
ECC Design for Fault-Tolerant Crossbar Memories:
A Case Study

Nor Zaidi Haron1,2 Said Hamdioui1 Zaiyan Ahyadi1
1 Computer Engineering Laboratory, Delft University of Technology, The Netherlands

2 Faculty of Electronics and Computer Engineering, UniveristiTeknikal Malaysia Melaka, Malaysia
{N.Z.B.Haron, S.Hamdioui}@tudelft.nl, zaidi@utem.edu.my

Abstract— Crossbar memories are promising memory tech-
nologies for future data storage. Although the memories offer
trillion-capacity of data storage at low cost, they are expected
to suffer from high defect densities and fault rates impacting
their reliability. Error correction codes (ECCs), e.g., Redundant
Residue Number System (RRNS) and Reed Solomon (RS) have
been proposed to improve the reliability of memory systems. Yet,
the implementation of the ECCs was usually done at software
level, which incurs high cost. This paper analyzes ECC design
for fault-tolerant crossbar memories. Both RS and RRNS codes
are implemented and experimentally compared in terms of their
area overhead, speed and error correction capability. The results
show that the encoder and decoder of RS requires 7.5× smaller
area overhead and operates 8.4× faster as compared to RRNS.
Both ECCs has fairly similar error correction capability.

I. I NTRODUCTION

The quest for new memory technology that can provide
further scalability, yet able to tolerate reliability failures has
made fault tolerance as one of the key requirements [1]–[6].
Crossbar memory is one of the emerging new memory tech-
nologies able to offers trillion-capacity of data storage at low
power consumption and reduced fabrication cost. However,
these advantages do not come for free as several challenges
need to be resolved [3]. One of the challenges is that the
memories are likely to suffer from high defect densities and
fault rates impacting their reliability.

In order to improve the reliability of crossbar mem-
ories, error correction codes (ECCs)such as Hamming,
Low-Density Parity-Check (LDPC) and Bose-Hocquengham-
Chaudhuri (BCH) codes [7]–[11] have been proposed. Accord-
ing to [5], [6], defects and faults in crossbar memories tendto
inducecluster errors; hence, ECCs able to correct such errors,
such as RS [12] and RRNS [13]–[15], are required. Tradi-
tionally, these ECCs have been implemented using software
resulting in low performance; this make such implementation
unsuitable for scalable yet unreliable crossbar memories.

This paper studies ECC design for fault-tolerant crossbar
memories. The encoder and decoder of both RS and RRNS
are designed and implemented. An evaluation in terms of their
area overhead and decoding speed as well as error correction
capability is carried out. The evaluation shows that the encoder
and decoder of RS requires smaller area and operates faster as
compared to that of RRNS. Moreover, both ECCs can correct
almost equivalent numbers of errors.

The rest of the paper is organized as follows. Section II gives

the background of crossbar memories and error correction
codes. Section III presents the theory of RS and RRNS that are
used in our work. Section IV explains the design of the encoder
and decoder for both ECCs. Section V analyzes and compares
the area overhead, speed and error correction capability ofthe
considered ECCs. Section VI concludes this paper.

II. BACKGROUND

This section gives the background required to further under-
stand the paper. It starts with explaining crossbar memories,
thereafter error correction codes.

A. Crossbar Memories

Figure 1(a) shows one of the crossbar memories referred
to as CMOS/Molecular (CMOL)memory [7], [8]. CMOL
memory provides the utmost data storage capacity as huge
as 1Tbit/cm2, which is about three magnitude denser than
the existing semiconductor memories. In addition to the data
storage, the novelties of this hybrid memory are: (i) the
memory array is stacked above the peripheral circuits (3D
stacking IC instead of planar IC), and (ii) the memory array
are formed bynon-CMOSdevices instead of CMOS and/or
capacitor.

The memory array consists of nanowire crossbars with
reconfigurable two-terminal nanodevices embedded at each
crosspoint. Because non-CMOS-based devices are incapable
to perform the periphery tasks (e.g., sensing, amplification,
etc.), nanoscale CMOS is required to structure the peripheral
circuits [7], [8]. Two sets of CMOS-to-nano (CtN) interface
pins connect the memory array to the peripheral circuits; see
Fig. 1(b). These CtN interface pins are different in height such
that the short pins connect the lower nanowires, while the tall
pins connect the upper nanowires.

In order to write to and read from the memory, a sufficient
voltage is biased across the targeted two-terminal nanodevices
(memory cells) from the CMOS-based peripheral circuits
through the CtN interface pins to the corresponding nanowires
[7], [8]. For writing, the voltage must be larger than the
threshold voltage of the two-terminal devices to turn them on
(represent 1) and smaller to turn them off (represents 0). For
reading, a smaller voltage is used. Note that the value of the
voltages depends on the two-terminal nanodevices used as the
memory cells [7].

Memory Array

CMOS-based

Long CtN pins

Nanowires

Non-CMOS-based

Peripheral Circuit

Two-terminal nanodevice

Short CtN pins

CMOS-to-Nano Pin

(a)

(b)

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1
0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

(c)

Dataword

Checkword

x

1

x

k

x

k+1

x

n

Codeword

Fig. 1. Schematic of (a) CMOL memory architecture (b) CMOL memory array (c) ECC

B. Error Correction Codes

Error correction codes are formed by a group of codewords.
As shown in Fig. 1(c), a codewordC={x1,...,xk,xk+1,...,xn}
comprises of ak-element of dataword and (n−k)-element of
checkword wheren andk are integer [17]. Here, the element
xi; 1≤i≤n, can be either a number of bits (for bit-oriented
ECCs) or a number of symbols (for symbol-oriented ECCs); a
symbol is a set of bits. The dataword represents the input data,
whereas the checkword denotes the required extra elements
for error detection or/and correction. Generally, the number of
elements required for correction is twice as many as that for
detection.

Depending on their types, whether bit-oriented or symbol-
oriented, ECCs can be classified into two groups. Bit-oriented
means that the ECCs operate inbit by bit basis during the
encoding and decoding. Because of the bit-oriented character-
istic, these ECCs are suitable to toleraterandom faults. The
ECCs that belong to this class include Hamming, BCH and
LDPC [17]. Contrarily, symbol-oriented ECCs operate ina
group of bits by a group of bitsbasis during the encoding
and decoding. Due to the symbol-oriented characteristic, these
ECCs are suitable to correctcluster faults, which are the case
for crossbar memories. The ECCs that fall into this group are
RS and RRNS. While RS composes offixed-lengthsymbols,
RRNS consists ofvaried-lengthsymbols. More descriptions
on these two ECCs will be given in the next section.

III. ECCS FORCROSSBARMEMORIES

This section explains the encoding and decoding theory of
RS and RRNS ECCs.

A. RS Code Theory

An n-symbol RS codeword consists ofk-symbol dataword
and (n−k)-symbol checkword wheren andk are integer [12],
[17]. Each symbol is generated based onGalois FieldGF(2m)
wherem is the number of bits in each symbol. The correction
capability of this code is defined ast= (n−k)

2 . For example, two
symbols are appended as the checkword to correct a single
erroneous symbol.

To encode RS code, input dataX is multiplied with a
primitive polynomial. This primitive polynomial is selected in
such a way that it cannot be factorized into smaller polynomial
to ensure the encoding and decoding consistency (the unique
relationship between input/output data and RS codeword). The

resulting product is then appended toX to produce an RS
codewordC.

To decode RS code, the read codeword is validated by
checking syndromeSi; it can be expressed as [12]:

Si =

n−1
∑

j=0

Cj(α
v)j (1)

whereCj is the codeword symbol,αv is the primitive poly-
nomial roots and1≤v≤2t. If Si=0, then the RS codeword is
error-free and is read out. In contrast ifSi 6=0, then the read
codeword has errors and requires correction.

Several algorithms can be used to correct errors in RS code-
word, e.g., Peterson-Gorenstein-Zierler (PGZ), Berlekamp-
Massey, etc[13], [17]. PGZ provides a low computational
complexity for smallt values as compared to other algorithms,
e.g.,Berlekamp-Massey, which are preferable for larget values
[12]. In this work PGZ will be used as it suits our experiment.

B. RRNS Code Theory

RRNS code has a similar structure and the same error
correction capability as RS code; yet in theory, the symbol
is usually referred to asresidue [13], [18]. The residues in
RRNS code might have different bit lengthb, depending on
the moduli used, i.e.,b=⌊log2(moduli − 1) + 1⌋ bits.

To encode RRNS code, input dataX is divided by a set of
moduli mi where 1≤i≤n; n is the number of symbols of the
codeword. The remainder of the division ofX by the moduli
results in the dataword and checkword. In contrast to RS that
relies on Galois Field for encoding and decoding consistency,
RRNS depends on three different rules. Briefly, these three
rules are: (i) the moduli set must be mutually co-prime, (ii)
the succeeding modulus must be larger than its preceding, and
(iii) their product must be larger than the operating legitimate
range of2d−1 whered is input data length [14], [18].

To decode RRNS code, a similar steps as for RS is per-
formed. The read codeword is first validated by checking
its syndromes. Two algorithms can be utilized for decoding:
Mixed-Radix Conversion (MRC)or Chinese Remainder The-
orem (CRT)[13], [18]. MRC is used in this work because
it require simple design and easier to be optimized. The
calculated codeword referred to assyndromecan be expressed
as follows [13], [18]:

Si = |
((

((xi − S1) × g1i) ... − S(i−1)

)

× g(i−1)i

)

|mi
(2)

D

Syndrome 1

Syndrome 2 Locator

Corrector

(a) (b)

Sub-encoder 2

Sub-decoder 1

Sub-decoder 2

Sub-encoder 1

GF(2)

C D

D
11

+ D
12

D
11

D
12 R

12

R
11

C

C
1

C
2

S
1

S
2

L
C

1

C
2

D
1

D
2

4

D
1

D
2

Fig. 2. Block diagram of RS (a) encoder (b) decoder

where g(i−u)i is the multiplicative inverse ofm(i−u) with
respect tomi defined as|m(i−u)g(i−u)|mi

=1; 2≤i≤n and
1≤u≤n−1.

After reading, ifSimax=0 whereimax refers to the largest
syndrome in each iteration (more detail in Section IV), then
the read codeword is error-free and is converted into binary
prior to read out; otherwise a correction takes place. As in RS,
the correction procedure for RRNS is quite complex, [13], [18]
can be referred for further theory and explanation.

IV. ENCODER AND DECODERDESIGN

This section explains the design of the encoder and decoder
of RS and RRNS ECCs.

RS encoder and decoder design

The RS encoder is designed in such a way that, e.g., 16-
bit input dataD, will be encoded into two-symbol datawords
D1 and D2; each consist of 8 bits. For this purpose, GF(28)
is chosen, meaning that each symbol comprises of 8 bits.
Moreover, the decoder is set to correct one erroneous symbol
t=1, or a maximum of 8 bits cluster error. Therefore, the RS
codeword needs(n − k)=2t=2 symbols as the checkword.

However, because GF(28) may results in a complex conver-
sion from binary to GF element and the way around, GF(24)
is used instead; this will result in a simple design without
impacting the error correction capability [16]. This meansthat
each 8-bit data is further divided into two sub-group; each
composes of 4 bits.D1 becomes two sub-datawordsD11 and
D12, while D2 turns into another two sub-datawordsD21 and
D22. This is also applied to the checkword;R1 becomes two
sub-checkwordsR11 andR12, while R2 turns into another two
sub-checkwordsR21 andR22.

The used primitive polynomial for encoding is
GF (24)=x4+s3+1. This GF (24) consists of a successive
power of the polynomial rootsαv, i.e.,{0, α0, α1, α2, ..., α14}
[17]. Eachαv has its binary representation that can be pre-
calculated using polynomial generator.

The following algorithms are used to design the encoder of
RS [19]:

1) GenerateGF (24) elements.

2) Split input dataD, into 4-bit sub-group.

3) CalculateR11 andR12 by solving two orthogonal equa-
tions as follows:

D11 + D12 + R11 + R12 = 0

α1D11 + α2D12 + α3R11 + α4R12 = 0

4) AppendR11 andR12 to D11 andD12 to form the sub-
codewordsC1.

5) Repeat the third and fourth steps to form the sub-
codewordsC2.

Figure 2(a) shows the block diagram of the RS encoder
in which two sub-encoders operate in parallel [16]. Each
sub-encoder receivesD1 and D2, respectively, which are
further split into a smaller group of 4-bit data. For example
the first sub-encoder, the split data becomesD11 andD12; at
the same time, it is multiplied toGF (24) rootsαv, resulting
in R11 and R12. These sub-datawords and sub-checkwords
are concatenated producing a sub-codewordC1. A similar
process is performed by the second sub-encoder. Finally, both
sub-codewordsC1 and C2 are concatenated yielding ab-bit
(or n-symbol) RS codewordC.

The following algorithms are used to design the decoder of
RS (see 2(b)) [19]:

1) Split the readC into two sub-codewordsC1 andC2.

2) Calculate both syndromesS1 andS2 as follows:

S1 = D11 ⊕ D12 ⊕ R11 ⊕ R12

S2 = α1D11 ⊕ α2D12 ⊕ α3R11 ⊕ α4R12

3) Define error location by dividingS1 by S2, i.e., L=S1

S2

.

4) If L6=1 or L6=2, bothD11 andD21 are error-free.

5) If L=1, thenD11 is erroneous; correction is performed
by XORing D11 with S1.

6) if L=2, thenD12 is erroneous; correction is performed
by XORing D12 with S2.

Figure 2(b) illustrates the block diagram of the RS decoder
in which two sub-decoders operate in parallel [16]. Each sub-
decoder comprises of two syndrome unitsSyndrome1and
Syndrome2, an error locator unitLocator, and a corrector
unit Corrector. The syndrome units, which validates the read
codeword, are formed by an array of XOR gates. Their outputs

D

Syndrome 1

Syndrome 2 Multiplexer

(a) (b)

Sub-encoder 1

Modulo 1

C

D

C

S
1

S
2

C
1

C
2

C
3

C
4

S
3

S
4

D
1

D
2

D
3

Modulo 2

Sub-encoder 2

Modulo 3

Modulo 4

Syndrome 3

Syndrome 4

Converter 1

Converter 2

Converter 3

Fig. 3. Block diagram of RRNS (a) encoder (b) decoder

become the inputs toLocator, which is structured by a look up
table (LUT) storing a pre-calculatedGF rootsαv. The outputs
of Locator and the outputs ofSyndrome1unit then become
the inputs to the corrector, which is structured byXORgates
and multiplexer. Finally, the outputs of the sub-decoders are
concatenated creating the output data.

RRNS encoder and decoder design

The RRNS encoder and decoder are designed based
on four moduli mi={2

d

2 , 2
d

2 +1, 2
d

2
+1–1, 2

d

2
+1+1} where

d is input data length. The moduli set comprises oflow-
cost moduli, which realizes small and fast RNS-based
arithmetic circuits [13]. Such moduli are selected becausethe
resulting residues have a fairly similar codeword length to
that of RS symbols. E.g., ford=16 bits, the dataword length is
b=⌊log2(m1−1)+1⌋+⌊log2(m2−1)+1⌋=⌊log2(256−1)+1⌋+
⌊log2(257−1)+1⌋=17 bits. Two residues are set as the
checkword to provide a single residue correction.

The following algorithms are used to design the encoder of
RRNS (see Fig. 3(a)) [20]:

1) CalculateC1 by taking thed
2 least significant bits ofD.

2) CalculateC2 by first dividing D into two groupsB1

andB2; B1 is the d
2 least significant bits, whereasB2 is

the d
2 most significant bits. Then,C2 is obtained from

B1−B2 if (B2<B1), elsex2=(2
d

2 +1)+B1−B2.

3) CalculateC3 by first dividingD into two groupsB1 and
B2 as in Step 2. Then,C3 is obtained fromB1+B2.

4) CalculateC4 by first dividingD into two groupsB1 and
B2 as in Step 2. Then,C4 is obtained fromB1−B2 if
(B2<B1), else (2

d

2
+1+1)+B1−B2.

Figure 3(a) shows the block diagram of the RRNS encoder
where two sub-encoders operate in parallel [16]. The first
sub-encoder consists of two modulo units; each is based on
2

d

2 and2
d

2 +1. The second sub-encoder also comprises of two
modulo units; each is based on2

d

2
+1−1 and 2

d

2
+1+1. The

modulo units may consist of either simple buffer, or more
complex circuits (e.g., adders and multiplexers) depending
on the moduli set they operate. E.g., the first modulo circuit
is formed by ad

2 -bit buffer. The third modulo is structured
of adders and multiplexers. However, the second and fourth
modulo units require additional subtracters besides adders

and multiplexers. The modulo units runs in parallel producing
the corresponding residues, which in turn are concatenated
producing ab-bit (n-symbol) RRNS codewordC.

The following algorithms are used to design the decoder of
RRNS [20]:

1) CalculateS1, S2 and S3 by discardingx4 and using
the remaining residuesx1, x2 andx3.
S1 = x1

S2 = |(x2 − S1) × g12|m2

S3 = |((x3 − S1) × g13 − S2)) × g23|m3

If S3=0, calculate output data
X=S1+S2×m1+S3×m1×m2, otherwise
If S3 6=0, go to next step

2) CalculateS1, S2 and S4 by discardingx3 and using
the remaining residuesx1, x2 andx4

S1 = x1

S2 = |(x2 − S1) × g12|m2

S4 = |((x4 − S1) × g14 − S2) × g24|m4

If S4=0, calculate output data
X=S1+S2×m1+S4×m1×m2, otherwise
If S4 6=0, go to next step

3) The other two iterations is calculated based on the simi-
lar calculation as the above, but with their corresponding
residues, moduli and multiplicative inverses.

Because RRNS decoder is based on MRC, which operates
sequentially, a modification has been performed to improve
the speed [16]. Instead of checking the residues one by one,
some of them are checked in parallel. For exampleS1, S2 and
S2×m1 are calculated twice, i.e., both in the first and second
steps. Thus, by calculating these common syndromes once and
sharing it to all required calculations, a faster decoding can be
obtained. However, it is worth noting that this might incurs
extra circuitries (e.g., multiplexer) and additional routing;
hence, larger overhead area.

Figure 3(b) illustrates the RRNS decoder that comprises
of four syndrome units, three converter units and a multi-
plexer. All syndrome units operate concurrently to validate the
read codeword. They generally comprise of subtracter, adder,
multiplier and multiplexer. As mentioned before common
syndromes are shared by the units. These are realized by the

0

5

10

15

20

25

30

35

40

45

RS RRNS RS RRNS RS RRNS
16 bits 32 bits 64 bits

ECCs for Different Data Length

Area (um2) Encoder Decoder

0

5

10

15

20

25

30

Time (ns) Encoder Decoder

RS RRNS RS RRNS RS RRNS
16 bits 32 bits 64 bits

ECCs for Different Data Length

(b)(a)

x103

Fig. 4. (a) Encoder and decoder area overhead (b) encoder anddecoder time delay

feedback connections from, e.g.,Syndrome1to Syndrome2,
etc. The output of the syndrome units become the input
to the converter units, which produce binary dataD1, D2

and D3. Consequently, the binary data is compared to the
operating legitimate range, which can be hardwired. Finally,
the multiplexer selects the valid output data.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the experimental results and dis-
cussion. First, it presents the results of the hardware im-
plementation of encoder and decoder for both ECCs, the
analytical evaluation of the memory cell array overhead and
the analytical evaluation of error correction capability.Finally,
it discusses the experimental results.

A. Encoder/Decoder Area and Speed

To analyze the implementation cost, the encoder and de-
coder of both ECCs were designed using Xilinx Design Suite
and synthesized using Synopsys Design Compiler based on
90nm CMOS.

Figure 4(a) illustrates the area overhead of the encoder and
decoder for both ECCs. It shows that the area overhead for RS
is smaller than that of RRNS irrespective of the data length.
For example, the encoder and decoder of RS occupies 5×
smaller area overhead than that of RRNS for 16-bit data. As
the data length increases, the area overhead for RS slightly
enlarges, while that for RRNS escalates.

Figure 4(b) depicts the speed of the encoder and decoder
for both ECCs represented by the critical path time delay. It
shows that RS operates faster than that of RRNS irrespective
of the data length. For example, the encoder and decoder of
RS is 3× faster than that of RRNS for 16-bit data and is 8.4×
for 64-bit data. As the data length increases, RS time delay is
quite the same; however, that of RRNS increases fairly linear
(becomes slower).

B. Memory Cell Array Area Overhead

The area overhead of the memory cell array depends on the
bit length of the codeword. Thus, the overhead of memory cell
array when using both ECCs can be estimated analytically.
Note that no real hardware synthesis can be carried out for

non-CMOS devicesbecause there is no available design tool
for such devices yet.

Figure 5(a) depicts the required codeword length to correct
clustered faults in RS and RRNS codewords stored in crossbar
memories at different lengths of input data. Although both RS
and RRNS codeword length increases as the size of input data
enlarges, the difference in the required number of bits for the
codeword becomes severe. For example at 64-bit input data,
RRNS requires about 1.7× more bits than RS. Translating
these numbers into the memory cell array area means that
RS requires smaller area than RRNS for a fixed input data
capacity. The difference becomes greater as the input data
length increases. For example, it is about 1.4× greater for
64-bit input data encoded into both ECCs as compared to that
of 16-bit.

C. Error Correction Capability

In terms of correcting cluster errors, both ECCs has quite
similar capability. Theoretically, RRNS scores slightly better
than RS in case of the cluster errors exceeding the size of
RS symbols. For example, consider a fault that induces 34-bit
cluster errors at the third symbol of both ECCs as shown in
Fig. 5(b). In this scenario, RS cannot correct them because
the errors impact two symbols, which is beyond its single
residue correction capability. However, for RRNS the errors
only corrupt the third symbol, which is still can be corrected.

D. Discussion

With respect to hardware implementation and the associated
cost, RS performs better than RRNS because of the followings:

• RS symbols are based on Galois Field elements for which
all symbols have equal bit length. However, RRNS sym-
bols are based on the residues generated from mutually
co-prime moduli, each might has different bit length.
Moreover, the redundant residues (checkword) must be
bigger than non-redundant residues (dataword). Hence,
the total bit length of RRNS codeword is larger than that
of RS. Clearly, larger bit length implies bigger area and
longer execution time of the encoder and decoder as well
as greater memory cell array area.

0

20

40

60

80

100

120

140

16 32 64

Data Length

Number of Bits
RS RRNS

(a) (b)

RS 32-bit 32-bit 32-bit 32-bit

RRNS 32-bit 33-bit 34-bit 34-bit

34-bit cluster error

34-bit cluster error

Fig. 5. (a) Codeword length for different data length (b) cluster errors impacting the ECCs

• The RS encoder and decoder comprises of simple XOR
gates and LUT-based error corrector, whereas that of
RRNS consists of adders, subtracters and multiplier be-
sides ROM-based moduli and moduli inverses. Obviously,
XOR gates is smaller and faster than adders, subtracters
and multiplier.

• RS decoder requires only two syndromes in validating
the read codeword. On the other hand, RRNS decoder
needs to compute three syndromes for the same purpose.
Even though the MRC-based RRNS decoding has been
parallelized, the time latency is still worst than RS. On
the other hand, the parallel execution incurs bigger area
overhead.

• Above all, ECCs in essence depend on consistency rules
to have a unique relationship between data and codeword.
For RS, the ECC requires a single consistency rule, i.e.,
Galois Field, whereas RRNS needs three consistency
rules (see Section III-B). Intuitively, lesser rules realize
simpler algorithm and implementation.

VI. CONCLUSION

This paper has presented a case study of two symbol-
oriented ECC designs for fault-tolerant crossbar memories.
The encoder and decoder of two ECCs, Reed Solomon and
Redundant Residue Number System, have been implemented
and experimentally compared. The results show that RS re-
quires smaller area overhead and operates faster than the
RRNS. In terms of correcting cluster errors, both ECCs posses
quite similar capability. It can be concluded that RS offers
better performance at lower cost than RRNS because the
former can be implemented mainly using simple logic gates,
whereas the latter needs more complex logic circuitries such as
adder, multiplier and multiplexer. Moreover, RS relies onone
encoding and decoding consistency rule; on the other hand,
RRNS depends onthreeconsistency rules.

REFERENCES

[1] The International Technology Roadmap for Semiconductors2009. Avail-
able: http://www.itrs.net/Links/2009ITRS/Home2009.htm

[2] G.S. Rose et al., “Design Approaches for Hybrid CMOS/Molecular
Memory Based on Experimental Device Data”, inProceedings of Great
Lakes Symposium on VLSI, pp. 2–7, 2006.

[3] A. DeHon and K.K. Likharev, “Hybrid CMOS/Nanoelectronic Digital
Circuits: Devices, Architectures, and Design Automation”,in Proceed-
ings of IEEE/ACM International Conference on Computer-aided design,
pp. 375–382, 2005.

[4] M. Mishra and S. C. Goldstein, “Defect Tolerance at the End of the
Roadmap”, inProceedings of International Test Conference, pp. 1201–
1211, 2003.

[5] A. Orailoglu, “Nanoelectronic Architectures: Reliable Computation on
Defective Devices”, inDigest of Workshop on Dependable and Secure
Nanocomputing, 2007.

[6] P. Lincoln, “Challenges in Scalable Fault Tolerance”, in Proceedings
of IEEE/ACM International Symposium on Nanoscale Architectures, pp.
13–14, 2009.

[7] D.B. Strukov and K.K. Likharev, “Prospects for Terabit-scale Nanoelec-
tronic Memories”,Journal Nanoscience and Nanotechnology, vol. 16,
no. 1, pp. 137–148, 2005.

[8] D.B. Strukov and K.K. Likharev, “Defect-Tolerant Architectures for
Nanoelectronics Crossbar Memories”,Journal Nanoscience and Nan-
otechnology, vol. 7, no. 1, pp. 151–167, 2007.

[9] C.M. Jeffery and R.J.O. Figueiredo, “Hierarchical Fault Tolerance for
Nanoscale Memories”,IEEE Transactions on Nanotechnology, vol. 5,
no. 4, pp. 407–414, July 2006.

[10] F. Sun and T. Zhang, “Defect and Transient Fault-Tolerant System
Design for Hybrid CMOS/Nanodevice Digital Memories”,IEEE Trans-
actions on Nanotechnology, vol. 6, no.3, pp. 341–351, May 2007.

[11] H. Naeimi and A. DeHon, “Fault Secure Encoder and Decoderfor
NanoMemory Applications”,IEEE Transactions on Very Large Scale
Integration Systems, vol.17, no.4, pp. 473–486, April 2009.

[12] S.L. Ngoc and Z. Young, “An Approach to Double Error Correcting
Reed-Solomon Decoding Without Chien Search”, inProceedings of the
36th Midwest Symposium, pp. 534–537, 1993.

[13] L. Yang and L. Hanzo, “Coding Theory and Performance of Re-
dundant Residue Number System Codes”. Available: http://www-
mobile.ecs.soton.ac.uk/lly/papers/RRNS-code.pdf

[14] N.Z. Haron and S. Hamdioui, “Residue-based Code for Reliable Hybrid
Memories”, inProceedings of IEEE/ACM International Symposium on
Nanoscale Architectures, pp. 27–32, 2009.

[15] N.Z. Haron and S. Hamdioui, “Using RRNS Codes for ClusterFaults
Tolerance in Hybrid Memories”, inProceedings of IEEE International
Symposium on Defect and Fault Tolerance of VLSI Systems, pp. 85–93,
2009.

[16] Z. Ahyadi, Experimental Analysis on ECC Schemes for Fault-Tolerant
Hybrid Memories. MSc Thesis, Delft University of Technology, 2009.

[17] S. Lin and D. J. Costello,Error Control Coding: Fundamentals and
Applications. 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2004.

[18] F. Barsi and P. Maestrini, “Error Correcting Properties of Redundant
Residue Number Systems”,IEEE Transactions of Computers, vol. 22,
no. 3, pp. 307–315, 1973.

[19] A. Houghton,The Engineers Error Coding Handbook. Chapman and
Hall, 1997.

[20] A. Omondi and B. Premkumar,Residue Number System: Theory and
Implementation. Imperial College Press, 2008.

[21] N. Szabo and R. Tanaka,Residue Arithmetic and its Application to
Computer Technology. New York: McGraw-Hill, 1967.

