work with virtual addresses of the
operating systems which is a must when profiling software
functions.

Table I summarizes different techniques used in the litera-
ture for profiling. It covers the instrumentation based profil-
ers, sampling based profilers and hardware based profilers.
In this table, we discuss different methods used in each type
of profilers as well as the advantages and disadvantages for
them. We also included some example for each type.

We have to work with executable binaries and therefore,
we cannot perform compile or link time code injection
like what GProf or ATOM do. We need to either modify
the executable binary, so that it can contain and use an
instrumentation code or use a hardware approach as used by
the frequency loop detection profiler and DAProf. Although
the hardware approach has a very low overhead, it has some
disadvantages. One obvious disadvantage is that it is not very
portable. A hardware design made for one system might not
fit into another one. The second disadvantage is that we
need to take care of the virtual addresses in the system. At
the hardware level we only see the physical addresses. In
cases such as frequency loop detection profiler which only
deals with small loops that can be seen from the instruction
bus, they don’t require knowing the virtual addresses. On
the other hand, in our case, in which we deal with software
implementations, we require to know the virtual addresses
of the instructions in the programs.

To implement the instrumentation part of the profiler in
software, one possible approach is to do a native binary
code interpretation and JIT compiling, like Pin and Dynamo.
Although this approach is very useful to create versatile
profiling tools like Pin, it has some disadvantages. The first
of which is that it is slow. We created a Pin tool which

Table I
COMPARISON OF DIFFERENT TYPES OF PROFILERS

Profiling
Technique

Method used Advantages Disadvantages Examples

Instrumentation

Instrumentation
Code Insertion
at Compile and
Link time

Platform
Independent

Cannot work
with executable
binaries

GProf [4]

Instrumentation
Code Insertion
during linking
of object files

Easy to port Cannot work
with executable
binaries

ATOM [5]

Interpretation of
Native Binary
Code and JIT
Compilation

Instrumentation
Code can be
inserted
anywhere in
the code

Has relatively
large
overhead. Very
complicated and
time consuming
to create such a
tool.

Pin [6],
Dy-
namo [7]

Modification
of function
prologues to
jump to an
Instrumentation
Code

Has relatively
low overhead.
Easy to
implement
and port.

Instrumentation
Code cannot
be called from
anywhere in the
code. A function
prologue must
be of a certain
minimum size,
so that it can be
replaced with
a jump to the
Instrumentation
Code.

Detours [8]
and
IgProf [9]

Sampling
Using Timer In-
terrupts

Has low over-
head and is
non-intrusive

Can only
give statistical
approximation
about time spent
by different
parts of the code

GProf
and [10]

Using Timer
Interrupts and
Hardware
Performance
Counters

Has low
overhead
and is non-
intrusive.
Gives
additional
information
like the parts
of code
causing more
cache misses,
pipeline stalls
etc.

Same as above OProfile [11]

Software Based Easy to port Extra code has
to be injected

Arnold
and Ry-
der [12]
and
Profiler
for IBM
Tes-
taRossa [13]

Hardware Based Using custom-
designed
hardware

Has very
low overhead
and is non-
intrusive

It is difficult to
port a design to
another system.
Consideration
has to be given
to handle virtual
addresses.

Frequency
Loop
Detection
Pro-
filer [14]
and
DAProf [15]

just counts the number of time each function is called in an
application and observed that the overhead was never less
than 20%. Another disadvantage of this approach is that it
is very complicated and time consuming to write a native
binary code interpreter and JIT compiler for any processor.

In our profiler, we choose to replace the function prologue
with an unconditional jump to the instrumentation code and
have the instrumentation code contain the removed prologue
as well as an unconditional jump back to the remaining
part of the instrumented function. This approach has some
advantages. Firstly, with this approach, low overhead pro-
filing can be achieved by using an efficient instrumentation
code. Secondly, this approach is much less complicated than
the native binary code interpretation approach. Lastly, this



technique is very portable, because one has only to deal with
function prologues and not the rest of the code inside the
functions.

One important issue in the instrumentation code is the
way it saves the collected information. As the interaction
between the scheduler and profiler is in real time, using
normal files is not an option and the data has to be kept in the
memory. For this purpose different techniques can be used.
For example one can use a /proc file to save the information.
In our profiler, we propose the use of a shared memory and
double buffering mechanism to store and read profiled data.
The shared memory is shared between the profiler and the
scheduler. Using this technique, we have been able to lower
the overhead of the profiler to as low as less than 1% for
typical applications.

Another contribution of our profiler is in how we use a
daemon that runs continuously and injects instrumentation
code to applications without any input from the user. The
OS kernel is modified so that it sends a signal to the
daemon whenever a new program is loaded for execution.
On receiving that signal, the daemon injects instrumenta-
tion code into the application. To inject code, the daemon
uses the Injector utility. After the instrumentation code is
injected into the application, the application can perform
self-instrumentation, that is, it automatically update function
call counts in shared memory on entering functions. In this
way, our profiler is able to profile multiple programs run by
multiple users, without their input and without them noticing
it. Another novel technique in our profiler is how we used
an off line program, known as the Extractor, to extract vital
information from a program, so that the code injection takes
minimal time. For each program, the Extractor also creates
a file which contains function ranges, so that the daemon
can know which function was executing when a sample at
a timer interrupt was taken. This is done by using program
counter value at time of the interrupt and process ID of the
interrupted process. In this way, the daemon can calculate
approximate time spent by functions.

III. DESIGN AND IMPLEMENTATION

As explained before, our runtime system is intended to
make a completely virtualized and transparent hardware
layer available to program developers. In such a system, the
programs are developed to be executed on the General Pur-
pose Processor(GPP) and therefore the program developers
are not bothered with complex hardware design issues. It is
thus the runtime system’s responsibility to map those parts of
the application which can be accelerated into the hardware.
Our profiler has to be able to profile the applications on the
GPP in the first place and when a kernel is mapped into
the FPGA, it has to be able to continue the profiling of the
kernel on the FPGA. As a result, our profiling mechanism
has two aspects; the profiling on the GPP, and the profiling
on the reconfigurable fabric.
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Figure 2. Interaction of different parts of our profiler with the profiled
application and the scheduler

As on the reconfigurable side, we use the MOLEN hard-
ware organization and MOLEN programming paradigm, we
employ the MOLEN runtime primitives [16], to perform the
profiling. This will be discussed in more detail later in this
section.

On the GPP side, our profiler runs on the Linux operating
system. Its task is to keep statistics of the running kernels on
a general purpose processor and present that information to
the Scheduler. Our profiler performs both Instrumentation
and Sampling profiling. The current implementation has
been done and tested successfully on machines with x86
processors, both single-core and multi-core.

Through Instrumentation profiling, we want to record the
number of times different functions have been called. To
instrument programs, we need some mechanism to inject
code into programs. In this way, our code injector replace
the prologue of each function that has to be profiled with
an unconditional jump to the instrumentation code and the
instrumentation code contains a jump back to the rest of
the profiled function besides the prologue of the profiled
function.

We are not only interested in the number of times different
functions are called, but also approximate time spent per
function. For that purpose, we perform sampling.

Our profiler consists of several different parts. The interac-
tion between those parts is shown in figure 2. The Extractor
utility is used to create instrumentation code file besides
others, from an executable elf file. The Injector utility is
used to inject instrumentation code and map Shared Memory
into the address space of the profiled program. The Injector
utility uses the Ptrace API in Linux to inject and modify
code at runtime. The local APIC Timer interrupts update the
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Samples Buffer. Note that in case of processors other than
x86, we can use their own local timer interrupts to update the
Samples Buffer. Finally, the Daemon combines information
from different places in a form that can be quickly and easily
read by the Scheduler. The purpose of the Shared Memory
is to keep the function calls counts of profiled functions as
well as information to be read by the Scheduler. The reason
we have employed the Shared Memory technique is because
it is the fastest possible method to communicate data.

One very important part of the profiler is the shared
memory structure and the access mechanism to it. This
shared memory is in fact the interface of our profiler with
the other components of our runtime system. Knowing this
interface, it is very trivial to incorporate our profiler to any
other runtime system as well. Figure 3 shows a schematic
view of the shared memory. The middle portion of the
Shared Memory is used to present data to the Scheduler.
That data contains the difference of function calls counts
and functions samples counts for a given span time. We also
used a double buffering mechanism through which we make
sure that the scheduler does not read inconsistent data, i.e.,
at the same time that the daemon is writing to the shared
memory. At the bottom of the shared memory is a hash table
which is indexed by a function name or ID and points out
to the corresponding location of the collected data in the
middle portion.

When a kernel is mapped to the hardware, its profiling
has to be continued in order to have a valid (updated) status
of the systems at each point in time. Within the MOLEN
programming paradigm, the mapping of the kernels to the
reconfigurable fabric is being done by the MOLEN SET
and EXECUTE APIs [16]. This way, the profiling can be
delegated to these APIs when the hardware execution is
happening. Each kernel intended to be executed on the
hardware should be invoked by the EXECUTE API from the
runtime system. Therefore, in the execute phase we exactly
know which kernel is going to be executed and as a result
the EXECUTE can update the corresponding values in the
shared memory. This mechanism guarantees that function
call counts updates in case of hardware execution. To update
the values in the shared memory, we use the same code as
we use in the injected codes in the instrumentation profiling.

Table II
INSTRUMENTATION OVERHEAD (SECS)

Normal Profiling overhead
multiply 9.681 10.092 4.25%
coremark 12.496 12.654 1.26%
tcf 7.083 7.089 < 1%
h264enc 40.774 40.865 < 1%
minisat2 29.004 29.155 < 1%

IV. PERFORMANCE EVALUATION

To test the performance of our profiler, we have used
benchmarks from different areas. One of this is PC version
of tcf, which is a Stationary Noise Filter used in hArtes [17]
demonstration. We used a snd file of size 19 MB as the input.
Then we have minisat2 [18], which is an industrial scale SAT
solver. Note that we have removed the randomness part in
minisat2, so that our results do not vary from run to run. The
input file for the minisat benchmark contained 630 variables
and 2280 clauses. Then we have H264/AVC encoder, from
MediaBench II benchmarks [19], which is an H264 encoder
application. For the H264 encoder application, we used an
input file of size 5.2 MB and bit rate of 45020 bps. Next,
we have coremark [20], which is a free synthetic benchmark
from EEMBC [21]. Finally, we have a benchmark that
we created ourselves, known as multiply. That program
calls a multiply function which just returns product of two
numbers, one billion times. Normally, such tiny functions are
inlined by the compiler and therefore profiling would not be
required for them. However, testing the profiler with such
tiny functions gives us an idea of the worst case performance
of the Instrumentation Profiling. To avoid inlining of the
multiply function, the multiply application is compiled with
optimizations turned off.

We performed different experiments which are discussed
in the following.

A. Instrumentation Overhead

Table II shows the instrumentation overhead of our pro-
filer. From the table we can see that the overhead of our
profiler, except for the multiply application, is always less
than 1.5%. The low overhead for applications other than
multiply was expected because our profiler only adds three
instructions to original functions for profiling. The overhead
for the multiply application here is relatively large because it
repeatedly calls a very tiny function that just returns product
of two numbers.

The readings given in table II were calculated by running
each of the benchmark ten times and then taking the mean
values.

B. Sampling and Daemon Overhead

In table III, we show the results achieved without per-
forming instrumentation. The purpose of not performing
instrumentation in this case is to quantify the overhead
imposed by sampling and the Daemon. The results are
compared with those achieved from OProfile. The readings



Table III
SAMPLING AND DAEMON OVERHEAD

Normal OProfile Our
Profiler

multiply
Time (secs) 9.681 9.677 9.688
Overhead - < 1% < 1%

coremark
Time (secs) 12.496 12.510 12.495
Overhead - < 1% < 1%

tcf
Time (secs) 7.083 7.121 7.126
Overhead (%) - < 1% < 1%

h264enc
Time (secs) 40.774 40.838 41.034
Overhead - < 1% < 1%

minisat2
Time (secs) 29.004 29.037 29.058
Overhead - < 1% < 1%

given in table III are means of 10 readings. From that table,
we can see that the overhead for both OProfile and our
profiler is negligible. It has to be noted here that we only
used the timer interrupt event for OProfile, so as to make it
functionally equal to our profiler.

C. Sampling Accuracy

In this part, we checked the accuracy of the sampling
part of our profiler by comparing it with gprof [4]. Here
we used the same benchmark applications that we used in
the previous section, i.e., those which take more than 10
seconds to execute. We ran each program five times, both
with our profiler and with gprof, so that we could get the
mean values . The results are given in table IV. In this table,
means of percentages of total time spent for the functions
which took the most time according to gprof are given. The
functions are sorted by percentages of total time spent, given
by gprof. From the table, it can be seen that the mean values
for both our profiler and gprof are almost the same. This
was expected as we are using the same technique as gprof.
The only difference is that we take our samples through the
local APIC timer interrupts, so that we can take samples for
multi-cores, while gprof uses the kernel timer interrupt and
therefore cannot perform sampling for multi-cores. Since the
default Linux kernel timer interrupt occurs at the rate of 100
per second, we also set the frequency of the local APIC
timers interrupt to 100 per second for fair comparison.

D. Overall Overhead

In the first part of this experiment, we tested our bench-
mark applications with all parts of the profiler working. The
means of ten readings are shown in table V. The results are
as expected, that is all applications other than the multiply
application have overhead of less than 1.5%. Moreover,
overall overhead for all application is almost the same as
that for instrumentation overhead, thus reinforcing the fact
that sampling and the daemon have very low overheads.

In the second part of the experiment, we ran all the
benchmark applications simultaneously with all parts of the

Table IV
SAMPLING ACCURACY OF OUR PROFILER

Function gprof
(%)

Our Pro-
filer (%)

coremark
crcu8 31.77 31.13
core state transition 30.05 31.20
core bench list 13.85 15.14
matrix mul matrix bitextract 5.48 5.55

minisat2
Solver::propagate 74.87 75.05
Solver::analyze 13.56 13.53
Solver::litRedundant 4.45 4.43
Solver::cancelUntil 2.85 2.92

h264enc
SetupFastFullPelSearch 33.59 32.63
dct luma 11.17 10.60
biari encode symbol 7.33 7.30
SetupLargerBlocks 3.83 3.42

Table V
OVERALL OVERHEAD OF OUR PROFILER (SECS)

Normal Our Profiler Overhead
Single Application Execution

multiply 9.681 10.112 4.45%
coremark 12.496 12.655 1.27%
tcf 7.083 7.088 < 1%
h264enc 40.774 41.158 < 1%
minisat2 29.099 29.040 < 1%

Multiple Applications Execution
Five benchmarks 92.32 93.04 < 1%

profiler working. We repeated the experiment five times and
took the mean values which are shown in bottom of table V.
The results show that the profiling overhead is less than 1%.

Our results shows that our profiling system is at par
with Dynamo, which has overhead of less that 1.5% and
better than the profiler presented in [12] which has average
overhead of 3%. It has to be noted though that pieces of
code which are optimized by Dynamo are never profiled
again, while our profiler has to continuously profile all the
functions.

E. Percentage of Profilable functions

Our profiler replaces prologues of to be profiled functions
with a jump instruction. For that purpose, a function’s pro-
logue must be at least 5 bytes because the jump instruction
in an x86 consumes 5 bytes. Most of the functions do have
at least 5 bytes of prologue, but some functions, usually
of very small size, do not. By prologue instructions, we
mean instructions which prepare the stack and registers for
use within a function and not any instruction that is used
afterwards. In table VI, we have shown the number of
function which are profilable for different applications. We
have also listed the optimization levels used to compile those
applications, the purpose of which is to see if optimizations
make it any harder to find profilable functions. Except for
coremark, all applications have more than 90% of profilable
functions and both h264enc and minisat2 are using high level
of optimizations. The reason that coremark has only 72.5%
of profilable functions is because there are many functions
of very small sizes.

We have to only use prologue and that is why we have
the limitation on the size of it. One can say if the prologue



Table VI
PERCENTAGE OF PROFILABLE FUNCTIONS

Program Opt
Level

Total Functions Profilable Functions

tcf -O0 59 59 (100%)
h264enc -O2 591 560 (94.8%)
minisat2 -O3 56 52 (92.9%)
coremark -O2 40 29 (72.5%)

is too small you can include more instructions from the top
of function and consider them as a part of prologue. But,
this solution is not feasible because it might happen that an
instruction inside a function jumps to some instruction at
the top of that function, and if that instruction at the top
is replaced by some other instructions, the program might
crash or behave differently.

V. CONCLUSION

In this paper, we described the design and implementation
of a runtime profiler which can be used as a part of the
MOLEN runtime environment. The profiler is a combination
of a Sampling profiler and an Instrumentation profiler. We
discussed different parts of the profiler namely the extractor,
injector, sampler, shared memory and daemon. Then we
showed the overhead of our profiler from different aspects.
This is done by showing the overhead on Instrumentation,
Code Injection, Sampling and the overall overhead. Besides,
we compared the accuracy of our profiler with a popular
design time profiler. All the presented results show that our
profiler has very low overhead (less than 1.5%) and is as
accurate as design time profilers.
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