
The Instruction-Set Extension Problem:
A Survey

Carlo Galuzzi
Delft University of Technology, The Netherlands
and
Koen Bertels
Delft University of Technology, The Netherlands

The extension of a given instruction-set with specialized instructions has become a common tech-
nique used to speed up the execution of applications. By identifying computationally intensive

portions of an application to be partitioned in segments of code to execute in software and seg-
ments of code to execute in hardware, the execution of an application can be considerably speeded
up. Each segment of code implemented in hardware can then be seen as a specialized application-
specific instruction extending a given instruction-set. Although a number of approaches exists

in literature proposing different methodologies to customize an instruction-set, the description
of the problem consists only of sporadic comparisons limited to isolated problems. This survey
presents a unique detailed description of the problem and provides an exhaustive overview of the

research in the past years in instruction-set extension. This paper presents a thorough analysis
of the issues involved during the customization of an instruction-set by means of a set of special-
ized application-specific instructions. The investigation of the problem covers both instruction
generation and instruction selection and different kinds of customizations are analyzed in a great

detail.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—Instruction set design
(e.g., RISC, CISC, VLIW)

General Terms: Instruction-Set, Customization, Design

Additional Key Words and Phrases: Instruction-Set Extension, Instruction Generation, Instruc-
tion Selection, HW/SW Co-Design, Reconfigurable Architecture

1. INTRODUCTION

In the past years, electronic devices have been steadily penetrating the market, featuring
not only an ubiquitous nature but also a plethora of functionalities. During the years, these
functionalities have been implemented by using different kinds of computer architectures,
which can be categorized according to their degree of flexibility and can be categorized
into two main groups: the general purpose computing group and the application-specific
computing group [Bobda 2007; Guo 2006].

1.1 General Purpose Computing

General purpose architectures have been widely used and studied in the past decades. This
type of architectures provides a high degree of flexibility in terms of application domains.
“Additionally, many tools have become available on the market and have allowed pro-

This work was supported by the European Union in the context of the Morpheus Project Num. 027342, the
Artemisia iFEST project (grant 100203), the Artemisia SMECY project (grant 100230) and the FP7 Reflect
project (grant 248976).

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



2 · C. Galuzzi and K. Bertels

grammers to map many different applications onto this type of architectures virtually ef-
fortlessly” [Guo 2006].

The general purpose computing group is based on the Von Neumann computing model.
The general structure of a Von Neumann machine consists of a memory for holding both
program instructions and data (Harvard architectures contain two parallel accessible mem-
ories for holding the program instructions and the data separately), a control unit used to
store the addresses of the instructions to execute and an arithmetic and logic unit used to
execute the instructions [Bobda 2007].

A program targeting a Von Neumann machine is coded as a set of instructions to be
executed sequentially. The execution of an instruction is realized in five steps: (1) fetching
the instruction from the program memory, (2) decoding the instruction to determine which
operation has to be executed and which operands are required, (3) reading the operands
from the memory, (4) executing the instruction and (5) writing the result of the operation
back to the data memory. This execution model results in a high performance overhead
for each individual operation, which turns into energy overhead. In this sense, the general
purpose computing group is considered to be the most flexible hardware at the cost of a
general high energy consumption [Bobda 2007; Guo 2006].

Over the years, different techniques to increase the level of parallelism have been intro-
duced at the instruction level: for instance techniques as instruction pipelining, superscalar
execution, out-of-order execution and register renaming. Parallelism has also been ex-
ploited at other levels: bit-level, data-level and loop-level parallelism. Although the level
of parallelism has been increased during the years, it is still relatively limited for highly
parallelizable applications, which become poor candidates for implementation on these
architectures.

1.2 Application-Specific Computing

In the context of application-specific computing, three main categories can be identified:
Application-Specific Integrated Circuits (ASICs), Application Domain Specific Proces-
sors (ADSPs) and Application-Specific Instruction-set Processors (ASIPs).
ASICs are circuits designed for a specific application such as the processor in a TV

set top box. Being designed for a specific use, ASICs are able to satisfy specific con-
straints and to reduce energy consumption, using an appropriate architecture designed for
the targeted application, compared with general purpose architectures which are designed
for a generic use. In an ASIC, the entire application has been hard-wired and the software
component is usually represented by run-time configurable parameters. However, energy
saving comes at the cost of low flexibility and programmability: for each new function-
ality or application, the hardware has to be redesigned and built. Today designing and
manufacturing an ASIC is a time-consuming and expensive process [Keutzer et al. 2002].
The increasing Non-recurring Engineering (NRE) costs, due to the high mask and test-
ing costs, associated with manufacturing, together with factors such as Deep Sub-micron
Effects (DSM ), increased feature set and heterogeneous integration contribute to increase
the production costs. Additionally, this long process has to deal with the shrinking time-
to-market which sometimes makes the choice of an ASIC not suitable.
ADSPs and ASIPs are processors having a partially customizable instruction-set

which can be tuned towards the specific requirements of an application (ASIPs) or a
domain of applications (ADSPs) by extending the basic instruction-set with dedicated
instructions. Digital Signal Processors are an example of ADSP . “These processors are
ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 3

ASIC ASIP ADSP GPP

GPP+RH

Flexibility

Fig. 1. Positioning of different computer architectures in terms of flexibility. GPP +RH represents a reconfig-
urable architecture composed by a GPP and a Reconfigurable Hardware (RH).

specialized for accelerating computation of repetitive, numerically intensive tasks in the
digital-signal processing area such as, for example, multimedia and image processing”
[Bobda 2007]. A typical application-specific instruction implemented on a DSP proces-
sor is the Multiply ACcumulate (MAC) instruction which can be performed on huge set of
data concurrently. A MAC instruction performed on a common Von Neumann machine
would have to access the memory to load/store the intermediate result. As a result, by us-
ing specialized hardware that directly perform addition after multiplication without having
to access the memory a considerable amount of time can be saved. If the processor has
to be used only for one application, ASIPs can be used instead of ADSPs. From an
optimization point of view, ASIPs can be better optimized than ADSPs. This happens
because modifications to the latter have to benefit all the applications in a specific domain,
whereas in the former case only one application is taken into consideration [Arnold 2001].

The customizable instruction-set of ADSPs and ASIPs introduce more flexibility in
the design even though the number of different instruction-set customizations is usually
relatively limited and, therefore, the execution of different applications can be inefficient
[Fornaciari et al. 1999].

The aforementioned architectures can, then, be positioned in terms of flexibility as de-
picted in Figure 1. The flexibility of a general purpose processor can be further extended
by using a reconfigurable hardware, as described in the next section.

1.3 Reconfigurable Computing

Ideally, we would like to combine the flexibility of a general purpose system with the
high performance of an application-specific system. The last two decades have seen a new
emerging class of architectures, the so-called reconfigurable architectures. Time-to-market
and reduced development costs have became increasingly important and have paved the
way for reconfigurable architectures. Reconfigurable devices, including the most widely
used Field-Programmable Gate Arrays (FPGAs)1, consist of “arrays of programmable
logic cells interconnected using a set of routing resources which are also reconfigurable.
In this way, custom digital circuits can be mapped onto the reconfigurable hardware by
computing the logic functions of the circuit within the logic blocks and the reconfigurable
routing is used to connect the logic blocks together to form the necessary circuit” [Comp-
ton and Hauck 2002].

Reconfigurable architectures are typically formed with a combination of a conventional
processor, like a General Purpose Processor (GPP ), and a reconfigurable device. Part of
the operations is executed by the host processor while the rest of the operations is executed

1Xilinx (http://www.xilinx.com/ ) and Altera (http://www.altera.com/ ) are currently the main producers of
FPGAs devices on the market.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



4 · C. Galuzzi and K. Bertels

by the reconfigurable device2. A reconfigurable architecture is an architecture able to adapt
to the application: the structure of the architecture can change at start-up time or even at
run-time to match the applications.

Reconfigurable architectures present three main advantages compared with the architec-
tures previously described: first, changing an existing architecture, rather than defining a
completely new one, allows to reuse its associated compiler which has to be partially mod-
ified and not redesigned from scratch [Pozzi 2000]. Second, reconfigurable architectures
can serve a much wider range of applications, being an extension of GPP (or a processor,
in the general case) (see Figure 1). Examples are data encryption, data compression and
genetic algorithms. Third, reconfigurable architectures can be used for rapid prototyping.
“Rapid prototyping allows a device to be tested in real hardware before its final production”
[Bobda 2007]. In this way, considerable amounts of development and debugging efforts
can be eliminated and the time-to-market can be reduced. Additionally, the design remains
flexible until the product enters the market and even after, allowing to ship a product that
meets the minimum requirements and add features after deployment [Bobda 2007].

The higher cost/performance ratio for reconfigurable architectures has led researchers to
look for methods and properties to maximize the performance. Each particular configura-
tion can then be seen as an extension of the instruction-set of the host processor. The iden-
tification, definition and implementation of those operations that provide the largest perfor-
mance improvement constitutes a major challenge and represents the so-called instruction-
set extension problem.

In this paper, we present a survey of current research in instruction-set extension, inves-
tigating the issues regarding the customization of an instruction-set under specific require-
ments. The main objective is to provide a detailed overview of all the aspects involved in
the customization of an instruction-set. It does not seek to cover every technique and re-
search project in instruction-set extension. Instead, it provides an overview of all relevant
aspects of the problem and it compensates for the lack of a general view of the problem
in the existing literature, which only consists of sporadic comparisons limited to isolated
issues involved.

2. INSTRUCTION-SET EXTENSIONS

The customization of an instruction-set presents, among others, many advantages: first,
“the application code can be more densely encoded, resulting in a code size reduction; sec-
ond, the total number of instructions that have to be executed may be reduced, which results
in a lower power consumption and third, the execution of the application can be more effi-
cient in terms of increased performance using the customized instruction” [Arnold 2001].

Although the focus of this paper is on presenting in detail how to generate and select
custom instructions for extending a given instruction-set, the issue concerning the efficient
implementation of the selected instructions in hardware has to be addressed as well. Later
in the paper, we give an overview of different architectures that integrate custom instruc-
tions for application acceleration.

The identification process of new specialized instructions is usually subject to different
constraints such as power consumption, area, code size, cycle count, operating frequency,
etc. Additionally, not all the instructions suitable for a hardware implementation can be se-

2As described later in Section 5, it is also possible to embed the processor into the reconfigurable device either
as a hard core or as a soft core implemented on resources of the reconfigurable hardware itself.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 5

lected for being implemented in hardware, due to the ever-limited hardware resources, in
the general case. The issues involved are diverse and range from the isomorphism problem
and the covering problem, well-known computationally complex problems, to the func-
tion’s study necessary for the guide/cost function involved in the generation and selection
of custom instructions. Equally important is the selection problem addressed by different
techniques such as branch-and-bound and dynamic programming. The proposed solutions
are either exact, whenever appropriate and possible or, given that the problems involved
are known to be computationally complex, heuristics that are used in those cases where the
solution is not computable in a feasible time. In the next sections, we overview the current
state-of-the-art in instruction-set customization, describing in detail all the issues involved.

The instruction-set customization problem represents a well-specified topic where re-
sults and concepts from many different research fields are required. Graph theory is one
of the dominant approaches and it seems to provide the right analytical framework. Think-
ing about the data-flow or control-flow graphs of an application3, it is easy to imagine an
application represented by a directed graph, where the nodes represent the operations and
the edges represent the data dependencies, and the required new complex instructions are
represented by subgraphs having particular properties. Thus, the problem turns into the
identification of methods for the recognition of certain types of subgraphs.

The remainder of this paper is the following. Section 3, after presenting a motivational
example, overviews the different instruction-set customizations. Degree of customization,
granularity of the instructions and degree of automation of the process are presented in de-
tail. Section 4 elaborates on the customization process and provides a detailed account of
the problems involved in the customization. Instruction generation and selection, proper-
ties of the custom instructions and existing solutions are presented to better understand the
problem. Section 5 proposes a selected overview of the main architectural approaches that
integrate custom logic for application acceleration. Finally, Section 6 presents conclud-
ing remarks and open issues worthy of further research and investigation in the context of
instruction-set customization.

3. DIFFERENT TYPES OF CUSTOMIZATIONS

Instruction-set customization can be pursued by following different approaches in the type
of customization, which can be complete or partial, and in the granularity of the instruc-
tions, which can be fine-grain or coarse-grain. We introduce a motivational example to
informally outline the main idea of the instruction-set extension.

3.1 Motivational Example

In Figure 2a, we present a data-flow subgraph extracted from the ADPCM application as
implemented in the MediaBench benchmark suite [Lee et al. 1997]. Nodes represent the
primitive operations, namely the instruction belonging to the instruction-set and the edges
represent the data dependencies.

A custom instruction is represented by a subgraph of the data-flow graph. The main
idea is to identify different clusters of basic operations within the graph, which can be
implemented as single instructions to atomically execute in hardware. They become new
specialized instructions extending the basic instruction-set and they allow to speed up the

3The directed graphs that show, respectively, the data dependencies and the control dependencies among a number
of functions.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



6 · C. Galuzzi and K. Bertels

outdata

ST

2

+

ST

0

SEL

−32768

<

−32768
SEL

32767

>

32767

SEL

8

&
− +

LD SEL

0
!=

0

SEL

+

& >>

2

!=

0 1
+

&

2

1

>>

+

>> !=

3
0

&

4

LD

stepsizeTable
&

7

ST

1SEL

88

>

SEL 88

0
<

0

SEL

+

LD

indexTable

LD

1

state

&

15
>>

4LD

+

1indata

MM0

MM3

MM6

MM5

MM1
MM2

MM4

a)

MM1

MM2

MM5 MM6

MM0 MM3

X

X X

X 0,0

1,0

3,0 3,1

Level 0

Level 1

Level 2

Level 3

MM4

X 0,1

XX 2,0 2,1

MM2

MM5 MM6

MM0 MM3

X

X X

X 0,0

1,0

3,0 3,1

Level 0

Level 1

Level 2

Level 3

X 0,1

XX 2,0 2,1

MM1 MM4

b) c)

Fig. 2. Motivational example: the data-flow subgraph extracted from ADPCM decoder and different custom
instructions: a) maximal connected single-output instructions [Alippi et al. 1999], b) disconnected multiple-input
multiple-output instructions [Galuzzi et al. 2006], and c) connected multiple-input multiple-output instructions
[Galuzzi et al. 2007a].

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 7

execution of an application. Although different criteria can be used to identify custom
instruction, all instructions, as we will see in the next sections, can be divided in single-
output and multiple-output. Additionally, an instruction can perform one or more parallel
independent calculations at the same time, which means that all instructions can be divided
in two sets: connected and disconnected instructions (see Section 4.3.1). Figure 2 presents
an example of different custom instructions generated as in [Alippi et al. 1999; Galuzzi
et al. 2006; Galuzzi et al. 2007a].

In Figure 2a), the nodes of the graph are partitioned in maximal single-output subgraphs
(the dashed boxes) as described in [Alippi et al. 1999]. Each cluster is a connected single-
output subgraph. Considering each of these subgraphs fused as a single complex multiple-
input and single-output instruction, it is possible to draw the graphs in Figure 2b) and
2c), where each node represents one of the clusters identified in Figure 2a). Following
the clustering methodology proposed in [Galuzzi et al. 2006], the nodes of the graph are
further combined in multiple-input multiple-output disconnected subgraphs, the dashed
boxes in Figure 2b). Following the method proposed in [Galuzzi et al. 2007a], the nodes of
the graph are further combined in multiple-input and multiple-output connected subgraphs,
the dashed boxes in Figure 2c).

Additionally, we can roughly calculate the performance gain for these instructions4.
Let’s now assume that the hardware latency for a node ni in Figure 2a) to be li. When k
nodes at the same level are combined together, the execution time of the cluster in hardware
is maxi=1..k li. The performance gain in this case is

∑
i=1..k(li) − maxi=1..k(li). If,

successively, we combine nodes through the levels of the graph, the overall performance
gain increases. Let’s assume that α1, ..., αh are the levels of the nodes belonging to a
cluster. The overall performance gain in this case is:

αh∑
j=α1

(
∑
ij

lij −max
ij

(lij )) (1)

This means, for example, that using the custom instruction in Figure 2b) there is a perfor-
mance gain of l5 + l6 −max(l5, l6).

Roughly speaking, the identification of custom instructions partitions an application in
segments of code which are implemented in software and segments of code which are
implemented in hardware. For this reason, many authors naturally associate this prob-
lem to the hardware-software co-design problem or hardware-software partitioning prob-
lem [Bı̀nh et al. 1995; Niemann and Marwedel 1996; 1997; De Micheli and Gupta 1997;
Baleani et al. 2002; Arató et al. 2003; Huynh et al. 2007], which consists of concurrently
balancing, at design time, the presence of hardware and software.

3.2 Types of Customizations

The identification of custom instructions for instruction-set extension can be categorized
according to the following.

Complete Customization vs Partial Customization. The previous example shows three
different clustering methods which extend a given instruction-set with different kinds of
specialized instructions: single-output instructions and connected or disconnected multiple-
output instructions. The customization of an instruction-set can be categorized in two main

4In this example, we consider a performance gain over a single issue, in-order CPU.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



8 · C. Galuzzi and K. Bertels

approaches. As the name suggests, complete customization involves the whole instruction-
set which is tuned towards the requirements of an application or a domain of applications
[Holmer 1993; Huang and Despain 1994a; 1994b; Van Praet et al. 1994]. Partial cus-
tomization involves the extension of an existing instruction-set by means of a limited num-
ber of instructions [Liem et al. 1994; Choi et al. 1998; Choi et al. 1999; Faraboschi et al.
2000; Wang et al. 2001; Arnold and Corporaal 2001; Kastner et al. 2002; Alomary 1996;
Atasu et al. 2003a]. In both cases, the goal is to design an instruction-set that contains
the most important operations needed by one or more applications to maximize the per-
formance of execution. By extending an instruction-set rather than designing a completely
new one, it is possible, for example, to reuse its associated compiler which has to be par-
tially modified and not redesigned from scratch [Pozzi 2000].

Fine Granularity vs Coarse granularity. Irrespective of the type of customization, com-
plete or partial, we can distinguish two approaches related to the granularity at which code
is considered: fine-grain and coarse-grain5. The first one works at the operation level and
implements small clusters of operations in hardware [Choi et al. 1999; Arnold and Corpo-
raal 2001; Atasu et al. 2003a; Atasu et al. 2005]. The second one operates at the loop or
procedure level and identifies critical loops or procedures in the application, and displaces
them from software to hardware as a whole [Athanas and Silverman 1993; Razdan et al.
1994; Wirthlin and Hutchings 1995; Geurts 1995; 1997; Hauser and Wawrzynek 1997].
The main differences are in terms of speed up and flexibility: although a coarse-grain ap-
proach can produce a large speed up, its flexibility is limited. This appears given that this
approach is often performed on a per-application basis and it is difficult that other appli-
cations have the same loop or procedure as critical part. Consequently many researchers
prefer either a fine-grain approach, even if it limits the achievable speed up compared to the
coarse-grain one, or a mix of coarse- and fine-grain techniques, when these do not interfere
with each other [Arnold 2001]. For example, in Figure 2, the custom instructions have a
fine granularity.

Automatic Extension vs Maual Extension. An important issue related to the extension
of an instruction-set is the degree of human effort required to identify and implement the
instruction-set extensions. Although human ingenuity in manual creation of custom capa-
bilities creates high quality results, performance and time-to-market requirements as well
as the growing complexity of the design, can benefit from an automatic design flow for
the use of these new capabilities [Clark et al. 2002; Atasu et al. 2003a; Peymandoust et al.
2003; Clark et al. 2003; Borin et al. 2004; Sun et al. 2004; Cong et al. 2004; Atasu et al.
2005; Clark and Zhong 2005; Huynh et al. 2007; Bonzini and Pozzi 2007b]. Moreover,
the selection of multiple custom instructions from a large set of candidates involves com-
plex trade offs and can be difficult to be performed manually, making often “the design
efforts more time consuming and expensive than the design of an ASIC” [Clark 2007].
There also are commercial products available for automatic instruction-set customization.
Examples are Tensilica’s Xtensa LX2 processor and the MIPS Pro Series.

Up to now, we described the different types of instruction-set customizations. Then, an
important issue arises: How can we extend a given set of instructions with custom instruc-
tions? Given an application, the design process involves first the identification of segments

5The word granularity in this context does not have to be confused with the granularity of a reconfigurable device
which refers to the size of the reconfigurable blocks.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 9

of code to speed up. Second, the segments are analyzed for the generation of custom
instructions and, then, a subset of the most profitable instructions is selected for hard-
ware implementation based on hardware limitations. Thus, the customization process can
mainly be divided in two phases: instruction generation and instruction selection. Given
an application or part of an application code, instruction generation consists of clustering
of basic operations (such as add, or, load, etc.) (the ones belonging to the instruction-set)
or of mixed operations into larger and more complex operations. The custom instructions
can cover entirely or partially the application. Once the new instructions are identified,
they pass through a selection process, which selects a subset of the most profitable ones.
Instruction generation and selection are performed with the use of a function called cost
function or guide function, which takes into account different constraints and guides the
identification and selection of the new instructions.

In the next sections, instruction generation and instruction selection are analyzed in
detail.

4. THE CUSTOMIZATION PROCESS

The generation of new instructions relies on the concept of template. A template is a set
of program statements that is a candidate for implementation as a custom instruction. As
mentioned before, an application can be described with graphs, such as the data-flow graph
and the control-flow graph. In this context, a template is equivalent to a subgraph, where
the nodes represent the operations and the edges represent the dependencies. A collection
of different templates constitutes a library of templates.

4.1 Custom Templates vs Predefined Templates

A template can be, for example, the multiply accumulate (MAC) operation, a very com-
mon operation in signal processing areas. An approach which looks at methods to auto-
matically identify parts of the code to move from software to hardware can make use of
templates from preexisting libraries, as in the case of the MAC operation, or it can build a
custom library of templates for the application or domain of applications under considera-
tion.

When preexisting templates are used, the used templates represent the instruction-set
extensions. The general two-step process, instruction generation and instruction selection
for the identification of custom instructions, is reduced to a single step in which the ap-
plication is analyzed to find recurrences of the given templates. It is similar to the graph
isomorphism problem [Messmer and Bunke 1995; Fortin 1996; Chen 1996]. Many ap-
proaches assume the existence of predefined libraries of templates [Sreenivasa Rao and
Kurdahi 1992; Liem et al. 1994; Clark et al. 2003; Cheung et al. 2003]. However, this is
not always the case and many authors develop their own templates [Athanas and Silver-
man 1993; Razdan et al. 1994; Choi et al. 1999; Arnold and Corporaal 2001; Kastner et al.
2001; Atasu et al. 2003a; Pozzi et al. 2006a]. In the general case, custom templates are
generated through an incremental clustering. A node is selected as a seed and, iteratively,
nodes are merged together following different policies.

One of the main goals in designing a method to extend a given instruction-set with dedi-
cated instructions is to make the method, in a certain way, suitable to be applied on different
architectures. Unfortunately, this concept has to deal with the effective implementation of
the instruction-set on the architecture, which can have specific hardware limitations. For
example, if the architecture allows operations with no more than one output, a custom

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



10 · C. Galuzzi and K. Bertels

instruction with multiple outputs cannot be implemented in hardware, making unusable
the custom instruction identified. For this reason, the generation of custom instructions is
subject to specific constraints.

4.2 The Cost Function

The generation of custom instructions makes use of a function, called cost function (or
guide function). The cost function guides the search for the identification of the custom
instructions, which satisfy specific metrics (or constraints). The main metrics are listed
below:

(1) number of inputs and outputs: the size of a custom instruction can be limited by
imposing limitations on the total number of inputs and/or outputs. This constraint is
generally architecture-dependent;

(2) area: depending on the architecture and on the implementation choices, each oper-
ation requires a certain amount of area when implemented in hardware. The cost
function considers the area of a cluster as the sum of the operations included in the
cluster. When hardware resources are limited, the cost function continues or stops
clustering based on the available hardware resources;

(3) power or energy consumption: power consumption is an important parameter for
the design of efficient custom instructions. Based on the power consumption, the cost
function can include or exclude a node from the custom instruction. One of the large
power consumers is the memory system. For this reason, many time limitations to the
number of memory accesses are introduced to limit the total power consumption of
the custom instruction.

Additionally, the cost function can take into consideration:

(4) latency: a custom instruction speeds up the execution of an application if, when moved
to hardware, it reduces the total latency. The combination of different operations, as
described in Section 3.1, can lead to fewer cycles to execute the operations in conjunc-
tion than they do individually;

(5) instruction scheduling: “if all inputs of an instruction are supposed to be available at
issue time and all results are produced at the end of the instruction execution” [Ienne
and Leupers 2006], it is required that a feasible scheduling exists for the custom oper-
ation when it is fused into a single instruction that is atomically executed in hardware.
This constraint is usually identified with the convexity of the instruction, a topic that
is explained in more detail in the next sections.

Additional metrics can be introduced to guide the generation of custom instructions. The
five aforementioned metrics are general and common to the majority of the approaches
for custom instruction generation. Additional specific constraints related to the targeted
architecture can also be considered. An exhaustive outline of different metrics used for the
generation of custom instruction is presented in [Holmer 1993, Chap.4].

4.3 Instruction Generation

The analysis of the application for the generation of the custom instructions is a design
space exploration which aims at identifying instructions that can be selected for hardware
implementation. We can detect two problems involved in instruction generation: the com-
plexity of the exploration and the shape of the graph.
ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 11

The Complexity of the Exploration. Given a graph that represents an application, in the
most general case, each node of the graph can either be included or excluded from a can-
didate instruction. This means that there is an exponential number of potential candidates
which turns into an exponential complexity of the design space exploration. The cost func-
tion, taking into consideration different constraints, reduces the number of candidates to a
limited number. Several techniques have been proposed to handle the high computational
complexity of the exploration. This can mainly be tackled in two ways: (1) by reducing the
design space to explore (for example by either using heuristics instead of exact algorithms
or by limiting the size of the problem) or (2) by introducing specific constraints.

Many efficient heuristics have been proposed with very good runtimes when compared
to exact solutions. The use of heuristics, even though it can efficiently reduce the design
space explored, also turns into the generation of non-optimal or even feasible solutions.
Heuristics are often used with no theoretical guarantee.

An alternative way is to limit the size of the problem. For example, the approach pre-
sented in [Atasu et al. 2003a] generates optimal sets of custom instructions. Even though
the approach still has a worst exponential case runtime, for graphs of limited size, the
solution is provided in a timely manner.

The introduction of additional constraints can reduce the number of candidates for hard-
ware implementation, but has the drawback that every time a node is evaluated for inclusion
or exclusion from a candidate instruction, all constraints have to be verified. Therefore, a
reduction of candidates turns into a growth of the computational time due to the multiple
analyses.

A way to optimally solve covering problems is by using a branch-and-bound approach.
This approach starts with a search space potentially exponential in size, and reduce step-
by-step the search space. The essence of this approach may be summarized in this way: if
it is possible to show at any node in the total enumeration that the optimal solution cannot
occur in any of its descendants, there is no need to consider those descendant nodes. Then,
the search can be pruned at that node and the more we prune in the search space the
more computationally manageable the problem becomes. A limitation on the analysis of
unsuccessful branches relies on two aspects [Coudert and Madre 1995; Coudert 1996]:
effective bounds and pruning techniques. Their combination can significantly improve the
efficiency of the covering technique used to identify the candidate instructions for hardware
implementation.

Other covering approaches use dynamic programming which is a way of decomposing
certain hard to solve problems into equivalent formats that are more amenable to solution.
Basically a dynamic programming approach solves a multi-variable problem by solving a
series of single variable problems. A drawback of dynamic programming is that it can only
operate on tree-shaped graphs. Thus, the non-tree-shaped graph has to be decomposed into
sets of disjoint trees. Other covering approaches, like [Arnold and Corporaal 2001], use
methods based on dynamic programming modified to deal with non-tree shaped graphs.

The Shape of the Graph. The subject graph, the directed graph representing the given
application, can be an acyclic or a cyclic graph. Usually, acyclic graphs are considered
during the analysis. This follows from the fact that acyclic graphs can be easily sorted,
for example by a topological ordering, whereas cyclic graphs cannot. Therefore, for cyclic
graphs, the issue of defining a one-to-one order of the nodes is added to the problem.
Additionally, a cyclic graph can be transformed into an acyclic one if, for example, the

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



12 · C. Galuzzi and K. Bertels

cycles are unrolled.
Alternatively for dealing with cyclic graphs, one can consider the complete loops as

single nodes in the graph. In this way, the graph can be topologically sorted but it presents
two drawbacks: first, the number of custom instructions which is possible to generate
is drastically reduced6. Second, it is difficult for different applications to share the same
loops. This means that the custom instructions generated will speed up the execution of the
given application and will hardly be used to speed up the execution of other applications.

Given a subject graph, the custom instructions can be generated following different cri-
teria. When the generation is concluded, a subset of instructions, which maximizes the
performance gain, is usually selected based on the available hardware resources. In the
next sections, we present an overview of the different types of custom instructions. After
that, Section 4.4 continues the analysis of the problem describing the different methods
used to select which instructions are the most suitable to be implemented in hardware,
within the set of custom instructions generated.

4.3.1 Connected Instructions vs Disconnected Instructions. The custom instructions
can make use of the parallelism provided by the hardware implementation. This can be
realized by looking for instructions, which perform parallel independent operations at the
same time. As previously described, in general, when n operations are performed in par-
allel, the total execution time is the maximum of the execution times of the considered
operations. This means that a considerable speed up can be gained by identifying dis-
connected operations which can be clustered together in a custom instruction [Atasu et al.
2003a; Galuzzi et al. 2006; Yu and Mitra 2007]. Even though disconnected instructions
can provide a high speed up, the majority of the authors look only for connected instruc-
tions [Arnold and Corporaal 2001; Pozzi et al. 2001; 2002; Baleani et al. 2002; Clark et al.
2003; Cong et al. 2004; Yu and Mitra 2004] due to the lower computational complexity
of the algorithms. In literature only three works exhaustively enumerate all feasible (see
the next paragraph) connected and disconnected subgraphs of a given data-flow graph: [Yu
and Mitra 2004] and [Yu and Mitra 2007] list all feasible connected and disconnected pat-
terns respectively, while [Pozzi et al. 2006b] generates both connected and disconnected
patterns.

4.3.2 Convexity and Schedulable Instructions. When a cluster of operations is fused
into a single custom instruction that is atomically executed in hardware, the instruction
has to be functionally executable. For example, in Figure 2b), let G∗ be the subgraph
consisting of nodes MM0 and MM1. If G∗ is fused into a single instruction, assuming
that all inputs are available at issue time and all results are produced at the end of the
instruction execution, there exist no feasible scheduling for G∗. This basically means that
there exists a path between the nodes of G∗ which includes nodes not belonging to G∗

(MM6, in this case). The convexity of a graph is the property that guarantees that this
eventuality does not occur. In this way it is possible to guarantee a feasible scheduling
of the new instructions. Many works in literature generate convex custom instructions.
Examples can be found in [Atasu et al. 2003a; Yu and Mitra 2007; Gutin et al. 2007; Zhao
et al. 2008].

6As mentioned in the previous section, the number of potential instructions is exponential in the number of nodes
of the graph under analysis. By considering complete loops as single nodes, the total number of nodes in the
graph is reduced which, in turn, it reduces the number of potential instructions.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 13

4.3.3 Single-Output Instructions vs Multiple-Output Instructions. Depending on the
target architecture, limitations on the maximum number of inputs and/or outputs can be
introduced during the generation of the custom instructions. This is mainly due to the
length of the instruction encoding and/or the number of ports in the register file [Yu and
Mitra 2007]. Basically, there are two types of clusters that can be identified, based on
the number of output values: Multiple-Input Single-Output (MISO) and Multiple-Input
Multiple-Output (MIMO). Accordingly, there are two types of algorithms for the identi-
fication of custom instructions: algorithms for the generation of MISO instructions and
algorithms for the generation of MIMO instructions.

Multiple-Input Single-Output (MISO). A single-output constraint allows for simplify-
ing the architecture design by considering only one write port and it allows for avoiding
conflicts in writing [Pozzi 2000]. A representative example for the generation of single-
output instructions is introduced in [Alippi et al. 1999; Pozzi et al. 2001] which address
the generation of MISO instructions of maximal size, called MAXMISOs. Figure 2a)
shows an example of an application partitioned in MAXMISOs. The proposed algo-
rithm exhaustively enumerates all MAXMISOs with a computational complexity linear
with the number of processed elements. Access to memory, i.e. load/store instructions, is
not considered.

The approach presented in [Cong et al. 2004] targets the generation of MISO instruc-
tions. As previously described, in the most general case, each node of the graph can either
be included or excluded from a candidate instruction turning into an exponential number
of potential candidates. As a consequence, a heuristic limiting the total number of input
operands and area constraints are introduced to allow an efficient generation. The differ-
ence between the complexities of the two approaches in [Cong et al. 2004] and [Alippi
et al. 1999] is represented by the properties of MISOs and MAXMISOs: while the
enumeration of the first is similar to the subgraph enumeration problem, the intersection
of MAXMISOs is empty and then MAXMISOs can be enumerated with linear com-
plexity. A different approach is presented in [Galuzzi et al. 2007b] where, with an itera-
tive application of the MAXMISO clustering presented in [Alippi et al. 1999], MISO
instructions with variable number of inputs are generated with a heuristic of linear com-
plexity in the number of processed elements. The approaches in [Cong et al. 2004] and
[Galuzzi et al. 2007b] can be very effective when tight limitations on the total number of
inputs are applied. An other approach presented in [Lee et al. 2003b] groups the operations
of a given loop body into single output clusters for an efficient implementation of the oper-
ations onto an ALU array. In [Peymandoust et al. 2003], the authors propose polynomial
manipulation based techniques for the automatic extension of a given instruction-set with
complex single-output instructions.

Multiple-Input Multiple-Output (MIMO). Multiple-output instructions can provide
significant performance improvements compared with single-output instructions, as shown
in [Ienne and Leupers 2006, Chap.7]. There exists an exponential potential number of can-
didate MIMO clusters. A number of approaches proposed in literature identify optimal
solutions or use efficient heuristics to reduce the complexity of the solution generated.
In [Verma et al. 2002; Atasu et al. 2003a] the identification algorithm detects an optimal
number of convex MIMO subgraphs based on input/output constraints, area and convex-
ity, but the computational complexity is exponential and it has problems of scalability. A
similar approach described in [Yu and Mitra 2004] proposes the enumeration of all the

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



14 · C. Galuzzi and K. Bertels

feasible instructions (MISO and MIMO) based on the number of inputs, outputs, area
and convexity. The selection problem is not addressed. Contrary to [Atasu et al. 2003a]
which has scalability issues if the data-flow graph is very large or the micro-architectural
constraints are too fine, the approach presented in [Yu and Mitra 2004] is quite scalable
and can be applied on large data-flow graphs with relaxed micro-architectural constraints.
The limitation to only connected instructions has been removed in [Yu and Mitra 2007],
where the authors address the exhaustive enumeration of connected and disconnected clus-
ters based on the number of inputs, outputs and convexity. In [Biswas et al. 2004], the
authors present an approach similar to the one described in [Atasu et al. 2003a] with the
inclusion of the memory accesses in the generation of the custom instructions.

In [Atasu et al. 2008] a similar problem is addressed but the authors enumerate only
maximal convex subgraphs within an application. Additionally, they do not impose lim-
itations on the number of input and output operands for the custom instructions. Similar
target is presented in [Pothineni et al. 2007; Verma et al. 2007] where the authors propose
similar methods to enumerate maximal convex subgraphs.

In [Atasu et al. 2005] the authors target the identification of convex clusters of operations
under input and output constraints. The clusters are identified with a Integer Linear Pro-
gramming (ILP ) based methodology. In [Galuzzi et al. 2006], the authors address the gen-
eration of convex MIMO operations in a manner similar to [Atasu et al. 2005], although
the identification of the new instructions is rather different and based on the MAXMISO
clustering proposed in [Alippi et al. 1999]. While [Atasu et al. 2005] iteratively solves
ILP problems for each basic block, [Galuzzi et al. 2006] has one global ILP problem for
the entire procedure. Additionally, the convexity is addressed differently: in [Atasu et al.
2005] the convexity is verified at each iteration; while in [Galuzzi et al. 2006] the convexity
is guaranteed by construction.

In [Arnold 2001], the author proposes a method to generate instructions with an arbitrary
number of inputs and outputs for V LIW processors. This approach is based on dynamic
programming and removes the requirement of a tree-shaped graph during the generation
of generally small clusters of instructions. In [Choi et al. 1999], the authors observe that
the number of operations per cluster is typically small and propose a clustering method
which generates custom instructions limited to pair of instructions without constraining
inputs and outputs. In [Baleani et al. 2002], the authors propose a greedy algorithm, called
clubbing, which identifies custom instructions with limited inputs and outputs (3−2 in the
examples). In [Biswas et al. 2004; 2005], the authors use the Kernighan-Lin (K −L) min-
cut algorithm (see [Lin and Kernighan 1973]), a well-known graph partitioning heuristic, to
automatically generate custom instructions again imposing inputs and outputs constraints.

In [Seto and Fujita 2008], “an approach which generates custom instructions with any
numbers of inputs and outputs is presented. Unlike other approaches that generate a cus-
tom instruction from each subgraph, the authors generate a sequence of multiple custom
instructions with high-level synthesis techniques and use resource sharing among the cus-
tom instructions in order to reduce the area usage”.

As mentioned at the beginning of this section, limitations on inputs and outputs are
architecture-dependent. Although a considerable speed up can be achieved by increasing
the total number of inputs and/or outputs for the custom instructions, “additional ports
result in increased register file size, power consumption and cycle time” [Atasu 2007].
To overcome the limitations on the operands, a number of techniques has been proposed
which allow for relaxation of the limitations.
ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 15

In [Pozzi and Ienne 2005], the authors propose a solution to the limitation of actual
register-file ports by serializing the register-file accesses and therefore addressing multi-
cycle read and write. The technique combines register file access serialization with pipelin-
ing in order to obtain the best global solution. In [Jayaseelan et al. 2006] the authors show
that, by forwarding paths of the base processor, up to two additional inputs per custom
instruction can be considered without incurring in additional costs.

In the following section, the main approaches for the selection of a subset of candidates
for hardware implementation is presented.

4.4 Instruction Selection

The main goal of instruction selection is the identification of a subset of custom instructions
suitable to be implemented in hardware, based on the available hardware resources. The
selection of the instruction can be optimal [Alippi et al. 2001; Atasu et al. 2003a; 2003b;
Atasu et al. 2005; Sang et al. 2005] or non optimal (heuristic) [Sun et al. 2003; Cheung
et al. 2003; Brisk et al. 2004; Pozzi et al. 2006a] depending on the used approach.

One of the main problems during the selection of the best candidates is the covering
of the design space: optimal algorithms can be too expensive in terms of computational
cost. Heuristics alone cannot guarantee either optimality, or feasibility of the solution.
The selection can follow different policies. The elements can be selected attempting to
minimize the number of distinct templates that are used [Aho et al. 1989; Choi et al. 1999;
Guo et al. 2003; Kavvadias and Nikolaidis 2005; Lam 2006; Kavvadias and Nikolaidis
2006; Lam and Srikanthan 2009], attempting to maximize the number of instances of each
template [Scharwaechter et al. 2007], or to minimize the number of nodes left uncovered
in the graph [Liao et al. 1995; Liao et al. 1998], or in such a way that the longest path
through the graph should have minimal delay. Other approaches select instructions based
on regularity or frequency of execution, i.e. the repeated occurrence of certain templates
[Sreenivasa Rao and Kurdahi 1993b; 1993a; Janssen et al. 1996; Arnold and Corporaal
1999; Brisk et al. 2002; Peymandoust et al. 2003], or resource sharing [Huang and Malik
2001; Moreano et al. 2002], or the occurrence of specific nodes [Kastner et al. 2002; Sun
et al. 2002; Clark et al. 2003; Wolinski and Kuchcinski 2007; 2008] or hardware reuse
through similarity of the clusters that are implemented [Alomary et al. 1993; Geurts 1995;
1997]. Other appraches try to minimize the power dissipation or consumption [Lee et al.
2003a; Cheung et al. 2005; Strozek and Brooks 2006] or the code size [Biswas and Dutt
2003a; 2003b; 2005] or the memory accesses [Biswas et al. 2006].

One way to address instruction selection is by using Integer Linear Programming (ILP )
and more generally Linear Programming (LP ) in combination with an efficient LP solver.
Linear programming addresses the problem of maximizing or minimizing a linear function
over a convex polyhedron specified by linear and non-negativity constraints. In essence,
each instruction is associated with a variable, which can have an integer value (ILP ), non
integer value (LP ), or a boolean value (0−1 LP ). The instructions, and then the variables,
have to satisfy a certain number of constraints, which are expressed with a system of linear
inequalities. The optimal solution is the one that maximizes or minimizes the, so-called
objective function. Examples of instruction selection by using ILP and LP can be seen in
[Imai et al. 1992; Niemann and Marwedel 1996; Lee et al. 2002; Atasu et al. 2005; Yu and
Mitra 2005; Galuzzi et al. 2006; Leupers et al. 2006; Atasu et al. 2007; Lee et al. 2007;
Wong et al. 2007].

One way to optimally solve covering problems is by using dynamic programming or
ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



16 · C. Galuzzi and K. Bertels

branch-and-bound methods. Exact solutions are proposed in [Grasselli and Luccio 1965;
Brayton and Somenzi 1989]. A method is efficient when it prevents the exploration of
unsuccessful branches at earlier stages of the search. This relies on efficient bounding
techniques [Coudert and Madre 1995; Coudert 1996; Liao and Devadas 1997; Li et al.
2005]. In [Liao and Devadas 1997] it has been shown that Linear-Programming Relaxation
(LPR)7 can be used to obtain tighter lower bounds than previous approaches [Coudert and
Madre 1995; Coudert 1996]. “Their techniques, derived from computing a maximal in-
dependent set, are based on the idea of solving the LPR-equivalent of the ILP form
of the binate-covering problem for lower-bounding purposes, and of applying traditional
covering-matrix reduction techniques during branch-and-bound. These new lower bounds
require more computation but they allow for early termination of suboptimal branches” .
In [Bı̀nh et al. 1996; Bı̀nh et al. 1996] the authors propose a branch-and-bound based
algorithm to minimize the area cost under constraints of schedule length and power con-
sumption.

An additional problem during the selection of the instructions is template overlapping
[Cong et al. 2004; Aletà et al. 2004]. For example, in Figure 2b), the two subgraphs
containing nodes MM1 and MM6 and nodes MM1 and MM2 respectively, overlap at
node MM1. This is a typical problem when a set of predefined templates is used. There
are two ways of selecting instructions when we deal with overlapping templates: either
by selecting a subset of non-overlapping templates that maximizes performance or by first
replicating the common nodes between the overlapping templates and then selecting a
subset of templates that maximize performance. In this way, at an additional cost of the
replicated nodes, performance can be increased through a greater number of candidates
suitable for hardware implementation. In the general case, after the generation of a custom
instruction, the nodes belonging to the cluster are removed from the nodes subject to further
analysis. Therefore, two disjoint templates do not overlap [Baleani et al. 2002; Galuzzi
et al. 2007a].

Instruction selection, similarly to instruction generation, makes use of a cost function
to guide the selection. Many approaches combine instruction generation and selection and
use a unique cost function to generate and select custom instructions. As mentioned in
Section 4.2, the cost function considers a certain number of metrics (constraints) to guide
the generation. When generation and selection are considered independently, it is possi-
ble to split the constraints between the two functions and reduce the complexity of the
generation-selection process of the custom instruction. For example [Atasu et al. 2003a]
describes an approach for the generation of convex MIMO operations. The new opera-
tions are grown from a single operation/node taken as a seed and the adjacent nodes are
evaluated for inclusion in the cluster. Each node considered for inclusion or exclusion
in/from a cluster needs to satisfy constraints on the total number of inputs, outputs and
convexity. Testing the convexity of a cluster involves multiple analyses of the nodes in
the cluster to verify that for each pair of nodes in the cluster there is no path connecting
the nodes that involves nodes not belonging to the cluster itself. If the output limit is set
to one, each time a node is evaluated for inclusion or exclusion in a cluster, the convexity
constraint is automatically satisfied by the single-output of the cluster. This follows by the
single-output property: if the cluster has single-output, for each pair of nodes in the cluster,

7The Linear-Programming Relaxation (LPR) of an ILP is the linear program obtained by disregarding the
integrality constraints.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 17

all the paths connecting the two nodes belong to the cluster. As a consequence, by reducing
the number of constraints to test from 3 to 2, a considerable amount of the execution time
can be saved.

5. CUSTOM INSTRUCTION INTEGRATION

In this section, we present an overview of the main approaches, which integrate custom
instructions. There are several ways in which a processor and a reconfigurable logic can
be coupled. “The tighter the integration, the more frequently the custom logic can be used
within an application. This is mainly due to lower communication overhead” [Compton
and Hauck 2002].

The main methods to couple a processor and a reconfigurable logic are listed below
[Pozzi 2000; Atasu 2007]:

—functional units,
—coprocessors,
—attached or external processing units,
—embedded cores.

In the following sections, these approaches are analyzed in more detail. Additionally, a
representative overview of the main approaches proposed in the last years is presented.

5.1 Functional Units

In this scenario, processor and reconfigurable logic are tightly coupled. The custom in-
structions are integrated into the host processor data-path in parallel to the basic execution
unit. In this way, “it is possible to make use of the traditional programming environment
extended with the custom instructions” [Compton and Hauck 2002].

Representative examples are the OneChip architecture [Wittig 1995; Wittig and Chow
1996] which combines a MIPS-like host processor with reconfigurable logic resources to
accelerate speed-critical applications. The reconfigurable functional unit works in parallel
with the normal units and no limitations are imposed on the kind of functions implemented
in the reconfigurable logic. The architecture allows dynamic scheduling and partial dy-
namic reconfiguration. Additionally, the functions to be implemented in hardware are
manually selected.

An other example is the Chimaera architecture [Hauck et al. 1997; Ye et al. 2000; Hauck
et al. 2004], in which a reconfigurable functional unit works in parallel with the normal
execution unit, has access to shadow registers (registers which duplicate a subset of the
registers of the base processor in the custom logic area) and it is mapped onto an on-
chip FPGA which implements different multi-operand functions utilizing partial run-time
reconfiguration to reduce reconfiguration time.

The PRogrammable Instruction-Set Computer (PRISC) architecture [Razdan and Smith
1994] integrates combinational reconfigurable logic as reconfigurable functional units with
limited inputs and outputs. The system automatically detects sequences of logic operations
which can be implemented as single new instructions. The search is limited to sequences
of operations with two inputs and one output which are executed in a single cycle and the
reconfigurable functional units are partially dynamically reconfigurable.

In [Vassiliadis et al. 2006; Vassiliadis et al. 2007] an embedded single issue RISC
processor tightly coupled with a coarse grain Reconfigurable Functional Unit (RFU ) is

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



18 · C. Galuzzi and K. Bertels

presented. “Two architectural enhancements are presented: partial predicated execution,
used to remove control dependencies and expose larger clusters of operations as candidates
for execution in the RFU , and virtual opcode, used to alleviate the opcode space explosion
and increase the number of candidate for execution in the RFU . The main characteristic
of this architecture is that the communication overhead between the control unit and the
datapath is eliminated. The elimination is achieved by an efficient integration of the recon-
figurable functional unit, which optimally exploits the processor’s pipeline structure. The
reconfigurable functional unit executes a set of instructions with no data dependencies in
parallel, increasing in this way the overall speed up”.

An other architecture, Processor Reconfiguration through Instruction-Set Metamorpho-
sis (PRISM − I) is presented in [Athanas and Silverman 1993]. In this system, entire
functions inside the application can be mapped onto reconfigurable hardware. Special
instructions, embedded in the object code, control the interaction between what is exe-
cuted in hardware and what is executed in software. The system starting from generic C
code generates FPGA configurations in a semi-automatic process. Due to the limitations
of the FPGA technology at that time, processor and FPGA were located into separate
chips making the interface between them relatively slow. This, together with an initializa-
tion overhead for the reconfigurable component, considerably limited the class of appli-
cations addressable by the system, which moreover is more suitable for a coarse-grained
customization.

5.2 Coprocessors

In this scenario, the custom instructions are integrated as a coprocessor “which directly
access to the main processor through a local bus or dedicated pins of the main processor”
[Atasu 2007]. Coprocessors are, in general, able to perform many computations without
constantly communicating with the main processor: the processor sends the data directly
to the coprocessor or it provides information on where the data are located in the memory.
Usually processor and coprocessor can work simultaneously. Additionally, the low-latency,
high-bandwidth connection between processor and coprocessor allows accessing more fre-
quently the custom logic. In literature, many approaches follow this type of integration.
Coprocessors can be divided into fine- and coarse-grain category [Atasu 2007].

The Garp architecture [Hauser and Wawrzynek 1997] belongs to the first category and
is used to accelerate specific loops or subroutines. This system integrates on the same die
a standard MIPS − II-like host processor with a reconfigurable coprocessor. When a re-
configurable function is called, the main processor activates the coprocessor to execute the
operation. The coprocessor accesses both the processor main memory and cache memory
and does not require processor intervention during the execution of the operations. For this
reason, the processor is suspended when the coprocessor is activated. The reconfigurable
array can be partially reconfigured as it is organized in rows.

The Molen architecture presented in [Vassiliadis et al. 2004; Vassiliadis et al. 2001] is
composed by a GPP , the core processor, which controls the execution and the (re)confi-
guration of a reconfigurable co-processor, tuning the latter for specific applications by
implementing application-specific instructions. The instructions are decoded by an arbiter
determining which unit is targeted. The instructions are partitioned in basic instructions
executed by the core processor, and application-specific instructions implemented on the
reconfigurable processor. The communication overhead is comparable to [Athanas and
Silverman 1993] but the configurations are defined as part of the processor design itself
ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 19

instead of being determined by compilation. Moreover Molen has a high degree of freedom
in the definition of the programmable array structure and can exploit commercial FPGAs,
taking advantage of the technology development in this field, while maintaining the basic
architectural framework unchanged.

An other architecture is presented in [Iseli and Sanchez 1995; Iseli 1996], Spyder, a
coprocessor with several reconfigurable execution units working in parallel, based on a
V LIW processor architecture. Other examples are the PRISM − II [Wazlowski et al.
1993] and the NAPA architecture [Rupp et al. 1998].

The REconfigurable Multimedia ARray Coprocessor (REMARC) [Miyamori and Oluko-
tun 1998] is part of the coarse-grain category. A reconfigurable coprocessor that consists
of a global control unit and 64 programmable logic blocks called nano-processors is de-
signed to accelerate multimedia applications, such as video compression, decompression,
and image processing. Each 16-bit unit has an entry instruction RAM , ALUs, data RAM ,
instruction and several other registers. The reconfigurable array operates on the coproces-
sor data registers and a control unit transfers data between these registers and the processor.
The architecture allows dynamic reconfiguration.

In [Lu et al. 1999], the authors present MORPHOSY S, a system which integrates
a reconfigurable array of processing cells, a MIPS-like host processor and an efficient
memory interface unit designed to speed up video compression, data encryption and target
recognition.

The ADRES architecture [Mei et al. 2003] tightly couples a V LIW processor with
a coarse-grain reconfigurable matrix into one single architecture. Processor and reconfig-
urable matrix cannot execute concurrently and this allows sharing of resources between
them. The reconfigurable cells composing the reconfigurable matrix include ALU -like
configurable functional units and local register files. Other examples are the Reconfig-
urable Pipelined Datapath (RaPiD) architecture [Ebeling et al. 1996] which aims at
speeding up highly regular, computation-intensive tasks using deep pipelines, and the
Pleiades Architecture [Rabaey 1997] which is designed for speeding up communication,
speech coding and video coding.

Coarse-grain reconfigurable logic usually has the advantage of providing faster recon-
figuration times, fewer configuration bits and faster clock speed in the reconfigurable logic.
Coarse-grain configurable architectures are more suitable for data-intensive applications in
the multimedia and communication domains, while fine-grain architectures are better for
bit-level computation [Huang et al. 2004].

Commercial products include, for example, Cascade by Criticalblue8, an automated
coprocessor synthesis solution used to accelerates the execution of compiled binary exe-
cutable software code offloaded from the Central Processing Unit (CPU ) by creating a
loosely coupled programmable coprocessor.

5.3 Attached or External Processing Units

When custom instructions are integrated as attached or external processing units, commu-
nications between the host processor and the processing units is achieved through a general
purpose bus interface. In this case, “performance is affected by the high communication
overhead due to the bandwidth and latency limitations of the general purpose bus. For this
reason, this type of organization is used for applications which have a high computation

8http://www.criticalblue.com/criticalblue products/cascade.shtml

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



20 · C. Galuzzi and K. Bertels

to communication ratio, such as stream-based applications” [Atasu 2007]. This means
that “a significant amount of processing can be done by the processing unit without the
intervention of the main processor” [Compton and Hauck 2002].

An example is PipeRench [Goldstein et al. 1999], a reconfigurable fabric used as an
attached processor designed to accelerate pipelined applications. The architecture, partially
dynamically reconfigurable, consists of an interconnected network of processing elements
organized in pipeline stages. Each processing element consists of registers and ALUs. An
intermediate language is used to generate the fabrics configurations.

The SONIC architecture [Haynes et al. 1999; Haynes et al. 2000] consists of a set of
processing elements, called Plug-In Processing Elements (PIPEs), interconnected by a
bus. Each PIPE contains a reconfigurable processor, a scalable router that also formats
video data, and a frame-buffer memory. The architecture is designed to exploit parallelism
in video image processing algorithms.
Splash [Gokhale et al. 1991] and Splash2 [Buell et al. 1996] are attached processors

using FPGAs as their processing elements (32 and 17 respectively). The FPGAs, each
coupled with a RAM , are connected as a linear array through a crossbar switch that intro-
duces larger flexibility than that of a simple linear array.

5.4 Embedded Cores

In this case, the processor is embedded in the reconfigurable hardware [Todman et al. 2005;
Atasu 2007]. The processor is embedded either as a hard core or as a soft core implemented
on resources of the reconfigurable hardware itself which can be used to extend the core
with specialized instructions. In the former category, there are commercial products as
the Altera’s Excalibur and the Xilinx Virtex II which embed an ARM922T core and a
PowerPC 405 core respectively and the Atmel FPSLIC which embed a 20 MIPS
AV R 8 − bit RISC core. The Altera Nios and Nios II and the Xilinx MicroBlaze and
PicoBlaze belong to the latter category. When hard cores are compared with soft cores,
they present advantages and drawbacks. First, hard cores are more area-efficient leaving
additional logic for other uses and second, they are usually faster. Third, hard cores are
less flexible and fourth, hard cores do not allow for an arbitrary choice of the number of
cores.

Many other architectures have been proposed and a number of surveys exists. Exhaus-
tive reviews are presented in [Radunovic and Milutinovic 1998; Hartenstein 2001a; 2001b;
Barat and Lauwereins 2000; Barat et al. 2002; Compton and Hauck 2002; Vassiliadis and
Soudris 2007]. We refer the interested reader to the aforementioned surveys, where the
classification of the architectures is also presented in terms of granularity of the reconfig-
urable logic blocks and in terms of different coupling approaches.

6. CONCLUSIONS

In this paper, we presented an overview of the issues involved in the customization of
an instruction-set by means of a set of specialized instructions for a given application or
domain of applications. The problems, analyzed in detail, consider different types of cus-
tomizations and instructions and both instruction generation and selection.

The problems involved, as described in the paper, are computational complex problems.
Hardware/software partitioning, equivalent to instruction-set customization under certain
assumptions, it is proven to be NP-hard in the general case [Arató et al. 2003]. Optimal
ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 21

solutions have been proposed by many authors and a plethora of efficient heuristics have
been proposed to find near-optimal solutions when the computational complexity of the
problem becomes unmanageable and exact solutions can not be found in a timely manner.

As things stand, one of the major issues in the generation of custom instructions is repre-
sented by the degree of human effort required to identify and implement the instruction-set
extensions. As described in the paper, human ingenuity in manual creation of custom ca-
pabilities creates high quality results. In spite of that, the complexity of the problem as
well as the time-to-market requirements led researchers to look for automatic- or partially-
automatic methods for identifying custom instructions. As a result, quality results are pro-
duced through a balance of human intervention and automatic methods in the generation
of the instructions. However, future approaches will substantially minimize the amount of
human effort due to the increasing complexity of the designs.

An additional limitation in the current state-of-the-art in instruction-set extension is the
limited number of inputs and outputs operands of the custom instructions. This limitation,
which is architecture-dependent, has been relaxed in the last years by using methods pro-
posed to overcome severe limitations on the number of operands, as mentioned in Section
4.3.3. As a result, new methodologies, by making use of these techniques, will be able to
generate and select many more instructions which, in turn, will allow a better customiza-
tion of the instruction-set.

In the last years, many low-power and power-aware architectures have been proposed.
While the former minimize power consumption while satisfying performance constraints,
the latter maximize performance parameters while satisfying power constraints. The cur-
rent state-of-the-art in instruction-set customization shows that very few methods exist
which take into consideration power issues during the generation of custom instruction.
As power consumption/reduction/optimization have become one of the main topic of re-
search, we will see more and more methods appearing for generating custom low-power or
power-aware instructions which will be trade off between their size (by limiting the size of
the instruction, the power consumption is limited as well) and their frequency of execution
(a limited number of executions reduces the power consumption).

One of the main issues in instruction-set customization is also represented by the degree
of specialization of the custom instructions. If the instructions are too specialized, instruc-
tion reuse becomes hard. This is experienced because it is uncommon that applications
from different domains perform the same complex calculations. Viceversa, if a custom
instruction is used by many different applications, the requirement to speed up different
applications from different domains turns into the generation of custom instructions of
limited size. Therefore, the custom instructions are limited to few operations per instruc-
tion, which, in turn, can reduce performance. This is a practical issue which is common to
every approach and which will be always present: a method for the generation of custom
instructions will always be a trade off between the level of specialization of the instructions
and the speed up that they can provide.

Finally, in the last years, multi-core systems have become ubiquitous. Many architec-
tures integrate two or more cores in the same hardware to increase performance of ex-
ecution exploiting the available parallelism. Multi-core architectures can provide high
performance, run at lower clock speed than single-core architecture and can reduce power
consumption. Multi-core systems can be homogeneous or heterogeneous. The former im-
plement identical copies of the same core: same frequencies, cache sizes, functions, etc.
Examples are the Intel Core 2 Duo and the Advanced Micro Devices Athlon 64 X2. Het-

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



22 · C. Galuzzi and K. Bertels

erogeneous systems integrate different cores which can have different functions, frequen-
cies, memory models, etc. Examples are the CELL Processor used in Sony’s PlayStation
3 game console and the Tilera TILE64. Existing methods for the customization of an
instruction-set typically consider a single core and a single instruction-set. Nevertheless,
in the future, we envision that instruction-set customization will take advantages of the
multi-core architecture by extending each core with a set of specialized instructions. In this
way, a considerable amount of applications from different domains such as graphics, au-
dio, cryptography, communications, mathematics, or biology and more, will be efficiently
executed on the architecture.

Acknowledgment

The authors would like to thank Ms. Niki Frantzeskaki, Mr. Sebastian Isaza, Mr. Daniele
Ludovici and Mr. Christos Strydis for their help.

REFERENCES

2006. Rapid generation of custom instructions using predefined dataflow structures. Microprocessors and Mi-
crosystems 30, 6, 355 – 366. Special Issue on FPGA’s.

AHO, A. V., GANAPATHI, M., AND TJIANG, S. W. K. 1989. Code generation using tree matching and dynamic
programming. ACM Transactions on Programming Languages and Systems (TOPLAS) 11, 4, 491–516.

ALETÀ, A., CODINA, J. M., GONZÁLEZ, A., AND KAELI, D. 2004. Removing communications in clustered
microarchitectures through instruction replication. ACM Transactions on Architecture and Code Optimization
(TACO) 1, 2, 127–151.

ALIPPI, C., FORNACIARI, W., POZZI, L., AND SAMI, M. 2001. Determining the optimum extended instruction-
set architecture for application specific reconfigurable vliw cpus. In RSP ’01: Proceedings of the 12th Inter-
national Workshop on Rapid System Prototyping. 50–56.

ALIPPI, C., FORNACIARI, W., POZZI, L., AND SAMI, M. March 1999. A dag-based design approach for
reconfigurable vliw processors. In DATE ’99: Proceedings of the conference on Design, automation and test
in Europe. 778–779.

ALOMARY, A., NAKATA, T., HONMA, Y., IMAI, M., AND HIKICHI, N. 1993. An asip instruction set optimiza-
tion algorithm with functional module sharing constraint. In ICCAD ’93: Proceedings of the 1993 IEEE/ACM
international conference on Computer-aided design. 526–532.

ALOMARY, A. Y. Oct 1996. A hardware/software codesign partitioner for asip design. In ICECS ’96: Proceed-
ings of the Third IEEE International Conference on Electronics, Circuits, and Systems. 251–254.

ARATÓ, P., JUHÁSZ, S., ÁDÁM MANN, Z., ORBÁN, A., AND PAPP, D. 4-6 Sept. 2003. Hardware-software
partitioning in embedded system design. In IEEE International Symposium on Intelligent Signal Processing,
WISP 2003. Budapest, Hungary, 197–202.

ARNOLD, M. 2001. Instruction set extension for embedded processors. Ph.D. thesis, University of Delft, The
Netherlands.

ARNOLD, M. AND CORPORAAL, H. 1999. Automatic detection of recurring operation patterns. In CODES ’99:
Proceedings of the seventh international workshop on Hardware/software codesign. 22–26.

ARNOLD, M. AND CORPORAAL, H. 2001. Designing domain-specific processors. In CODES ’01: Proceedings
of the ninth international symposium on Hardware/software codesign. 61–66.

ATASU, K. Dec. 2007. Hardware/software partitioning for custom instruction processors. Ph.D. thesis, Boğaziçi
University, Turkey.

ATASU, K., DIMOND, R. G., MENCER, O., LUK, W., ÖZTURAN, C., AND DÜNDAR, G. 2007. Optimizing
instruction-set extensible processors under data bandwidth constraints. In DATE ’07: Proceedings of the
conference on Design, automation and test in Europe. 588–593.

ATASU, K., DÜNDAR, G., AND ÖZTURAN, C. 2005. An integer linear programming approach for identify-
ing instruction-set extensions. In CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis. 172–177.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 23

ATASU, K., MENCER, O., LUK, W., ÖZTURAN, C., AND DÜNDAR, G. 2008. Fast custom instruction identi-
fication by convex subgraph enumeration. In ASAP 2008. International Conference on Application-Specific
Systems, Architectures and Processors. 1–6.

ATASU, K., POZZI, L., AND IENNE, P. 2003a. Automatic application-specific instruction-set extensions under
microarchitectural constraints. In DAC ’03: Proceedings of the 40th conference on Design automation. 256–
261.

ATASU, K., POZZI, L., AND IENNE, P. 2003b. Automatic application-specific instruction-set extensions under
microarchitectural constraints. International Journal of Parallel Programming, Special issue: Workshop on
application specific processors (WASP) 31, 6, 411–428.

ATHANAS, P. M. AND SILVERMAN, H. F. 1993. Processor reconfiguration through instruction-set metamorpho-
sis. Computer 26, 3, 11–18.

BALEANI, M., GENNARI, F., JIANG, Y., PATEL, Y., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI,
A. 2002. Hw/sw partitioning and code generation of embedded control applications on a reconfigurable ar-
chitecture platform. In CODES ’02: Proceedings of the tenth international symposium on Hardware/software
codesign. 151–156.

BARAT, F. AND LAUWEREINS, R. 2000. Reconfigurable instruction set processors: A survey. In RSP ’00: Pro-
ceedings of the 11th IEEE International Workshop on Rapid System Prototyping (RSP 2000). IEEE Computer
Society, Washington, DC, USA, 168.

BARAT, F., LAUWEREINS, R., AND DECONINCK, G. SEPTEMBER 2002. Reconfigurable instruction set pro-
cessors from a hardware/software perspective. IEEE Transactions on Software Engineering 28, 9, 847–862.

B ÌNH, N. N., IMAI, M., AND HIKICHI, N. 1995. A hardware/software partitioning algorithm for pipelined
instruction set processor. In EURO-DAC ’95/EURO-VHDL ’95: Proceedings of the conference on European
design automation. 176–181.

B ÌNH, N. N., IMAI, M., AND SHIOMI, A. 1996. A new hw/sw partitioning algorithm for synthesizing the highest
performance pipelined asips with multiple identical fus. In EURO-DAC ’96/EURO-VHDL ’96: Proceedings
of the conference on European design automation. 126–131.

B ÌNH, N. N., IMAI, M., SHIOMI, A., AND HIKICHI, N. 1996. A hardware/software partitioning algorithm for
designing pipelined asips with least gate counts. In DAC ’96: Proceedings of the 33rd annual conference on
Design automation. 527–532.

BISWAS, P., BANERJEE, S., DUTT, N., POZZI, L., AND IENNE, P. 2005. Isegen: Generation of high-quality
instruction set extensions by iterative improvement. In DATE ’05: Proceedings of the conference on Design,
Automation and Test in Europe. 1246–1251.

BISWAS, P., BANERJEE, S., DUTT, N., POZZI, L., AND IENNE, P. September 2004. Fast automated generation
of high-quality instruction set extensions for processor customization. In WASP ’04: Proceedings of the 3rd
Workshop on Application Specific Processors.

BISWAS, P., CHOUDHARY, V., ATASU, K., POZZI, L., IENNE, P., AND DUTT, N. 2004. Introduction of local
memory elements in instruction set extensions. In DAC ’04: Proceedings of the 41st annual conference on
Design automation. 729–734.

BISWAS, P. AND DUTT, N. 2003a. Greedy and heuristic-based algorithms for synthesis of complex instructions
in heterogeneous-connectivity-based DSPs. Tech. Rep. 03-16, UCI-ISR.

BISWAS, P. AND DUTT, N. 2003b. Reducing code size for heterogeneous-connectivity-based vliw dsps through
synthesis of instruction set extensions. In CASES ’03: Proceedings of the 2003 international conference on
Compilers, architecture and synthesis for embedded systems. 104–112.

BISWAS, P., DUTT, N., IENNE, P., AND POZZI, L. 2006. Automatic identification of application-specific func-
tional units with architecturally visible storage. In DATE ’06: Proceedings of the conference on Design, au-
tomation and test in Europe. European Design and Automation Association, 3001 Leuven, Belgium, Belgium,
212–217.

BISWAS, P. AND DUTT, N. D. 2005. Code size reduction in heterogeneous-connectivity-based dsps using in-
struction set extensions. IEEE Trans. Comput. 54, 10, 1216–1226.

BOBDA, C. 2007. Introduction to Reconfigurable Computing. Springer.

BONZINI, P. AND POZZI, L. 2007a. Polynomial-time subgraph enumeration for automated instruction set exten-
sion. In DATE ’07: Proceedings of the conference on Design, automation and test in Europe. 1331–1336.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



24 · C. Galuzzi and K. Bertels

BONZINI, P. AND POZZI, L. July 2007b. A retargetable framework for automated discovery of custom instruc-
tions. In ASAP’07: Proceedings of the International Conference on Application-Specific Systems, Architec-
tures and Processors. Montreal.

BORIN, E., KLEIN, F., MOREANO, N., AZEVEDO, R., AND ARAUJO, G. Sept. 2004. Fast instruction set
customization. In ESTImedia 2004: 2nd Workshop on Embedded Systems for Real-Time Multimedia. 53–58.

BRAYTON, R. K. AND SOMENZI, F. Nov. 1989. Boolean relations and the incomplete specification of logic
networks. In ICCAD ’89: Proceedings of the 1992 IEEE/ACM international conference on Computer-aided
design. Santa Clara, California, 316–319.

BRISK, P., KAPLAN, A., KASTNER, R., AND SARRAFZADEH, M. 2002. Instruction generation and regularity
extraction for reconfigurable processors. In CASES ’02: Proceedings of the 2002 international conference on
Compilers, architecture, and synthesis for embedded systems. 262–269.

BRISK, P., KAPLAN, A., AND SARRAFZADEH, M. 2004. Area-efficient instruction set synthesis for reconfig-
urable system-on-chip designs. In DAC ’04: Proceedings of the 41st annual conference on Design automation.
395–400.

BUELL, D., KLEINFELDER, W., AND ARNOLD, J. 1996. Splash 2: FPGAs in a Custom Computing Machine.

CHEN, L. 1996. Graph isomorphism and identification matrices: Parallel algorithms. IEEE Transactions on
Parallel and Distributed Systems 7, 3, 308–319.

CHEUNG, N., HENKEL, J., AND PARAMESWARAN, S. 2003. Rapid configuration and instruction selection for
an asip: A case study. In DATE ’03: Proceedings of the conference on Design, Automation and Test in Europe.

CHEUNG, N., PARAMESWARAN, S., AND HENKEL, J. 2003. Inside: Instruction selection/identification & de-
sign exploration for extensible processors. In ICCAD ’03: Proceedings of the 2003 IEEE/ACM international
conference on Computer-aided design.

CHEUNG, N., PARAMESWARAN, S., AND HENKEL, J. 2005. Battery-aware instruction generation for embedded
processors. In ASP-DAC ’05: Proceedings of the 2005 conference on Asia South Pacific design automation.
553–556.

CHOI, H., HWANG, S. H., KYUNG, C.-M., AND PARK, I.-C. 1998. Synthesis of application specific instructions
for embedded dsp software. In ICCAD ’98: Proceedings of the 1998 IEEE/ACM international conference on
Computer-aided design. 665–671.

CHOI, H., KIM, J.-S., YOON, C.-W., PARK, I.-C., HWANG, S. H., AND KYUNG, C.-M. June 1999. Synthesis
of application specific instructions for embedded dsp software. IEEE Transactions on Computers 48, 6, 603–
614.

CLARK, N. 2007. Customizing the computation capabilities of microprocessors. Ph.D. thesis, University of
Michigan, Ann Arbor.

CLARK, N., BLOME, J., CHU, M., MAHLKE, S., BILES, S., AND FLAUTNER, K. 2005. An architecture
framework for transparent instruction set customization in embedded processors. SIGARCH Comput. Archit.
News 33, 2, 272–283.

CLARK, N., HORMATI, A., MAHLKE, S., AND YEHIA, S. 2006. Scalable subgraph mapping for acyclic com-
putation accelerators. In CASES ’06: Proceedings of the 2006 international conference on Compilers, archi-
tecture and synthesis for embedded systems. 147–157.

CLARK, N., KUDLUR, M., PARK, H., MAHLKE, S., AND FLAUTNER, K. 2004. Application-specific processing
on a general-purpose core via transparent instruction set customization. In MICRO 37: Proceedings of the 37th
annual IEEE/ACM International Symposium on Microarchitecture. 30–40.

CLARK, N., TANG, W., AND MAHLKE, S. 19 Nov. 2002. Automatically generating custom instruction set
extensions. In Proceedings of 1st Workshop on Application Specific Processors (WASP). Istanbul, Turkey,
94–101.

CLARK, N., ZHONG, H., AND MAHLKE, S. 2003. Processor acceleration through automated instruction set
customization. In MICRO 36: Proceedings of the 36th annual IEEE/ACM International Symposium on Mi-
croarchitecture.

CLARK, N. T. AND ZHONG, H. 2005. Automated custom instruction generation for domain-specific processor
acceleration. IEEE Trans. Comput. 54, 10, 1258–1270. Member-Scott A. Mahlke.

COMPTON, K. AND HAUCK, S. 2002. Reconfigurable computing: a survey of systems and software. ACM
Comput. Surv. 34, 2, 171–210.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 25

CONG, J., FAN, Y., HAN, G., AND ZHANG, Z. 2004. Application-specific instruction generation for configurable
processor architectures. In FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th international symposium
on Field programmable gate arrays. 183–189.

COUDERT, O. 1996. On solving covering problems. In DAC ’96: Proceedings of the 33rd annual conference on
Design automation. 197–202.

COUDERT, O. AND MADRE, J. C. 1995. New ideas for solving covering problems. In DAC ’95: Proceedings of
the 32nd ACM/IEEE conference on Design automation. 641–646.

DE MICHELI, G. AND GUPTA, R. K. March 1997. Hardware/software co-design. Proceedings of IEEE 85, 3,
349–365.

EBELING, C., CRONQUIST, D., AND FRANKLIN, P. 1996. Rapid - reconfigurable pipelined datapath. In FPL
’96: Proceedings of the 6th International Workshop on Field-Programmable Logic, Smart Applications, New
Paradigms and Compilers. Springer-Verlag, London, UK, 126–135.

FARABOSCHI, P., BROWN, G., FISHER, J. A., DESOLI, G., AND HOMEWOOD, F. 2000. Lx: a technology
platform for customizable vliw embedded processing. ACM SIGARCH Computer Architecture News, Special
Issue: Proceedings of the 27th annual international symposium on Computer architecture (ISCA ’00) 28, 2,
203–213.

FORNACIARI, W., POZZI, L., AND SAMI, M. 1999. Processori riconfigurabili: unalternativa flessibile per i
sistemi dedicati. Alta Frequenza - Rivista di Elettronica, 22–28.

FORTIN, S. July 1996. The graph isomorphism problem. Tech. Rep. TR 96-20, Department of Computing
Science, University of Alberta, Canada.

GALUZZI, C., BERTELS, K., AND VASSILIADIS, S. July 16-19, 2007b. A linear complexity algorithm for the
generation of multiple input single output instructions of variable size. In Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, 7th International Workshop, SAMOS 2007, S. Vassiliadis, M. Berekovic,
and T. D. Hämäläinen, Eds. Lecture Notes in Computer Science, vol. 4599. Springer, Samos, Greece, 283–293.

GALUZZI, C., BERTELS, K., AND VASSILIADIS, S. March 27-29, 2007a. A linear complexity algorithm for
the automatic generation of convex multiple input multiple output instructions. In Reconfigurable Computing:
Architectures, Tools and Applications, Third International Workshop, ARC 2007, P. C. Diniz, E. Marques,
K. Bertels, M. M. Fernandes, and J. M. P. Cardoso, Eds. Lecture Notes in Computer Science, vol. 4419.
Springer, Mangaratiba, Brazil, 130–141.

GALUZZI, C., MOSCU PANAINTE, E., YANKOVA, Y., BERTELS, K., AND VASSILIADIS, S. 2006. Automatic
selection of application-specific instruction-set extensions. In CODES+ISSS ’06: Proceedings of the 4th in-
ternational conference on Hardware/software codesign and system synthesis. 160–165.

GEURTS, W. 1995. Synthesis of accelerator data paths for high-throughput signal processing applications. Ph.D.
thesis, Katholieke Universiteit Leuven.

GEURTS, W. 1997. Accelerator Data-Path Synthesis for High-Throughput Signal Processing Applications.
Kluwer Academic Publishers, Norwell, MA, USA.

GOKHALE, M., HOLMES, W., KOPSER, A., LUCAS, S., MINNICH, R., SWEELY, D., AND LOPRESTI, D. 1991.
Building and using a highly parallel programmable logic array. Computer 24, 1, 81–89.

GOLDSTEIN, S. C., SCHMIT, H., MOE, M., BUDIU, M., CADAMBI, S., TAYLOR, R. R., AND LAUFER,
R. 1999. Piperench: a co-processor for streaming multimedia acceleration. SIGARCH Comput. Archit.
News 27, 2, 28–39.

GRASSELLI, A. AND LUCCIO, F. June 1965. A method for minimizing the number of internal states in incom-
pletely specified sequential networks. IEEE Trans. Electron. Comp. EC-14, 350–359.

GUO, Y. 2006. Mapping applications to a coarse-grained reconfigurable architecture. Ph.D. thesis, University of
Twente, The Netherlands.

GUO, Y., SMIT, G. J., BROERSMA, H., AND HEYSTERS, P. M. 11-13 June 2003. A graph covering algorithm
for a coarse grain reconfigurable system. In LCTES ’03: Proceedings of the ACM SIGPLAN Conference on
Language, Compiler, and Tool for Embedded Systems. San Diego, California, 199–208.

GUTIN, G., JOHNSTONE, A., REDDINGTON, J., SCOTT, E., SOLEIMANFALLAH, A., AND YEO, A. 17-19
September 2007. An algorithm for finding connected convex subgraphs of an acyclic digraph. In ACiD 2007.

HARTENSTEIN, R. 2001a. Coarse grain reconfigurable architecture (embedded tutorial). In ASP-DAC ’01:
Proceedings of the 2001 conference on Asia South Pacific design automation. 564–570.

HARTENSTEIN, R. 2001b. A decade of reconfigurable computing: a visionary retrospective. In DATE ’01:
Proceedings of the conference on Design, automation and test in Europe. 642–649.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



26 · C. Galuzzi and K. Bertels

HAUCK, S., FRY, T. W., HOSLER, M. M., AND KAO, J. P. 1997. The chimaera reconfigurable functional unit.
In FCCM ’97: Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines.

HAUCK, S., FRY, T. W., HOSLER, M. M., AND KAO, J. P. 2004. The chimaera reconfigurable functional unit.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12, 2, 206–217.

HAUSER, J. R. AND WAWRZYNEK, J. 1997. Garp: a mips processor with a reconfigurable coprocessor. In
FCCM ’97: Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines.

HAYNES, S. D., CHEUNG, P. Y. K., LUK, W., AND STONE, J. 1999. Sonic - a plug-in architecture for video
processing. In FCCM ’99: Proceedings of the Seventh Annual IEEE Symposium on Field-Programmable
Custom Computing Machines.

HAYNES, S. D., STONE, J., CHEUNG, P. Y. K., AND LUK, W. 2000. Video image processing with the sonic
architecture. Computer 33, 4, 50–57.

HOLMER, B. 1993. Automatic design of computer instruction sets. Ph.D. thesis. Co-Chair-David E. Culler, and
Co-Chair-Alvin M. Despain.

HUANG, I.-J. AND DESPAIN, A. M. 1994a. Generating instruction sets and microarchitectures from applications.
In ICCAD ’94: Proceedings of the 1994 IEEE/ACM international conference on Computer-aided design. 391–
396.

HUANG, I.-J. AND DESPAIN, A. M. 1994b. Synthesis of instruction sets for pipelined microprocessors. In DAC
’94: Proceedings of the 31st annual conference on Design automation. 5–11.

HUANG, Z. AND MALIK, S. 2001. Managing dynamic reconfiguration overhead in system-on-a-chip design
using reconfigurable datapaths and optimized interconnection networks. In DATE’01: Proceedings of the
conference on Design, automation and test in Europe. 735–740.

HUANG, Z., MALIK, S., MOREANO, N., AND ARAUJO, G. 2004. The design of dynamically reconfigurable
datapath coprocessors. Trans. on Embedded Computing Sys. 3, 2, 361–384.

HUYNH, H. P., SIM, J. E., AND MITRA, T. 2007. An efficient framework for dynamic reconfiguration of
instruction-set customization. In CASES ’07: Proceedings of the 2007 international conference on Compilers,
architecture, and synthesis for embedded systems. 135–144.

IENNE, P. AND LEUPERS, R. 2006. Customizable Embedded Processors: Design Technologies and Applications
(Systems on Silicon). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

IMAI, M., SATO, J., ALOMARY, A., AND HIKICHI, N. 1992. An integer programming approach to instruction
implementation method selection problem. In EURO-DAC ’92: Proceedings of the conference on European
design automation. 106–111.

ISELI, C. 1996. Spyder: A reconfigurable processor development system. Ph.D. thesis, Ecole Polytechnique
Federale de Lausanne.

ISELI, C. AND SANCHEZ, E. 1995. Spyder: a sure (superscalar and reconfigurable) processor. The Journal of
Supercomputing 9, 3, 231–252.

JANSSEN, M., CATTHOOR, F., AND DE MAN, H. 1996. A specification invariant technique for regularity im-
provement between flow-graph clusters. In EDTC ’96: Proceedings of the 1996 European conference on
Design and Test.

JAYASEELAN, R., LIU, H., AND MITRA, T. 2006. Exploiting forwarding to improve data bandwidth of
instruction-set extensions. In DAC ’06: Proceedings of the 43rd annual conference on Design automation.
43–48.

KASTNER, R., KAPLAN, A., MEMIK, S. O., AND BOZORGZADEH, E. 2002. Instruction generation for hybrid
reconfigurable systems. ACM Transactions on Design Automation of Electronic Systems (TODAES) 7, 4,
605–627.

KASTNER, R., OGRENCI-MEMIK, S., BOZORGZADEH, E., AND SARRAFZADEH, M. 2001. Instruction gen-
eration for hybrid reconfigurable systems. In ICCAD ’01: Proceedings of the 2001 IEEE/ACM international
conference on Computer-aided design. 127–130.

KAVVADIAS, N. AND NIKOLAIDIS, S. 2005. Automated instruction-set extension of embedded processors with
application to mpeg-4 video encoding. In ASAP ’05: Proceedings of the 2005 IEEE International Conference
on Application-Specific Systems, Architecture Processors (ASAP’05). 140–145.

KAVVADIAS, N. AND NIKOLAIDIS, S. May 16-19, 2006. A flexible instruction generation framework for extend-
ing embedded processors. In MELECON 2006: Proceedings of the 13th IEEE Mediterranean Electrotechnical
Conference. 125–128.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 27

KEUTZER, K., MALIK, S., AND NEWTON, A. R. 2002. From asic to asip: The next design discontinuity. In
ICCD ’02: Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers
and Processors (ICCD’02). 84–90.

LAM, S.-K. AND SRIKANTHAN, T. 2009. Rapid design of area-efficient custom instructions for reconfigurable
embedded processing. J. Syst. Archit. 55, 1, 1–14.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: a tool for evaluating and syn-
thesizing multimedia and communicatons systems. In MICRO 30: Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture. 330–335.

LEE, J.-E., CHOI, K., AND DUTT, N. 2002. Efficient instruction encoding for automatic instruction set design of
configurable asips. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM international conference on Computer-
aided design. 649–654.

LEE, J.-E., CHOI, K., AND DUTT, N. D. 2003a. Energy-efficient instruction set synthesis for application-specific
processors. In ISLPED ’03: Proceedings of the 2003 international symposium on Low power electronics and
design. 330–333.

LEE, J.-E., CHOI, K., AND DUTT, N. D. 2003b. An algorithm for mapping loops onto coarse-grained recon-
figurable architectures. In LCTES ’03: Proceedings of the 2003 ACM SIGPLAN conference on Language,
compiler, and tool for embedded systems. 183–188.

LEE, J.-E., CHOI, K., AND DUTT, N. D. 2007. Instruction set synthesis with efficient instruction encoding for
configurable processors. ACM Trans. Des. Autom. Electron. Syst. 12, 1, 8.

LEUPERS, R., KARURI, K., KRAEMER, S., AND PANDEY, M. 2006. A design flow for configurable embedded
processors based on optimized instruction set extension synthesis. In DATE ’06: Proceedings of the conference
on Design, automation and test in Europe. European Design and Automation Association, 3001 Leuven,
Belgium, Belgium, 581–586.

LI, X. Y., STALLMANN, M. F., AND BRGLEZ, F. 2005. Effective bounding techniques for solving unate and
binate covering problems. In DAC ’05: Proceedings of the 42nd annual conference on Design automation.
385–390.

LIAO, S. AND DEVADAS, S. 1997. Solving covering problems using lpr-based lower bounds. In DAC ’97:
Proceedings of the 34th annual conference on Design automation. 117–120.

LIAO, S., DEVADAS, S., KEUTZER, K., AND TJIANG, S. 1995. Instruction selection using binate covering
for code size optimization. In ICCAD ’95: Proceedings of the 1995 IEEE/ACM international conference on
Computer-aided design. 393–399.

LIAO, S., KEUTZER, K., TJIANG, S., AND DEVADAS, S. 1998. A new viewpoint on code generation for directed
acyclic graphs. ACM Transactions on Design Automation of Electronic Systems (TODAES) 3, 1, 51–75.

LIEM, C., MAY, T., AND PAULIN, P. Feb 1994. Instruction-set matching and selection for DSP and ASIP code
generation. In Proceedings of the European Design and Test Conference (ED & TC). Paris, France, 31–37.

LIN, S. AND KERNIGHAN, B. 1973. An effective heuristic algorithm for the traveling-salesman problem. Oper-
ations Research 21, 2, 498–516.

LU, G., SINGH, H., LEE, M.-H., BAGHERZADEH, N., KURDAHI, F. J., AND FILHO, E. M. C. 1999. The
morphosys parallel reconfigurable system. In Euro-Par ’99: Proceedings of the 5th International Euro-Par
Conference on Parallel Processing. Springer-Verlag, London, UK, 727–734.

MEI, B., VERNALDE1, S., VERKEST, D., MAN, H. D., AND LAUWEREINS, R. 2003. Adres: An architecture
with tightly coupled vliw processor and coarse-grained reconfigurable matrix. In FPL 03: Proceedings of the
2003 International Conference on Field-Programmable Logic and Applications. Springer Berlin / Heidelberg,
61–70.

MESSMER, B. T. AND BUNKE, H. 1995. Subgraph isomorphism in polynomial time. Tech. Rep. IAM 95-003,
University of Bern, Switzerland.

MIYAMORI, T. AND OLUKOTUN, K. 1998. Remarc (abstract): reconfigurable multimedia array coprocessor. In
FPGA ’98: Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate
arrays.

MOREANO, N., ARAUJO, G., HUANG, Z., AND MALIK, S. 2002. Datapath merging and interconnection sharing
for reconfigurable architectures. In ISSS ’02: Proceedings of the 15th international symposium on System
Synthesis. 38–43.

NIEMANN, R. AND MARWEDEL, P. 1996. Hardware/software partitioning using integer programming. In EDTC
’96: Proceedings of the 1996 European conference on Design and Test.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



28 · C. Galuzzi and K. Bertels

NIEMANN, R. AND MARWEDEL, P. March 1997. An algorithm for hardware/software partitioning using mixed
integer linear programming. Design Automation for Embedded Systems, Special Issue: Partitioning Methods
for Embedded Systems 2, 2, 165–193.

PEYMANDOUST, A., POZZIL, L., IENNE, P., AND MICHELI, G. D. 24-26 June 2003. Automatic instruction
set extension and utilization for embedded processors. In ASAP 2003: Proceedings of the 14th International
Conference on Application-Specific Systems, Architectures and Processors. The Hague, The Netherlands, 108–
118.

POTHINENI, N., KUMAR, A., AND PAUL, K. 2007. Application specific datapath extension with distributed i/o
functional units. In VLSID ’07: Proceedings of the 20th International Conference on VLSI Design held jointly
with 6th International Conference. 551–558.

POZZI, L. Jan. 2000. Methodologies for the design of application-specific reconfigurable vliw processors. Ph.D.
thesis, Politecnico di Milano, Milano, Italy.

POZZI, L., ATASU, K., AND IENNE, P. 2006a. Exact and approximate algorithms for the extension of em-
bedded processor instruction sets. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25, 7 (July), 1209 –1229.

POZZI, L., ATASU, K., AND IENNE, P. JULY 2006b. Exact and approximate algorithms for the extension of
embedded processor instruction sets. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTE-
GRATED CIRCUITS AND SYSTEMS 25, 7, 1209–1229.

POZZI, L. AND IENNE, P. 2005. Exploiting pipelining to relax register-file port constraints of instruction-set
extensions. In CASES ’05: Proceedings of the 2005 international conference on Compilers, architectures and
synthesis for embedded systems. 2–10.

POZZI, L., VULETIĆ, M., AND IENNE, P. 2002. Automatic topology-based identification of instruction-set
extensions for embedded processors. In DATE ’02: Proceedings of the conference on Design, automation and
test in Europe.

POZZI, L., VULETIĆ, M., AND IENNE, P. Dec. 2001. Automatic topology-based identification of instruction-set
extensions for embedded processors. Tech. Rep. CS 01/377, EPFL, DI-LAP, Lausanne.

RABAEY, J. 1997. Reconfigurable processing: The solution to low-power programmable dsp. In ICASSP ’97:
Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
’97) -Volume 1.

RADUNOVIC, B. AND MILUTINOVIC, V. M. 1998. A survey of reconfigurable computing architectures. In FPL
’98: Proceedings of the 8th International Workshop on Field-Programmable Logic and Applications, From
FPGAs to Computing Paradigm. Springer-Verlag, London, UK, 376–385.

RAZDAN, R., BRACE, K. S., AND SMITH, M. D. 1994. PRISC software acceleration techniques. In ICCS ’94:
Proceedings of the1994 IEEE International Conference on Computer Design: VLSI in Computer & Proces-
sors. 145–149.

RAZDAN, R. AND SMITH, M. D. 1994. A high-performance microarchitecture with hardware-programmable
functional units. In MICRO 27: Proceedings of the 27th annual international symposium on Microarchitecture.
172–180.

RUPP, C. R., LANDGUTH, M., GARVERICK, T., GOMERSALL, E., HOLT, H., ARNOLD, J. M., AND GOKHALE,
M. 1998. The napa adaptive processing architecture. In FCCM ’98: Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines.

SANG, S., LI, X., AND YE, Y. 24-27 Oct. 2005. Automatic instruction generation for application specific co-
processor. In ASICON 2005: 6th International Conference On ASIC. 934– 938.

SCHARWAECHTER, H., YOUN, J. M., LEUPERS, R., PAEK, Y., ASCHEID, G., AND MEYR, H. 2007. A code-
generator generator for multi-output instructions. In CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM
international conference on Hardware/software codesign and system synthesis. 131–136.

SETO, K. AND FUJITA, M. June 2008. Custom instruction generation with high-level synthesis. In SASP 200:
Proceedings of the 2008 Symposium on Application Specific Processors. Anaheim, California, 14–19.

SREENIVASA RAO, D. AND KURDAHI, F. J. 1993a. Hierarchical design space exploration for a class of digital
systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 1, 3, 282–295.

SREENIVASA RAO, D. AND KURDAHI, F. J. 8-12 June 1992. Partitioning by regularity extraction. In DAC ’92:
Proceedings of the 29th ACM/IEEE conference on Design automation. 235–238.

SREENIVASA RAO, D. AND KURDAHI, F. J. August 1993b. On clustering for maximal regularity extraction.
IEEE Transactions on Computer-Aided Design 12, 8, 1198–1208.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



The Instruction-Set Extension Problem: A Survey · 29

STROZEK, L. AND BROOKS, D. 2006. Efficient architectures through application clustering and architectural
heterogeneity. In CASES ’06: Proceedings of the 2006 international conference on Compilers, architecture
and synthesis for embedded systems. 190–200.

SUN, F., RAVI, S., RAGHUNATHAN, A., AND JHA, N. K. 2002. Synthesis of custom processors based on exten-
sible platforms. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM international conference on Computer-
aided design. 641–648.

SUN, F., RAVI, S., RAGHUNATHAN, A., AND JHA, N. K. 2003. A scalable application-specific processor
synthesis methodology. In ICCAD ’03: Proceedings of the 2003 IEEE/ACM international conference on
Computer-aided design.

SUN, F., RAVI, S., RAGHUNATHAN, A., AND JHA, N. K. Feb. 2004. Custom-instruction synthesis for extensible
processor platform. IEEE Trans. Computer-Aided Design of Integrated Circuits 23, 2, 216–228.

TODMAN, T., CONSTANTINIDES, G., WILTON, S., MENCER, O., LUK, W., AND CHEUNG, P. Mar 2005. Re-
configurable computing: architectures and design methods. IEE Proceedings - Computers and Digital Tech-
niques 152, 2, 193–207.

VAN PRAET, J., GOOSSENS, G., LANNEER, D., AND DE MAN, H. 1994. Instruction set definition and instruc-
tion selection for asips. In ISSS ’94: Proceedings of the 7th international symposium on High-level synthesis.
11–16.

VASSILIADIS, N., KAVVADIAS, N., THEODORIDIS, G., AND NIKOLAIDIS, S. June 2006. A risc architecture
extended by an efficient tightly coupled reconfigurable unit. International Journal of Electronics 93, 6, 421–
438.

VASSILIADIS, N., THEODORIDIS, G., AND NIKOLAIDIS, S. March 1–3, 2007. Enhancing a reconfigurable
instruction set processor with partial predication and virtual opcode support. In ARC 2006: Proceedings of the
Second International Workshop on Applied Reconfigurable Computing. Lecture Notes in Computer Science,
vol. 3985. Springer, Delft, Netherlands, 217–229.

VASSILIADIS, S. AND SOUDRIS, D., Eds. 2007. Fine- and Coarse-Grain Reconfigurable Computing. Springer.

VASSILIADIS, S., WONG, S., AND COTOFANA, S. 2001. The molen ϱµ-coded processor. In FPL ’01: Proceed-
ings of the 11th International Conference on Field-Programmable Logic and Applications. Springer-Verlag,
London, UK, 275–285.

VASSILIADIS, S., WONG, S., GAYDADJIEV, G., BERTELS, K., KUZMANOV, G., AND MOSCU PANAINTE, E.
2004. The molen polymorphic processor. IEEE Transactions on Computers 53, 11, 1363–1375.

VERMA, A. K., ATASU, K., VULETIĆ, M., POZZI, L., AND IENNE, P. Nov. 2002. Automatic application-
specific instruction-set extensions under microarchitectural constraints. In WASP-1: Proceedings of the 1st
Workshop on Application Specific Processors. Istanbul.

VERMA, A. K., BRISK, P., AND IENNE, P. 2007. Rethinking custom ise identification: a new processor-agnostic
method. In CASES ’07: Proceedings of the 2007 international conference on Compilers, architecture, and
synthesis for embedded systems. 125–134.

WANG, A., KILLIAN, E., MAYDAN, D., AND ROWEN, C. 2001. Hardware/software instruction set configura-
bility for system-on-chip processors. In DAC ’01: Proceedings of the 38th conference on Design automation.
184–188.

WAZLOWSKI, M., AGARWAL, L., LEE, T., SMITH, A., LAM, E., ATHANAS, P., SILVERMAN, H., AND GHOSH,
S. 1993. Prism-ii compiler and architecture. In IEEE Workshop on FPGAs for Custom Computing Machines.
9–16.

WIRTHLIN, M. J. AND HUTCHINGS, B. L. Oct. 1995. Disc: The dynamic instruction set computer. In Proceed-
ings of the International Society of Optical Engineering (SPIE). Field Programmable Gate Arrays (FPGAs)
for Fast Board Development and Reconfigurable Computing. Vol. 2607. Philadephia, PA, 92–103.

WITTIG, R. AND CHOW, P. Mar. 1996. OneChip: An FPGA processor with reconfigurable logic. In Proceedings
of the IEEE Symposium on FPGAs for Custom Computing Machines. Napa Valley, California, 126–135.

WITTIG, R. D. 1995. Onechip: An fpga processor with reconfigurable logic. M.S. thesis, Department of Elec-
trical and Computer Engineering, University of Toronto.

WOLINSKI, C. AND KUCHCINSKI, K. 2007. Identification of application specific instructions based on sub-
graph isomorphism constraints. In Application -specific Systems, Architectures and Processors, 2007. ASAP.
IEEE International Conf. on. 328 –333.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.



30 · C. Galuzzi and K. Bertels

WOLINSKI, C. AND KUCHCINSKI, K. 2008. Automatic selection of application-specific reconfigurable pro-
cessor extensions. In DATE ’08: Proceedings of the conference on Design, automation and test in Europe.
1214–1219.

WONG, S., VASSILIADIS, S., AND COTOFANA, S. 2007. Instruction set extension generation with considering
physical constraints. In in Proceedings of the 2007 International Conference on High Performance Embedded
Architectures and Compilers. 291–305.

YE, Z. A., MOSHOVOS, A., HAUCK, S., AND BANERJEE, P. June 2000. CHIMAERA: A high-performance
architecture with a tightly-coupled reconfigurable functional unit. In ACM SIGARCH Computer Architecture
News, Special Issue: Proceedings of the 27th annual international symposium on Computer architecture (ISCA
’00). 225–235.

YU, P. AND MITRA, T. 2004. Scalable custom instructions identification for instruction-set extensible processors.
In CASES ’04: Proceedings of the 2004 international conference on Compilers, architecture, and synthesis for
embedded systems. 69–78.

YU, P. AND MITRA, T. 2005. Satisfying real-time constraints with custom instructions. In CODES+ISSS ’05:
Proceedings of the 3rd IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis. 166–171.

YU, P. AND MITRA, T. August 2007. Disjoint pattern enumeration for custom instructions identification. In FPL
2007: Proceedings of the 17th IEEE International Conference on Field Programmable Logic and Applications.
Amsterdam, The Netherlands, –.

ZHAO, K., BIAN, J., DONG, S., SONG, Y., AND GOTO, S. 2008. Fast custom instruction identification algorithm
based on basic convex pattern model for supporting asip automated design. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. E91-A, 6, 1478–1487.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TDB, 2010, Pages 1–??.


