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Abstract— Sequence alignment is an essential, but compute-
intensive application in Bioinformatics. Hardware implemen-
tation speeds up this application by exploiting its inherent
parallelism, where the performance of the hardware depends
on its capability to align long sequences. In hardware terms,
the length of a biological query sequence that can be aligned
against a database sequence depends on the number of Pro-
cessing Elements (PEs) available, which in turn depends on
the amount of available hardware resources. In addition, the
amount of available bandwidth to transfer the data processed
by these PEs plays a significant role in defining the maximum
performance. In this paper, we carry out a detailed performance
and bandwidth analysis for biological sequence alignment
and formulate theoretical performance boundaries for various
cases. Further, we optimize the performance gain and memory
bandwidth requirements and develop generalized equations for
this optimization.

Index Terms— Sequence Alignment, Smith-Waterman Algo-
rithm, FPGAs, Performance Gain, Memory Bandwidth

I. INTRODUCTION

Sequence alignment is a computationally intensive and

bandwidth hungry activity in Bioinformatics [1], [2]. Var-

ious methods are available for local and global sequence

alignments [3]. Methods like BLAST [4], FASTA [5] and

HMMER [6] are fast, but they are based on heuristics and

do not guarantee an optimal alignment. Based on dynamic

programming (DP) [7], the Smith-Waterman (S-W) algo-

rithm [8] is a method that finds an optimal local sequence

alignment between two DNA or protein sequences, i.e. the

query sequence of length Nq and the database sequence

of length Ns. The S-W algorithm has a limitation that

it requires an extensive computation time, when used for

aligning long sequences. Therefore, it is desired to come up

with an efficient and fast hardware based design for the S-W

algorithm.

In hardware, the S-W algorithm is most often implemented

as a linear systolic array [9]. The performance of such

arrays depends on the number of PEs and the available

memory bandwidth. The more the PEs, the longer the query

sequences that can be compared and aligned against the

database sequences in a specific amount of time. The quantity

of PEs that can be placed, routed and utilized, in turn depends

on the availability of the amount of hardware resources.

Current Field Programmable Gate Array (FPGA) technology

offers abundant hardware resources, sufficient for fitting large

number of PEs. Therefore, for several applications including

sequence alignment, the maximum performance is limited

by the available memory bandwidth. The more the memory

bandwidth, the more the overall performance gain. Full scale

implementation, i.e. utilizing the maximum available PEs on

a given platform, improves the performance, but increases

the bandwidth requirement to transfer the generated output

data. Work has been done on accelerating the S-W algorithm

in hardware [9], [10], [11], [12], [13], but no tangible effort

has been made to optimize the bandwidth requirement for

transferring the huge data generated by hardware designs

that are capable of handling long query sequences.

In this paper, we present the performance and bandwidth

analysis for hardware based S-W algorithm and formulate

theoretical performance boundaries for various cases. Fur-

ther, generalized equations are developed for optimizing the

performance gain and memory bandwidth requirements.

The remainder of the paper is organized as follows:

Section II presents the background and motivation behind

the work. Section III presents the theoretical performance

boundaries. Section IV presents an analysis for the case,

when performance is limited by the computational resources.

Section V presents an analysis for the case, when per-

formance is limited by the bandwidth. Section VI gives

the performance and bandwidth optimization. Section VII

concludes the paper.

II. BACKGROUND AND MOTIVATION

For the S-W local alignment, a matrix H is used to keep

track of the degree of similarity between the two sequences

to be aligned, i.e. the query sequence and the database

sequence. Each element of the matrix, with a row index i and

a column index j, is calculated according to the following

equation,

Hi,j = max















0
Hi−1,j−1 + Si,j

Hi−1,j − d

Hi,j−1 − d

(1)

where Si,j is the similarity score of comparing the residues

of the two sequences and d is the penalty for a mismatch.

A detailed description of the S-W algorithm and its data

dependencies is given in [13]. Table I shows a sample H



matrix for aligning two sequences of m characters each. If

the precision of the aligned output data is 16 bits wide [14],

then, for m = 500 (74% of sequences in Swiss-Prot are

of length ≤ 500 [15]), the total amount of data that needs

to be stored in memory is, 500 × 500 × 16 = 4 Mbits. This

amount increases with the increasing length of the query and

database sequences.

TABLE I

H MATRIX FOR ALIGNING SEQUENCES OF m CHARACTERS EACH

A C ... ... T G

G H1,1 H1,2 ... ... H1,m−1 H1,m

A H2,1 H2,2 ... ... H2,m−1 H2,m

... ... ... ... ... ... ...

... ... ... ... ... ... ...

T Hm−1,1 Hm−1,2 ... ... Hm−1,m−1 Hm−1,m

C Hm,1 Hm,2 ... ... Hm,m−1 Hm,m

In practice, e.g. FPGA implementations, a large number

of PEs is required to align long sequences. The larger the

number of PEs, the longer the query sequences that can be

aligned against the database sequences and the better the

performance. When all the PEs are simultaneously active,

the bandwidth required to store the resultant output data

increases with the increasing array length. Hence, the on-

chip local Block RAM (BRAM) becomes very limited for

storing all the intermediate values and can only be used as

a buffer that transfers the data to an off-chip main memory,

e.g. the Double Data Rate (DDR) RAM. Figure 1 gives a

block diagram description of such a system. Thus, the overall

performance of the hardware system not only depends on

the availability of computational resources, i.e. the number

of PEs, but also on the bandwidth of the main memory

(Bmain). Both the issues are elaborated in Sections IV and V

respectively. Implementation details of the hardware system

are skipped, as the main goal of the paper is to come up

with theoretical performance boundaries and a subsequent

performance and bandwidth optimization.
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Fig. 1. Block diagram description of an FPGA based design for aligning
long sequences

III. THEORETICAL PERFORMANCE BOUNDARIES

The total execution time (Texec) for the hardware based

S-W design is given by the following equation,

Texec = Tcompute + Taccess (2)

where Tcompute is the total computation time and Taccess

is the total time to load/store data in memory.
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Fig. 2. Number of steps and PEs utilization during each step for a case,
where N = Nq = Ns

For a square scoring matrix, i.e. when Nq = Ns, the data

flow is as shown in Figure 2(a). Since the elements within

each anti-diagonal are processed in parallel, therefore, the

computation time is given by,

Tcompute = (2N − 1) × TPE (3)

where N is the number of PEs, such that, the total number

of steps needed for the entire computation is (2N −1). TPE

is the computation time for 1 step, such that,

TPE = CPE × Tcycle

where CPE is the number of cycles consumed by 1 PE and

Tcycle is the time for 1 cycle. TPE is equal to the computation

time for 1 PE, as the PEs utilized during each step are

processed in parallel. For the given example in Figure 2,

N = Nq = Ns = 4 ⇒ Total number of steps = 2N − 1 = 7

In Figure 2(b), each row represents the number of PEs

available in each step, whereas, the solid black cells represent

the number of PEs utilized, such that,

Utilization ratio =
PEs utilized

PEs available
=

N2
q

N × Nsteps

(4)

where Nsteps = 2N − 1
The total time to transfer data to the main memory is given

by,

Taccess =
Dmain

Bmain

(5)

where Dmain is the total data that needs to be stored in

the main memory and Bmain is the bandwidth of the main

memory in bits/sec, such that,

Dmain = 16Ns × Nq

where the precision of each output is 16 bits wide. When

Nq = Ns = N , the total data becomes,

Dmain = 16N2 (6)



Substituting Equation 6 in Equation 5,

Taccess =
16N2

Bmain

(7)

Substituting Equation 3 and 7 in Equation 2,

Texec =
(2N − 1) × TPE × Bmain + 16N2

Bmain

(8)

Now, the overall performance is given by the ratio of the

total matrix fill operations to the total execution time, i.e.

Overall performance = Poverall =
Total operations

Texec

Poverall =
N2

(2N−1)×TP E×Bmain+16N2

Bmain

Poverall =
N2 × Bmain

(2N − 1) × TPE × Bmain + 16N2
(9)

If the number of PEs is less than the length of the query

sequence, then we need to partition the query sequence, so

that, the computation takes place in k passes, where k ≥ 1
is an integer. In this case the total time becomes,

Ttotal = k × Texec, where k =

⌈

Nq

N

⌉

and the total operations become k × N2.

Parameters that can limit the performance of the hardware

based S-W design are:

• The amount of available hardware computational re-

sources, i.e. the number of PEs

• The memory bandwidth

In the following two sections, we present performance

analysis based on these limitations.

IV. PERFORMANCE LIMITED BY THE COMPUTATIONAL

RESOURCES

Assume that we have infinite bandwidth and the perfor-

mance is only limited by the computational resources, then,

Pcompute = f(fop, N)

where Pcompute is the performance limited by the compu-

tational resources, fop is the operating frequency and N is

the number of PEs. In this case, Taccess
∼= 0, so,

Texec = Tcompute = Nsteps × Tstep (10)

where Nsteps is the number of anti-diagonals and Tstep

is the time taken by each anti-diagonal. Now, performance

limited by the computational resources is given by,

Pcompute =
Nq × fop

CPE

× Utilization ratio (11)

where CPE is the number of cycles consumed by 1 PE

and Utilization ratio is the ratio of utilized to available

computational resources. Performance may also be given by,
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Fig. 3. Number of steps and PEs utilization for (a) N = Nq < Ns and
(b) N < Ns ≤ Nq

Pcompute =
Total operations

Texec

(12)

Figure 3(a) depicts a case, where the number of PEs is the

same as the length of the query sequence i.e. N = Nq = 4
and the length of the database sequence is larger than the

number of PEs i.e. Ns = 16. Equation 10 for this case

becomes,

Texec|N=Nq<Ns
= (Ns + N − 1) × TPE (13)

The utilization ratio is given by Equation 14, where the

utilization is dependent on the N−1
Ns

term. The lower the N−1
Ns

term, the more efficient the hardware resource utilization.

Utilization ratio|N=Nq<Ns
=

Ns × N

(Ns + N − 1) × N

=
1

1 + N−1
Ns

(14)

Figure 3(b) depicts the case, when N < Ns ≤ Nq. In this

case, we partition Nq into k parts, where the length of each

part is N
′

q, such that, N
′

q = N . In other words, we scale Nq

down to N and perform multiple (k) passes instead, where

k =
⌈

Nq

N
′

q

⌉

. This approach is referred to as Query Sequence

Partitioning (QSP). For the given example,

Nq = 8, Ns = 4, N
′

q = N = 2 and k =

⌈

8

2

⌉

= 4



The execution time for this case becomes,

Texec|k>1, N<Ns≤Nq
= (Ns + (k − 1) × Ns + N − 1) × TPE

= (k × Ns + N − 1) × TPE

(15)

The utilization ratio for this case is given by Equation

16, where the utilization is dependent on the N−1
k×Ns

term.

The lower the N−1
k×Ns

term, the more efficient the hardware

resource utilization.

Utilization ratio|k>1, N<Ns≤Nq
=

k × Ns × N

(k × Ns + N − 1) × N

=
1

1 + N−1
k×Ns

(16)

Table II presents the corresponding calculated values of Texec

in microseconds (µsec) for various combinations of k and

N , as per Equation 15, where TPE = 10 ns and Nq =
Ns = 500. The inputs are taken from Swiss-Prot, where

74% of the sequences are of length ≤ 500. The table shows

that if we have the same number of processing elements as

the length of the query sequence, i.e. N = Nq = 500, then

the computation takes place in one pass, i.e. k = 1, which

completes in 9.99 µsec. But if the number of PEs available

are half the length of the query sequence, i.e. N = 1
2Nq,

then the computation completes in two passes, i.e. k = 2,

that takes 12.49 µsec. Note that by halving the number of

PEs, the execution time is increasing only by 25%, however,

using half of the resources requires half of the bandwidth for

data transfer.

TABLE II

EXECUTION TIME (Texec) IN µsec FOR VARIOUS COMBINATIONS OF k

AND N , AS PER EQUATION 15

N, k Texec N, k Texec N, k Texec

N = 1
2500

N = 10
250.09

N = 100
25.99

k = 500 k = 50 k = 5

N = 2
1250

N = 20
125.19

N = 125
21.24

k = 250 k = 25 k = 4

N = 4
625

N = 25
100.24

N = 250
12.49

k = 125 k = 20 k = 2

N = 5
500

N = 50
50.49

N = 500
9.99

k = 100 k = 10 k = 1

Figure 4 shows Texec versus the number of PEs (N ) curve,

limited by the computational resources. The curve shows

that Texec, as per Equation 15, decreases with the increasing

number of PEs (N ).

V. PERFORMANCE LIMITED BY THE BANDWIDTH

Assume that we have infinite computational resources, i.e.

zero computation time, then,

Texec = Taccess, as, Tcompute
∼= 0

Applying Equation 7,

Texec = Taccess =
16N2 (bits)

Bmain (Mbps)
=

2N2 (Bytes)

Bmain (MBps)
(17)
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Fig. 4. Texec vs N curve, limited by the computational resources, where
Texec decreases with the increasing N values
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Fig. 5. Texec vs bandwidth curves, where Texec decreases with the
increasing amount of bandwidth, for particular number of PEs (N )

where Mbps is the bandwidth in Mega bits per second and

MBps is the bandwidth in Mega Bytes per second.

Now, performance limited by the bandwidth is,

Pbandwidth =
Total operations

Texec

Pbandwidth =
N2

2N2

Bmain

=
Bmain

2
(18)

Table III gives the execution time in µsec, for various

combinations of the number of PEs (N ) and the bandwidth

(Bmain) in MBps, as per Equation 17. Figure 5 gives the

execution time versus bandwidth curves for various values

of N . The curves show that the execution time, as per

Equation 17, decreases with the increasing bandwidth, where

the execution time is equal to the memory access time, as

the computational time is nearly zero.



TABLE III

EXECUTION TIME (Texec) IN µsec FOR VARIOUS COMBINATIONS OF N AND Bmain IN MBps, AS PER EQUATION 17

X
X

X
X

X
X

XX
Bmain

N
500 250 125 100 50 25 20 10 5 4 2 1

100 5000 1250 312 200 50 12.5 8 2 0.5 0.32 0.08 0.02

200 2500 625 156 100 25 6.25 4 1 0.25 0.16 0.04 0.01

300 1667 417 104 67 17 4.17 2.7 0.67 0.17 0.1 0.03 0.007

400 1250 312 78 50 12 3.12 2 0.5 0.12 0.08 0.02 0.005

500 1000 250 62 40 10 2.5 1.6 0.4 0.1 0.06 0.016 0.004

600 833 208 52 33 8 2.1 1.3 0.33 0.08 0.05 0.013 0.0033

700 714 178 44 28 7 1.8 1.14 0.28 0.07 0.046 0.011 0.0029

800 625 156 39 25 6.2 1.6 1 0.25 0.06 0.04 0.01 0.0025

900 556 139 34 22 5.6 1.4 0.89 0.22 0.056 0.036 0.0089 0.0022

1000 500 125 31 20 5 1.25 0.8 0.2 0.05 0.032 0.008 0.002
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Fig. 6. Texec vs N curve, limited by bandwidth, where Texec increases
with the increasing number of PEs (N ), for Bmain = 500 MBps

For a limited bandwidth, the execution time increases with

an increasing length of the query sequence. Figure 6 shows

the Texec vs N curve for a case, where the limited bandwidth

is 500 MBps and the number of PEs (N ) varies from 1 to

500. The execution time, as per Equation 17, has a quadratic

dependence on N , which causes it to increase rapidly for

higher N values. In the next section, we investigate the

minimum execution time that gives optimum performance

with reduced bandwidth requirement.

VI. PERFORMANCE AND BANDWIDTH OPTIMIZATION

In this section, performance gain and bandwidth require-

ments are optimized and a generalized equation is developed

for the execution time that considers both the computational

resources and bandwidth limitations. Figure 7 shows Texec

vs N design trade off curves for the three cases, i.e. when

performance is limited by,

• The computational resources

• The bandwidth

• The computational resources and the bandwidth

Texec decreases with the increasing number of N along the

Texec vs N curve, limited by the computational resources and

based on Equation 15. Decreased Texec results in improved

performance, but the bandwidth requirement also increases as
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Fig. 7. Texec vs N design trade off curves for Bmain = 500 MBps
and TPE = 10 ns

a consequence. On the other hand, for a particular available

bandwidth, Texec increases with the increasing number of

PEs along the Texec vs N curve, limited by the bandwidth

and based on Equation 17. The Texec vs N optimization

curve represents the total execution time, considering both

computational resources and bandwidth limitations and is

based on the following equation,

Texec = (k × Ns + N − 1) × TPE +
2N2

Bmain

(19)

To find the N value, at which the function Texec is

minimum along the Texec vs N optimization curve, we

differentiate Equation 19 w.r.t. N .

d(Texec)

dN
=

d

dN

[

(k × Ns + N − 1) × TPE +
2N2

Bmain

]

where k =
Nq

N
′

q

=
Nq

N
, so,

d(Texec)

dN
=

d

dN

[

(
Nq × Ns

N
+ N − 1) × TPE +

2N2

Bmain

]

=
4N3 + TPE × Bmain × N2 − TPE × Bmain × Nq × Ns

N2 × Bmain

Now, to find the N value at which Texec is minimum along

the Texec vs N optimization curve, we equate
d(Texec)

dN
to



zero, so that,

4N3 + TPE ×Bmain ×N2 −TPE ×Bmain ×Nq ×Ns = 0
(20)

The discriminant of Equation 20 is,

∆ = 4T 2
PE×B2

main×Nq×Ns(T
2
PE×B2

main−108Nq×Ns)

There are two cases, i.e.

1) ∆ > 0, if Nq × Ns <
T 2

P E×B2
main

108 ,

which does not take place in practice. Therefore, this

case is not taken into consideration.

2) ∆ < 0, if Nq × Ns >
T 2

P E×B2
main

108 ,

which implies that Equation 20 has a unique positive

real solution which is given as,

N =
A2 − 3TPE × Bmain

6A
(21)

where

A =
3
√

27TP EBmainNqNs + 3

√

3T3
P E

B3
main

+ 81T2
P E

B2
main

N2
q N2

s

For a given bandwidth, Equation 21 gives the N value at

which the function Texec is minimum along the Texec vs N

optimization curve. The minimum Texec value guarantees an

optimum performance, as any performance gain due to in-

creasing number of PEs beyond this point is counterbalanced

by the bandwidth limitation. As an example, if,

TPE = 10 ns, Bmain = 500 MBps and Nq = Ns = 500,

then, the value of N , as per Equation 21, would be N =
67.8. This means that N = 68 guarantees an optimum

performance for the given example. Therefore, any further

increase in the number of PEs will result in a subsequent

performance loss due to bandwidth limitation.

Figure 8 shows the optimization curves for various values

of Bmain in MBps, where the optimum point shifts towards

higher N values for increasing bandwidth. This implies that

for higher available bandwidth, a higher value of N can be

chosen to improve the performance further.

VII. CONCLUSION

In this paper, we presented the performance and bandwidth

analysis of biological sequence alignment and formulated

theoretical performance boundaries for the two cases, when

performance is limited by,

• The computational resources

• The bandwidth

These two cases were further used to develop a general-

ized equation for the execution time, when both limitations

were in effect. The results demonstrated a performance

improvement with the increasing number of PEs due to

increased parallelism, but the bandwidth requirement also

increased as a consequence, limiting the overall performance

gain. Moreover, we optimized the number of PEs for a

minimum execution time, taking the available bandwidth

into consideration. The minimum execution time guaranteed

an optimum performance, as any performance gain due

to increased number of PEs was counterbalanced by the

bandwidth limitation beyond this point.
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