International JournalofEmbeddedandReal-TimeCommunicationSystems, 1(4), 1-20, October-December2010 1

A Multidimensional Software
Cache for Scratchpad-
Based Systems

Arnaldo Azevedo, Delft University of Technology, The Netherlands

Ben Juurlink, Technische Universitit Berlin, Germany

ABSTRACT

In many kernels of multimedia applications, the working set is predictable, making it possible to schedule the
data transfers before the computation. Many other kernels, however, process data that is known just before
it is needed or have working sets that do not fit in the scratchpad memory. Furthermore, multimedia kernels
often access two or higher dimensional data structures and conventional software caches have difficulties to
exploit the data locality exhibited by these kernels. For such kernels, the authors present a Multidimensional
Software Cache (MDSC), which stores I1- 4 dimensional blocks to mimic in cache the organization of the data
structure. Furthermore, it indexes the cache using the matrix indices rather than linear memory addresses.
MDSC also makes use of the lower overhead of Direct Memory Access (DMA) list transfers and allows ex-
ploiting known data access patterns to reduce the number of accesses to the cache. The MDSC is evaluated
using GLCM, providing an 8% performance improvement compared to the IBM software cache. For MC,
several optimizations are presented that reduce the number of accesses to the MDSC.

Keywords: Cell Processor, Computer Organization, H.264 Motion Compensation, Memory Hierarchy,
Multidimensional Cache, Scratchpad Memory, Software Cache
INTRODUCTION memories also have predictable latencies. These

Most processors use a cache to overcome the
memory latency. Some processors, however,
employ software-controlled high-speed in-
ternal memories or scratchpad memories to
exploit locality. Processors based on scratchpad
memories are very efficient in terms of power
and performance (Banakar et al., 2002). The
power efficiency is due to the simple structure
of the memory compared to caches. Scratchpad

DOI: 10.4018/jertcs.2010100101

characteristics make scratchpad memories a
common choice for embedded processors.
Many kernels (e.g., multimedia kernels)
have a working set that is predictable, which
makes it possible to transfer data before the
computation. Itis often also possible to overlap
computation with data transfers by means of a
double buffering technique, where the data in
onebufferis processed while the data for the next
processing stage is fetched in another buffer. In
scratchpad-based systems these data transfers
usually need to be explicitly programmed using

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

2 InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4), 1-20, October-December2010

Direct Memory Access (DMA) requests. There
are also many multimedia kernels, however,
that process data that is known just before it
is needed. This is the case, for instance, in the
Motion Compensation (MC) kernel of H.264
video decoding. Only after Motion Vector
Prediction it is possible to fetch the data nec-
essary to reconstruct the frame. Other kernels
have working sets that exceed the capacity of
the scratchpad memory. This is the case in the
Gray Level Co-occurrence Matrix (GLCM)
kernel. It features a relatively random access
that renders DMA requests for each individual
access impractical. MC is an interesting kernel
as its memory access pattern is similar to other
important multimedia kernels such as texture
mapping. GLCM features a fine-grain random
access pattern that is representative of other
tabulation algorithms, such as histogram.
Bothkernels exhibit datalocality that could
be exploited by a cache. In MC the motion vec-
tors are often closely related so that data that
is (logically) adjacent to the reference area is
needed to decode the next macroblock (MB). In
GLCM the difference ofadjacent pixelsis often
small so that the kernel accesses small parts of
the GLCM matrix. In a scratchpad memory a
cache can be emulated. This is often referred
to as a software cache. Software caches, how-
ever, incur high overhead, representing up to
approximately 50% (Gonzalez et al., 2008) of
the total application execution time. Such high
overheads could harm performance compared to
hand-programmed, just-in-time DM A transfers.
It is therefore necessary to reduce the number
of cache accesses as much as possible. An ad-
ditional feature of these as well as many other
multimedia kemels is that they access 2- or
higher-dimensional data structures and adjacent
sub-rows are not consecutive in memory.
Forsuchkernels we propose a Multidimen-
sional Software Cache (MDSC). The MDSC
stores 1-to4-dimensional blocks (sub-matrices)
and the cache is indexed by the matrix indices

rather than a linear memory address. This ap- -

proach both minimizes the memory transfer
time and the number of cache accesses. The

first is achieved by grouping memory requests,
thereby reducing the overhead associated with
memory requests. The latter is achieved by ex-
ploiting the multidimensional access behavior
of the application.

Our experimental platform is the Cell
processor. Implementing a software cache for
the Cell processor is an active research topic
(Balartetal.,2007; Lee etal.,2008; Chenetal.,
2008). Balart et al. (2007) propose a compile
time software cache with support for asynchro-
nous transfers. The compiler uses asynchronous
transfers to overlap memory transfers with
computation. They report a speedup of 1.26 to
1.66 over synchronous transfers. Chen et al.
(2008) propose a similar approach with support
for runtime prefetching based on the access
patterns. These works are complementary to
our work since the MDSC can be used as the
software cache implementation for the compiler.

The current version of the MDSC does
not feature cache coherency. Currently it is not
needed because either only read-only data is
cached or efficient multicore kernel implemen-
tation avoids the need for coherency. However,
cache coherency is an important feature for
caches in a multicore environment. Lee et al.
(2008) and Seo et al. (2009) propose a coher-
ent shared memory interface for the Cell BE
using software caches. It employs a software
cache in the local store for page-level caching.
It guarantees coherence at the page level and
uses centralized lazy release coherency.

A static analysis tool for finding the best
parameters for a software cache given an ap-
plication is proposed in (Senthil et al., 2008).
The tool uses traces with annotated memory
accesses and bases its analysis on the frequency
of cache accesses to a given cache line and the
number of accesses between two accesses to
the same cache line. A similar tool would be
desirable for the MDSC as in this work we
rely on exhaustive search to find the optimal
parameters. The development of such a tool is
future work.

Zattetal. (2007) show thatcachingthe MC
reference area can save up to 60% bandwidth and

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

InternationalJournalofEmbeddedandReal-Time Communication Systems, 1(4), 1-20, October-December2010 3

more than 75% ofthe memory cycles compared
to issuing anew request for each reference area.
The presented solution is hardware specific,
however, and therefore not sufficiently general/
flexible to be implemented in a programmable
embedded multimedia system.

This article makes the following contribu-
tions:

* Anevaluation ofthe overheadincurredby a
generic software cache forMC and GLCM.

* We propose the Multidimensional Soft-
ware Cache (MDSC) that caches 1- to
4-dimensional blocks of data that are
logically adjacent, thereby reducing the
number of cache accesses and the DMA
startup overhead.

* Wedetermine the optimal parameters of the
MDSC for MC as well as GLCM.

* ForMCseveral optimizations are presented
that reduce the number of accesses to the
MDSC.

* We compare the performance of the
MDSC to the performance achieved by
hand-programmed DMAs as well as the
heavily optimized IBM software cache.
The experimental results show that for
GLCM the MDCS provides an 8% per-
formance improvement compared to the
IBM software cache. For MC, the MDSC
provides an average 65% improvement
over just-in-time DMAs and 43% over the
IBM software cache.

This article is organized as follows.
First section describes the architecture of the
Cell processor and evaluates the latency and
throughput of DMA operations. The MDSC
implementation, properties, and its application
programming interface (API) are presented in
thenext section. Itis followed by the description
of the employed benchmarks and the MDSC
optimizations for MC, and the presentation of
the methodology used to evaluate the proposed
software cache. Afterwards, the experimental
results are presented and discussed. Finally,
conclusions are drawn.

CELL PROCESSOR
ARCHITECTURE

This section briefly describes the Cell processor.
The main characteristics of the Cell processor
are presented with the focus on the memory
system. It also reports the memory latency for
transferring data from main memory as a func-
tion of the size of the request and the number
of requesting processing elements.

Cell Processor

The Cell Broadband Engine (Kahle etal., 2005;
Gschwind et al., 2006) is a heterogeneous
multi-core processor designed for multimedia
and game processing. It consists of one Power
Processor Element (PPE) and eight Synergistic
Processing Elements (SPEs) connected by the
Element Interconnect Bus (EIB) that contains
four 16B-wide data rings. A block diagram of
the processor is depicted in Figure 1.

The PPE is a simplified version of the
PowerPCprocessor family. ItisbasedonIBM’s
64-bit Power Architecture (“Power Architec-
ture,” 2010) with 128-bit vector media exten-
sions. It is fully compliant with the 64-bit
Power Architecture specification and can run
32-bit and 64-bit operating systems and ap-
plications. The PPE is dual-threaded and has a
two-way in-order execution pipeline unit with
23 stages. The PPE supports a conventional
two-level cache hierarchy with 32KB L1 in-
struction and data caches and a 512KB unified
L2 cache.

Asdepicted in Figure 1, each SPE contains
a Synergistic Processing Unit (SPU), a Local
Store, and a Memory Flow Controller (MFC).
The Local Storeis a256KB scratchpad memory
and the MFC is composed of a DMA engine, a
memory management unit, and a bus interface.
The SPUs are tailored for multimedia process-
ing and are single-threaded, non-preemptive,
two-way in-order processors. The register file
consists of 128 128-bit wide registers. All in-
structions are Single-Instruction-Multiple-Data
(SIMD) and they operate on 128-bit vectors
with varying element width, i.e., 2 X 64-bit, 4

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

4 InternationalJournalofEmbeddedandReal-Time Commi

unicationSystems, 1(4),1-20,October-December2010

Figure 1. Cell Broadband Engine block diagram

SPE SPE SPE SPE SPE
SPU{—) LS 1 _JT T 1T
: ﬁ MIC C:{ EIB }::3 PPE
MFG 5 S | N 1
SPE SPE SPE SPE
v U

x 32-bit, 8 x 16-bit, 16 x 8-bit, or 128 x 1-bit.
Data should be 128-bit aligned and there is no
hardware support for scalar operations. The
design decision of not supporting scalar and
unaligned operations was taken to reduce the
control complexity and to eliminate several
stages from the critical memory access path
(Gschwind et al., 2006).

An SPE can only access data and code
stored in its 256KB Local Store. To access
the external memory the SPU issue a DMA
request to the MFC. There are four types of
DMA requests: put, get, putlist, and getlist. A
put request writes data from the Local Store
to the external memory. A get copies data in
the external memory to the Local Store. Re-
quests can be grouped in a list withup to 1024
requests, and are issued by putlist and getlist
requests. The DMA unit requests the data and
sets a flag when the request is performed. Data
andinstructions are transferred in packets of at
most 16KB and both the source and the target
address must be 16B aligned. The DMA unit
can handle up to 16 requests concurrently
and data communication can be performed in
parallel with computation. Double buffering
can be employed to hide the DMA transfer
latency. The Local Stores are mapped in the
global memory address space to allow Local
Store-to-Local Store communication, but
this memory (if cached) is not coherent in
the system.

DMA Latency

Figure 2 depicts the DMA latency as function
of the DMA size. It can be seen that memory
request latencies are approximately the same
up to 1024 bytes for the Cell processor. It also
depicts the DMA latency when several SPUs
are communicating simultaneously. There is
no difference in delay when 1 or 2 SPUs are
fetching databecause the Cell processor features
a dual channel memory controller. However, a
single SPU cannot make use of both channels
simultaneously. Full bandwidth is achieved only
when several SPUs are accessing the external
memory simultaneously.

Several DMA operations can be grouped
inasingle DMAlistoperation in order to reduce
the DMA startup cost. Figure 3 depicts the
latency of DMA list operations for several
numbers of requests (Y) and request sizes (X).
For example, the label Y2X256 means that 2
DMA operations are grouped in a single DMA
list operation, and that each operation fetches
256 bytes. We refer to the size of each indi-
vidual DMA operation as the /ine size. For
clarity, results for 64- and 128-byte lines have
been omitted, as the results are very similar to
the results for 32- and 256-byte lines. The la-
tency for requesting the same block using
several individual DMA requests is depicted
for comparison.

The results show that requesting multiple
lines reduces the request overhead. The average

Copyright © 2010, IGI Global. Copying or distributing in print or ele
is prohibited.

ctronic forms without written permission of IGI Global

International JournalofEmbeddedandReal-Time Communication Systems, 1(4), 1-20,0ctober-December20105

Figure 2. DMA latency as function size of the transfer size, for several SPEs communicating
simultaneously

2 T T T T T T T T T T
1 SPE —4—
28PE -—»—-
15 |4 SPE % i
. 6 SPE —&—
n
5
>
g 1h
[}
K
3
0.5 |-
A A —
0 l[1 1] 1
8 16 32 64 128 256 512 1024 2048 4096 8192 16384

DMA size in bytes

Figure 3. Latency of DMA list operation compared with a sequence of individual DMAs requests
Jor the same 2D block configuration

35
Sequential DMAs ———
DMA List ez .
30 | _
25 | -
—_ 20} . "
[2]
2 _ 1 i
[]
£ I i |l
= 15 | H
10 F i AN
! Ay
°T : | HIE
A [L 18 H t (i
b 41N i
0 b RIE e RIS TH o i R b (1K m R AIR I
}%P}P}Fk# boda bbb ks PFLP N,
5
o)
clekes ‘5‘ @(9‘3797%‘%;7 Y‘%oy% 70‘{9%00%@5,

D Block Gonfiguration

request time is reduced by 50% using DMA MULTIDIMENSIONAL

list, when compared withusing sequential DMA SOFTWARE CACHE
requests. It ranges from 27% when fetching 2

lines to 69% for 64 lines. In this section we propose a Multidimensional
Software Cache (MDSC). We start by highlight-

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

6 InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4),1-20,October-December2010

ing the differences between hardware caches
and software caches. Afterwards the reasons
to shift from address indexed caches to data
structure indexed caches are presented. Next,
the arguments for a multidimensional software
cache are given. With the underlining motives
addressed, the proposed software cache (SC)
structure is presented.

Scratchpad memories are more area and
powerefficient than hardware caches. However,
they require additional programming effort
as they need explicit commands to fetch data
from the main memory. These commands can
be automatically handled by compilers, but are
usually handled by the programmer for better
performance or because of lack of tools.

One option to increasing the efficacy of
scratchpad based systems is to use a software
cache. They increase the programmability
and with software cache the limited size of
the Local Store is less of a concern. Software
caches, however, incur additional overhead,
which can be prohibitive. This overhead is
further increased if the cache does not match
the application’s data access pattern. This is the
case when using a generic cache for MC and
for other image processing applications, such
as texture mapping.

Software caches provide the abstraction
of a large, fast local memory to the program-
mer. This abstraction captures all data and
instructions used in the program. Because of
its generality, indexing by the memory address
is a natural choice. However, because of this
generality and because every access has to be
done through the caches, it is not possible to
exploit application-specific data locality.

Software caches for scratchpad based
processors such as the IBM software cache
(“Example Library,” 2010) capture accesses
to specific structures. Only the data structures
that do not fit in the Local Store are likely to
be accessed through the SC. Just like hard-
ware caches, the IBM software cache uses
the memory addresses of the data to index the
cache. Once again it loses the opportunity to
use the SC parameters information to exploit
data locality. In this case it is critical, as access-

ing the cache implies runtime overhead. It is
possible to exploit data locality to reduce SC
access overhead, duetoits characteristics. These
characteristics include the parameters that are
known at compile time and that SC captures
only few specific data structures access.

The MDSC uses the indices of the ac-
cessed data structure to index the cache.
So, instead of consulting the cache as ac-
cess_SC(&datastructurefi][j]), we propose
access MDSC(&datastructure, i, j). Although
similar, the second makes explicit more infor-
mation about the data structure and the access.
Another characteristic of theMDSCistheability
to mimic in the SC the logical organization of
the accessed data structure in the main memory.
The cacheblocks are 1-to 4-dimensional. A2D
cache can be used to store rectangular areas of
images while a 3D cache can be used to store
areas of a sequence of video frames. We cannot
give an example where 4D cache blocks would
be useful. However, because of the SIMD in-
structions set of the SPE, 4D cache blocks are
just as efficient as 2D and 3D cache blocks.

This approach makes the MDSC differ from
aregular cache in two ways. First, it differs in
the tag calculation and the set allocation. In a
regular cache the tag is the address shifted by
the base-2 logarithm of the size of the cache
line. For MDSC the tag is the concatenation of
each index shifted by the base-2 logarithm of
the size of its block dimension. The set is also
calculated based on the indices. An exclusive
or operation is performed between each index
value and its successorand the results are added
together. The set is the sum modulo the number
of sets in the MDSC. The second difference is
the format and the load of the multidimensional
block. The multidimensional block is formed by
a group of cache lines gathered from memory
according to the number and size of the dimen-
sions of the MDSC. For a 2D MDSC, » cache
lines represent a block. A strided access to the
main memory is performed to load the consecu-
tive lines. In our implementation a DMA list is
created with a DM A request for each list entry.
It is similar for 3 and 4-dimensional blocks

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

International JournalofEmbeddedandReal-Time Communication Systems, 1(4),1-20,October-December20107

where a 3D block is a collection of 2D blocks
and a 4D blocks is a collection of 3D blocks.

This approach presents two advantages
overregular caches. First, itreduces the memory
latency by grouping several memory requests.
Since, as was shown in the previous section, a
single DMA list operation has a lower latency
than several sequential DMAs. For regular
caches, accessing anew image areawould result
in anew DMA request for each line of the new
area being accessed. The second advantage is
thatthe MDSC canbe used to reduce thenumber
of accesses to the SC. As the shape of the cache
block is known, it can be used to access the data
of a cache set without actually checking if the
data is present in the cache. This can be done
by simple pointer arithmetic. In other words, a
single cache lockup is necessary for accessing
an entire block.

Like aregular cache, the MDSC performs
the following steps to access a block:

1. Check if the data is already present in
Local Store. Each block in the cache is
represented by a tag. The tag is formed by
concatenating the indices of the data that is
beingaccessedafter dividing each index by
the size of'its respective block dimension.
Inthe case ofasetassociative cache, ahash
function is used to define in which set the
block referred to by the indices is stored.
The new formed tag is then compared with
the other tags in the specific set in the tag
array (in case of a set associative cache)
or with all tags in the tag array (for a fully
associative cache).

2. Incasethetagisnotpresent, decide where
to place the new block. If the block is not
currently stored in the cache it is first
necessary to determine where it should
be placed. The MDSC uses the next posi-
tion of the last allocated block in a FIFO
fashion, both for the set associative and
fully associative configurations.

3. Ifoutofspace, decide which block to eject
from Local Store. If the chosen place was
already been used by another block that
was modified, it needs to be written back

to the main memory. The tag of the block
being written back is separated according
to the size of each dimensions of the block
to recover the block address in the main
memory.

4. If necessary, perform DMA operations.
Issue DMA requests to, if necessary, copy
the modified data back to main memory and
to copy the new block from main memory
to the Local Store. A MDA list is prepared
one entry each line of the multidimensional
block. With the list ready a putlist and/or
getlist is issued. The process blocks until
the DMA unit informs the SPU that the
new block is present in the Local Store.

5. Perform memory access - Amodulo opera-
tion is performed between each index of
the request position with it’s respectively
dimension size. The result is used to cal-
culate the position of the requested data in
the cached block.

The associativity of the MDSC can be
configured. It allows a fully or a set associa-
tive configuration and for static or dynamic
implementation. A fully associative cache is
possible when the number of cache blocks is
small. For the fully associative configuration,
the MDSC uses First-In-First-Out (FIFO)
policy to replace blocks when the cache is fully
utilized. The FIFO was selected due its low
implementation complexity. For setassociative
a round-robin mechanism is used to select the
block to be replaced.

In the static implementation the MDSC
parameters are constants and thus are known at
compiletime while the dynamic implementation
allows the MDSC parameters to be modified at
runtime. The former is more efficient than the
latter as it allows optimization of the code for
several parameter options. However, a dynamic
configuration is necessary when the data to be
cached can have different characteristics, such
as the resolution of the video being decoded,
and the MDSC needs to adapt to these char-
acteristics.

The Application Programming Inter-
face (API) consists of two functions: ac-

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

8 InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4),1-20, October-December2010

cess_sc(&datastructure, i, j) and accessp
sc(&datastructure, i, j). The function access_sc
returns the data stored in the (i,j) position while
the function accessp sc returns its address
(memory pointer). These functions checks if
the 2D block which contains datastructurefi]
[i] is present in the software cache. If it is,
this function returns immediately. If not, this
function blocks until the 2D block which con-
tains datastructure[iJ[i] is fetched from main
memory to the software cache and then returns
to the caller.

Because the MDSC uses matrix indices
to index the cache, the boundaries of the data
structure need to be specified. This can be done
via macros in the static configuration, thus
increasing the performance, or dynamically at
runtime when using the dynamic configura-
tion. Figure 4 depicts how the MDSC can be
configured.

STUDIED APPLICATIONS AND
MDSC ENHANCEMENTS

Inthissection, the applications used forthe case
study are presented and qualitative reasons are
given why the studied applications could profit
from a MDSC. First, the GLCM algorithm is

Figure 4. MDSC interface

fidefine CACHE NAME gsc y
#define CACHED TYPE unsigned char

presented. It is followed by a description of
MC. For the MC kernel it is possible to exploit
the access behavior. We will describe several
enhancements that exploit this fact.

GLCM

The Gray-Level Co-occurrence Matrices
(GLCM) is a tabulation of how often different
combinations of pixel brightness values (gray
levels) occur in an image. The second order
GLCM considers the relationship between
groups of two (usually neighboring) pixels in
the original image. It considers the relation
between two pixels at a time, called the refer-
ence and the neighbor pixel. The GLCM is
useful to extract statistical characteristics of
the image and is used in medical imaging and
content based image retrieval (Shahbahrami
et al., 2008). In this study, all 9 neighboring
pixels are examined, as depicted by the pseudo
code in Figure 5.

In this application, the source image being
processed can be easily accessed through
DMAs. The temporal locality of the image is
very low and the spatial locality can be captured
with DMAs. Also the DMA latency can be
bidden using double buffering. However, the
GLCM matrix is indirectly indexed and its size

#define CACHE TYPE 0 /* O=read-only, l=read-write */
ffdefine CACHE STATS /* Activates statistic collection */
jidefine CACHE FULL ASSOC 0 /* l=cache is fully associative */
#define CACHE LOG2NWAY 2 /* Log 2 number of ways */
#define CACHE_LOG2NSETS 5 /* Log 2 number of sets */
#define CACHE DIM 3 /* Number of block dimensions */
#define CACHE X LOG2SIZE 9 /* Log 2 first dimension (line size) */

/* When accessing the MDSC, the first index must be between 0 and CACHE X RANGE */

f#idefine CACHE X RANGE 1920
#define CACHE LOG2 X RANGE 11

/* Log2 (CACHE X RANGE)

#define CACHE Y LOG2SIZE 4 /* Log 2 second dimension (number of lines)*/

#define CACHE Y RANGE 1088

#define CACHE LOGZ_Y RANGE 11 /% Log2 (CACHE Y RANGE)

#define CACHE Z LOG2SIZE 1 /* Log 2 third dimension */

jidefine CACHE Z RANGE 256

#define CACHE LOG2_% RANGE 8 /* Log2 (CACHE % RANGE) */

#include 4<mdsc-api B>

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

International JournalofEmbeddedandReal-TimeCommunication Systems, 1(4),1-20,0October-December20109

Figure 5. Pseudo-code for GLCM

int GLCM[256] [256] ;

for(i=1; i < img height-1; i++)
for (3=1; Jj < img width-1; j++)

{
GLCM[img[i][3] 1
GLCM[img[i][3j1 1
GLCM[img[i]1[3] 1
GLCM[img[i][3] 1
GLCM[img[i] [3] 1

GLCMI img[i}[3]]
GLCM[img[i])[3]]
GLCM[img[iJ[3] 1

s 256K B, 256x256%4 bytes. This is the entire
size of the Local Store and this is only for one
color component ofthe image. Differently from
the source image, itis not possible to determine
in advance which position of the matrix will be
accessed tomake use ofthe DM As. Using DMA
requests to access each position of the matrix
would lead to huge number of DMA requests
that would slowdown the performance by 2
orders of magnitude, making this solution
unfeasible.

Photos, however, usually exhibit large
amounts of spatial redundancy, which is ex-
ploited by image compression algorithms. The
same type of redundancy can be exploited here
by caches. Because the change of color is usu-
ally smooth, two-dimensional portions of the
GLCM matrix are likely to be accessed close
in time, in other words, the spatial redundancy
of photos is translated as temporal redundancy
when updating the matrix.

H.264 Motion Compensation

Motion Compensation (MC) is the process of
copying an area of the reference frame to re-
constructthe current frame. Foradvanced video
codecs such as H.264, both the reference frame
and the Motion Vectors (MV) need to be calcu-
lated. InH.264, this processisknown as Motion
Vector Prediction (MVP) and is part of the MC.
Only after the MVP it is possible to request
the necessary data to reconstruct the frame. In

~— - -

- -

img[i-1][3-1] J++;
img[i-11[3 1 I++;
img[i-1] [3+1] T4+

img[il[3-11 1++;
img[i] [3+1] 1++;

img[i+1l][3-1] 1++;
img[i+11[3 1 I++;
img[i+1] [§+1] 1++;

H.264, MVs can span half of the vertical frame
size and it is possible to have up to 16 frames
as candidates for reference frame. This makes
it impossible to speculatively load all possible
areas in advance. In our Cell implementation
of macroblock (MB) decoding, the MC kernel
is the most time consuming, representing 62%
of the total execution time. It requests the ref-
erence area through DMA transfers and waits
until data is present in the Local Store. The rest
of the execution time is spent in DMA data in
and out (excluding the reference area) 14%,
deblocking filter 17%, and Inverse Discrete
Cosine Transform 7%. The memory requests
represent 75% of the execution time of the MC
kernel. These numbers show the importance of
improving the performance of MC.

The unpredictability of the data accesses
in MC causes two significant problems on
scratchpad memory-based processors. The
first problem is that the data transfer cannot be
overlapped with the computation. The process
has to wait for the data to be transferred to the
scratchpad memory. Because H.264 allows very
fine grained area to be copied, up to 4x4 pixels,
the waiting time for the data can be significant.
The second problem is that the data locality
cannot be exploited. It is difficult to keep track
of the memory area present in the scratchpad
memory and new datamustbe requested for each
macroblock (MB) partition. Because the MVs
are usually small and not randomly distributed,
the same area can be copied several times. Zatt

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

10InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4), 1-20,0ctober-December2010

et al. (2007) show that caching the reference
area can save up to 60% bandwidth and more
than 75% of the memory cycles.

First, the data locality exhibit by H.264
MCisinvestigated. H.264 sequences from HD-
VideoBench (Alvarez et al., 2007) are used as
input for the experiments. Each video sequence
consists of 100 frames in standard (SD), high-
definition (HD), and full high-definition (FHD)
resolutions at 25 frames per second.

To evaluate the data locality, the number
of bytes requested from memory is measured.
For the measurement, the motion vectors and
reference indices are extracted from the encoded
sequences foreach MB partition. Because ofthe
MC quarter-pixel precision, adjacent additional
areas need to be fetched from the memory. For
vertical filtering, five extra pixels are required
for each line, while for horizontal filtering,
five extra lines are required. Details of the MC
implementation can be found in (Azevedo et
al., 2007).

A tool was developed to translate the
extracted MVs to memory requests in the
DinerolV (Edler & Hill, 2010) cache simulator
input format. DineroIV was used to report the
requested number of bytes for each sequence.
Three simulations were performed and the
results are reported in Figure 6. The first simu-
lates a 1-byte cache to depict the temporal data
reuse of MC. The second simulationreports the
data traffic for a 16-byte cache with a 16-byte
line size. The third simulation reports the data
traffic for a 64KB direct mapped cache with
64-byte cache lines.The size of the original
uncompressed sequence is presented as file size.
The difference between the first and second
simulations with the original file size shows
the amount of data being reused.

The results show that the sequences ex-
hibit data locality. In case of the 1-byte cache,
the datalocality is temporal, while in the second
case, of the 16-byte cache, the reported data
locality is both spatial and temporal. The Riv-
erbed sequences do not exhibit a lot of data
reuse. These sequences use mostly intra predic-
tion MBs that uses neighboring pixels to predict

the area to be reconstructed, thus not making
use of MC. MC references about twice the
volume of data of the original sequence (1-byte
cache). But, because of memory alignment
constraints, the actual volume of transferred
data is about 3.5 times the volume of the
original sequence (as shown by the 16-byte
cache result). The 64KB cache reduces the
volume of data transferred by 34% compared
to the 16-byte cache. It reduces the data volume
to 2.3 times of the original sequence. This in-
dicates that the cache is capturing part of the
data locality of the MC. It can be improved as
it is an unified cache capturing the three color
component access, thus increasing conflicts.

The MDSC reference frame number and
the vertical and horizontal coordinates of the
MV.This access method enables to exploit the
access pattern as it exposes pattern specific
information. Eachblock ofthe MDSCis anxxy
rectangular area of a frame. The x and y values
and their ranges are configurable at runtime.

Because of the data locality characteristics
of MC, a fully associative configuration was
selected, as it reduces the number of conflicts.
A fully associative cache is possible because
of the small number of blocks present in the
implementation, as will be shown in the next
section. To support different video resolutions,
the MC has to use a dynamic configuration of
the MDSC.

MC Enhancements

The video frames are stored in YCbCr format
instead of the RGB format, and each compo-
nent is stored in a separated data structure. To
increase the compaction, the color components
(Cb and Cr) are subsampled 1:4 as they are less
perceptive to the human eye. The MVs are the
same for all components, but, because of the
subsampling, they need to be adjusted forthe Cb
and Cr components. The MDSC configuration
exploits this feature and checks and requests at
once all components. This reduces the number
of accesses to the MDSC by a factor of 3 and
overlaps the memory requests, thus reducing
the memory latency.

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4), 1-20,October-December2010 11

Figure 6. Data locality in MC

Traific in MBytes

1600
File Size -1 .
1'Byte Cache X3]
1400 I 16-Byte Cache imames E .
64KB Cache mwm—m 3
1200 |- [;3
g &
1000 | ;A‘ 3
800 ;_](53
17 s
600 | & K
i K
s N
400 | & e
i = 4 B
200 ﬁi{j 5 7 3
0 rl.i.fl rﬂ! ol bl e
D D DB D B
NG N\, N N\%, NG,
g By . %
% %, My,

Video sequence

Fouradditional enhancement strategies that

are employed to reduce the number of accesses
tothe MDSC are described below. Each strategy
builds upon the strategies presented above it.

Extended_X: Toreducethenumberofaccesses

to the software cache, an extended line
technique was implemented based on
the technique described in (Azevedo et
al. (2007)). The maximum line size to
be accessed is 21 pixels. This consists of
the 16 pixels of the maximum MB parti-
tion plus 5 extra pixels for quarter-pixel
filtering. These pixels can be spread over
three 128-bit words. In this technique not
only the pixels corresponding to 2D cache
block are fetched, but also the 32 pixel
columns to the right of the block. Adding
these as extra columns for each cache line
guarantees that all the data that need to
be filtered are present in the cache. This
reduces the number of cache accesses per
line from 2, or occasionally 3, to 1. Note
that this implies that some pixels can be

present twice in the cache, once as part
of the macroblock it pertains to and once
stored with the macroblocktotheleft ofits
macroblock. When accessing the cache,
however, the first one is returned. Because
only read-only data is cached, this does
not cause inconsistency problems.

Extended_XY: This technique is an extension

of the Extended X technique and can be
applied only when the vertical span of the
block is equal or larger than 32 lines, as
the number of line needs to be a power
of 2. Because the maximum MB parti-
tion plus the additional area are 21 lines
long in the vertical direction, just two
accesses to the MDSC are sufficient to
guarantee that the data are present in the
cache. Only the first and last lines of the
partition need to be accessed. The border
between the two cached areas is found by
masking the y coordinate of the MV with
the height of the block.

SIMD: Since the Cell SPE is a SIMD archi-

tecture, a natural step to improve perfor-

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

12InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4), 1-20,October-December2010

mance is to vectorize the tag search. Each
tagis a 32-bit integer and the SPE allows
vector operations with four 32-bit words.
In this optimization, four positions of the
tag array are compared simultaneously
with the searched tag. Once the tag is
found, each of the four positions of the
tag array is compared individually to find
the block index.

Fixed: As previously stated, the parameters for
the MDSC are configurable at runtime.
In this version, the cache parameters
were fixed, meaning that loop bound-
aries are known at compile time. This
allows for certain loop optimizations to
be performed, including the elimination
of branches and loop unrolling.

EXPERIMENTAL
METHODOLOGY

This research focuses on the performance of
the cache access functions. Because of that, the
kernels that access the cache will be measured.
For the MC, the access to the reference area
is evaluated. For the GLCM, the whole func-
tion is measured. This is because the GLCM
only performs a load, an add, and a store for
each position. The images are loaded through
explicit DMA transfers and do not make part
to the GLCM calculation.

The measurements were performed on a
Sony Playstation 3 (PS3). The Cell in the PS3
has 6 out of the 8 SPEs available. One SPE is
disabled for redundancy purposes and another
one is used by the system for resources access
management. Another important characteris-
tic is that the PS3 has only 256MB of RAM.
This small amount of memory causes memory
swaps with the disk. For this reason, the MC
kernel was modified to access only 5 frames,
which corresponds to the number of frames in
the decoder frame buffer. Otherwise the DMA
transfer time is doubled due to memory (de)
allocation routines by the OS.

Tomeasure the performance ofthe kernels,
SPU hardware decrementers were used. The
decrementer runs at a smaller frequency than

the processor itself. In our case, it runs at 78.8
MHz, which is 40 times slower. This approach
isnotsuitable for fine grain profiling, butis suf-
ficiently accurate to measure the performance
of functions. The spu_read decrementer and
spu_write_decrementer intrinsics are used to
access the decrementer.

EXPERIMENTAL RESULTS

The HDVideoBench (Alvarez et al., 2007) is
used as benchmark for the experiments. Each
video sequence is composed by 100 frames in
standard (SD), high-definition (HD), and full
high-definition (FHD) resolutions at 25 frames
per second.

All results were obtained using a single
SPE. The experiments were not performed
using several cores because the parallelization
strategy would influence the results and would
change the focus of the work. Both kernels can
run in a multicore environment without cache
coherency. The GLCM kernel could have a
separated matrix for each core and process a
slice of the frame. After finishing the processing,
the matrices would need to be added together
for the final result. For MC the cache is a read-
only, thus is does not need cache coherency to
work in a multicore environment.

GLCM Results

To generate input for GLCM, the first frame of
eachHDVideoBench sequence was transformed
into an RGB image and each component was
processed. Several configurations of a 4-way
set associative 64KB MDSC were tested to
determine the optimal configuration. The num-
ber of sets ranged from 4 to 64, the number of
lines from 1 to 32, and the line size from 128
to 1024 bytes. Figure 7 depicts the results of all
possible configurations that respect the 64KB
cache size. In this figure each bar is labeled
as SXLxB, where S is the base-2 logarithm of
the number of sets, L is the base-2 logarithm
of the number of lines in a 2D block, and B is
the base-2 logarithm of the line size in bytes.
For instance, 4x3%7 denotes the configuration

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4),1-20,0ctober-December201013

with 16 sets, 8 lines, and 128 bytes per line.
In other words, the block size of this MDSC
configuration is 8x128. As shown in the figure,
the GLCM performs better with a higher num-
ber of sets with a shorter line size. Because of
these characteristics a fully associative MDSC
was not evaluated as it requires the opposite
characteristics to perform well.

The best performing MDSC configuration
consists of 64 sets and uses a block size of
1x256 bytes (6x0x8). Surprisingly, 1-dimen-
sional blocks yield the highest performance.
The reason for this is the latency for strided
access. The reduction inmiss rate, when increas-
ing the block height, is not larger than the in-
crease inthelatency forlonger DM A listrequest.
However, the performance of the configurations
6x1x7 and 4x3x7 that uses blocks of 2x128
bytes and 8x128 are less than 1% lower than
the best configuration.

Figure 8 compares the performance of the
optimal MDSC configuration to the optimal
configuration of the IBM SC. Experimentally
we determined that the optimal 64KB IBM

SC configuration for GLCM is 4-way set-
associative, consists of 128 sets, and uses a
line size of 128 bytes. For comparison, the time
taken by the GLCM kerel when the GLCM
matrix fits in the Local Store is also depicted.
To achieve this, the image color resolution had
to be quantitized to 6 bits.

Compared to the IBM SC, the MDSC
provides an 8% improvement on average. This
performance improvement is due to the lower
miss rate achieved by the MDSC. For example,
for the FHD BlueSky sequence (denoted FHD/
BS in Figure 8, the MDSC incurs a miss rate
of 2.4%, while the IBM SC incurs a miss rate
of 2.6%. This 0.2% difference in miss rate
translates to an 8% increase inmemory requests
by the IBM SC compared to the MDSC. It also
increases the number of times the miss handling
code of the software cache is executed. The
miss handling code is much more time demand-
ing than the hit branch as it has to choose a
block to replace, calculate the block memory
address based onthe old tag, and issue arequest
for the new block.

Figure 7. Time taken by the GLCM kernel for several MDSC configurations

1.05
1|] .
0.95 | i
) _
[} » — — -
g °°
’,_,
0.85 -] -
| H H H |—l |
078 Q. S, 9 S @ B B D 2. % % 8 U 3 E] Q
e % %, % %, % %, % % % %, %
5, %, 0, ™, %, N, T, e T, Ty M, e N, e, %,
Configuration

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

14 InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4), 1-20,October-December2010

Figure 8. Time taken by the GLCM kernel for several video sequences when the optimal IBM
SC configuration is employed (IBM SC), when the optimal MDSC configuration is employed

(MDSC), and when the GLCM matrix would fit in the Local Store

0.9
IBM SC c—— —
MDSC Ex=x==
0.8 | Local Store xz:a F3 _ _ - .
]
: =
- 2 \
0.7 34 % % < .
% A =] *
R < b
<] X ,E :»
A % .
oo | 110 1B |k
<] bt ,2 v
X, Si\ x) x
— 5 x < <] " -
@ 0.5 ¢ 5/ % 5
_ . & o %
g] 7]] H % < K] o
= N p p ¥ <] ¢ K .
= 04 $ - > > S & 5 "
T8 1H B IR E (R E
b bS]] 4 <] L .
2 24 X 9 * [A,
03 | 5 » < 3 s y o % -]
) 4 » ;a <] Lo (0
< < % & s 3 W .
| . < < & A g p -
0.2 . 2 ¢ 2 [pd | ke 5 R
& o 02 2 | s | RS
; > ” < » % :';.;:E et | IR K
¢ O > 2 v R xt b o)
o1 r g 5 G | K | R | B | B | B & T
2 Y A | R | B R | R | b | RS
< 3 S| BER G R B | IR | e
< % S % % i KR
‘ H <= {r A i] ;4:52 W5] ;J
0 S g Eel o] el ey] N Fofd
Ay Ay Ay Ay
%, % 2 %, %, %, % % % %
N . . \.
& e Ty TR TR N My M
Video Sequence
The MDSC set hash function, based on MC Results

indices instead of linear addresses, reduces
the number of conflict misses compared to
the IBM SC. The MDSC hash function more
equally distributes the number of accesses over
the sets. For example, for FHD BlueSky the
average deviation of the number of accesses
to each set of the MDSC is reduced by 18%
when compared with the IBM SC with the
same configuration. With a better distribution of
accesses the number of replacements is lower,
which reduces the miss rate.

Compared to when the GLCM matrix
would fit in the Local Store, which is included
only for comparison, the MDSC incurs a slow-
down of 3.75 on average. Considering that the
GLCM kernel consists of simple processing
and the fact that an access to the MDSC takes
around 20 cycles, the MDSC (as well asthe IBM
SC) quite efficiently bridge the memory gap.

In order to determine the optimal 2D block
size of the MDSC for the MC kernel, the de-
sign space was explored. The MVs from the
HDVideoBench sequences were used as input.
MYVs and reference indices are extracted from
the encoded sequences for each MB partition.
Blocks of size 22x2™ were tested, for » between
1 and 6, and for m between 5 and 8. For each
block size, the miss rate was calculated. The
size of the MDSC was fixed at 96KB, 64KB
for the Y components and 16KB for the Cb and
Cr components each. As noted in Studied Ap-
plications section, the MDSC for MC is fully
associative. None ofthe enhancement discussed
in MC Enhancements were considered in this
exploration.

Figure 9 depicts the miss rate for each
design point. It uses the same labeling style

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4),1-20,October-December2010 15

as previous figures with base-2 logarithm of
the number of blocks in the cache, number
of lines per block, and line size in bytes. Not
surprisingly, the miss rate decreases when the
2D block size increases. The results show that
the 8x64x128 blocks exhibit a miss rate of
0.11%, and that the 8x32x256 and 4x64x256
exhibit the same miss rate. The 32x256 block
was selected because, as depicted in Figure 2,
fetching 256 bytes is as efficient as fetching
fewer bytes. 32 rows also allow the use of the
Extended XY enhancementmethodology. The
0.11% miss rate reduces the total number of
DMA transfers to 32% of the implementation
using hand programmed DMA requests.

A similar exploration was performed for
the IBM SC. The IBM SC was configured to
be 4-way set associative and the line size was
varied from 16 to 256 bytes. As for the MDSC,
a 64KB cache was used for the Y components
and two 16KB caches for both the Cb and Cr
components. It should be noted that unlike the

MDSC the IBM SC uses three separated
caches, one for each component. The IBM SC
uses the Round-Robin replacement policy. The
bestperforming SC configurationuses 256-byte
lines and has a miss rate of 8.6% for Y compo-
nent. Because the IBM SC can use only 1-di-
mensional blocks while the application pro-
cesses 2-dimensional blocks, the IBM SC miss
rate is much higher that the miss rate of the
MDSC.

Figure 10 breaks downthetime taken by the
MC kernel when the baseline MDSC (without
enhancements) is employed into time needed
to access the MDSC and time required for
the DMA transfers. For comparison, the time
taken by a version that does not use a software
cache but fetches the reference areas from main
memory using explicit, hand-programmed
DMA transfers is also included and labeled
DMA. The results include the time for frame
border detection, the time to fetch the additional
quarter-pixel area, the time to fetch additional Cb

Figure 9. Miss rate incurred by the MC kernel for different configurations of a 96KB MDSC

3.5
3 -
25 -

N

£ 2r 7

< _

L]

: _

s 15 | -
1p .
b nH HH HH H |
. HH Hﬂﬂ HHHHHHHHHHHHHH

2y 70O 8 A G 8G9 ESESE SSRGS %68 T
%007, oy At .t i g 8 8 s, S S, TS T g T
g%’q»@@%ﬁ@ﬁﬁ}:ﬁ%@&%f:»,,%&@&ﬁﬁﬁ@%@,\%@&@%@f%

Configuration

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

16 InternationalJJournalofEmbeddedandReal-Time Communication Systems, 1(4), 1-20,October-December2010

and Cr components, and the handling of 128-bit
alignment constraints. The border detection and
the alignment calculation are included because
in the DMA time because they are overlapped
with memory transfers and account for less
than 1% of the total DMA time. The baseline
MDSC implementation performs an MDSC
access for every 16-byte quadword. It is clear
from the figure that the majority of the time is
spent accessing the cache rather than transfer-
ring data. This is because for every MDSC
access the index has to be calculated and the
tag has to be compared to the tags stored in the
software cache. This overheadisrelatively time
consuming compared to the time taken by the
DMA transfers. Furthermore, for all but one se-
quence, the version that uses hand-programmed
DMA:ss is faster than the version that employs
the baseline MDSC. The used sequences are
composed of 100 frames and are 4 seconds long
(25 fps). The proposed enhancements exploit
the known memory access behavior to reduce
this overhead.

Figure 11 compares the performance of the
direct DMA version of MC, the IBM SC, the
baseline MDSC, and the MDSC extended with
the enhancements described in Section MC
Enhancements. It depicts the time in seconds

to fetch the reference area from main memory
to the SPE scratchpad. Our baseline for com-
parison is the DMA version of MC. The line
labeled Real Time depicts the performance
required for real time processing. As in the
previous experiment, the DMA include border
and alignment handling while the other versions
depict the time required for MC only.

When the number of MDSC accesses is
reduced with the Extended X technique, an
average 25% improvement over the DMA ver-
sion is achieved. The Extended X technique
reduces the number of MDSC accesses by a
factor of 2, because it ensures that when the
first pixel in a line is present in the MDSC, the
entire line is present. Checking only the pres-
ence of the firstand last line of the MB partition,
asisdoneinthe Extended XYtechnique,results
in only two MDSC accesses per MB partition.
This substantially increases the efficiency of
the MDSC implementation and achieves an
average 60% execution time reduction com-
pared to the direct DMA version of the code.

The SIMD version of the MDSC does not
provide an additional performance improve-
ment. Its overhead cancels the benefits because
of the small number of 2-dimensional blocks
(eight) in the implemented MDSC. Fixing the

Figure 10. Breakdown of the time taken by the MC kernel for different input sequences when
the baseline MDSC is employed and the time taken when explicit, hand-programmed DMA

transfers are used

g~

a4

o
1

CIMDSC DMA

Tima (s)

L

mzm MDSC Access

~-DMA

FHD HD
Video Sequences

Elue Sky |Pedestrion| Riverberd |Rush Hour| Blue Sky |Pedestdan] Riverbed | Rush Hour| Blue Sky | Pedestrian| Rierber | Rush Hour

s

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

InternationalJournalofEmbeddedandReal-TimeCommunication Systems, 1(4), 1-20, October-December2010 17

Figure 11. Time taken by MC for the direct DMA version, the IBM SC, the MDSC, and the vari-
ous MDSC enhancements. The input sequences are 100 frames and 4 seconds long

DMA ——— - -
96KB IBM SC &323 i f
7k 96KB MDSC t55m2r : i
108KB MDSC Extended_X s 3
108KB MDSC Extended_ XY i 3 3
sl 108KB MDSC Extended_XY SIMD o a
108KB MDSC Extended XY Fixed &% ¥ 8 1
Real Time 0
i nH
5T Ak .
o ik]
£ i
o 4 E'; -
E 1 . p [
-] A 4] g
4 3 % b
st : i i i
i i C: ¥
2F i 3 2 N —; -
i - L3 i
A , L‘% MR F}
1 g | .
) 1 I
i ;i
0 Al N e
Ay
s 2
N 3 7
%4 % % %
\% o \60

parameters of the MDSC so that certain com-
piler optimizations can be performed yields an
additional 5% executiontime reduction, leading
to atotal average performance improvement of
65%. Fixing the parameters of the MDSC is
similar as using the MDSC static configuration.

Compared to the IBM SC, the MDSC
with the Extended XY enhancement is 37%
more performance efficient. The performance
improvement increases to 43% when comparing
the IBM SC with the Fixed implementation of
the MDSC. This improvement is mainly due to
the fact that because the MDSC uses 2-dimen-
sional blocks and because the Extended XY
technique ensures that the entire reference area
is included in at most two MDSC blocks, two
MDSC accesses are sufficient to determine if
the reference areais in cache, whereas the IBM
SC requires at least one access for every line
in the reference area. Also, the MDSC exploits
the relationship between the Y, Cr and Cr com-
ponents to reduce the number of access. If an

§

areais present in the Y cache it then it is present
in the Cb and Cr caches, thus only the address
calculation is required to access Cr and Cr data.

Overall, the results show that software
caches can exploit the data locality exhibited
by MC. To obtain actual performance improve-
ments, however, the number of access needs to
be minimized. Furthermore, the MDSC allows
reducing the number of accesses more than
1-dimensional cache organizations such as
the IBM SC, thereby yielding higher overall
performance.

CONCLUSION

In this article a Multidimensional Software
Cache has been proposed for systems based
on scratchpad memories such as the Cell pro-
cessor. The objectives of the MDSC, next to
increasing the programmability, are to exploit
the data locality that cannot easily be exploited

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

18 InternationalJournalofEmbeddedandReal-Time CommunicationSystems, 1(4), 1-20, October-December2010

by hand-programmed DMAs, to reduce the
DMA startup overhead by employing list DMAs
instead of several sequential DMAs, and to
minimize thenumber of cache accessesby using
large, multidimensional blocks. Furthermore,
the cache is indexed by the indices of the base
element of the block rather than the memory
address, which allows reducing the number of
conflict misses. The proposed software cache
organization has been evaluated for GLCM and
H.264 MC, which is representative of many
other multimedia kernels.

The GLCM uses indirect addressing, but
because the difference between adjacent pixels
is usually small, it exhibits data locality. Some-
what surprisingly, the MDSC configuration
that yields the highest performance uses 1-di-
mensional blocks. However, the performance
of two configurations was less than 1% lower.
This indicates that in an organization where the
two channels could be used simultaneously,
the benefits of a 2-dimensional block would
be more pronounced. Compared to the heav-
ily optimized IBM software cache, the MDSC
improves performance by 8%. The indexing
function of the MDSC reduces the number
of conflicts and accounts for the performance
improvement.

ForMC, firstthe datalocality thatit exhibits
hasbeen analyzed. This analysis shows thatMC
has a significant amount of data locality that
could be exploited by a (software) cache. Then
the data access pattern of MC has been evalu-
ated to design a software cache that exploits
it. The proposed software cache stores frame
areas instead of blocks of consecutive memory
locations. In other words, it uses 2-dimensional
cache blocks. Enhancements have been pro-
posed to reduce the number of accesses to the
MDSC and its associated overhead.

ForMC, the experimental results show that
without tuning the software cache to the appli-
cation, the performance degrades compared to
animplementation thatuses hand-programmed
DMAs and does not attempt to exploit the data
locality. This performance degradation is the re-

sultofthe access overhead to the software cache
to check for the presence of the desired data.
The enhancements proposed in order to reduce
the number ofaccesses tothe MDSC achieve an
average 65% performance improvement over
the hand-programmed DMA implementation.
For only one sequence (Riverbed), the MDSC
did not attain a performance improvement over
the DMA version. The reason for this is the lack
of data locality in the Riverbed sequence. The
software cache overhead can be reduced by
using information of the application’s access
characteristics to reduce the number of cache
accesses. Compared to the IBM Cell software
cache, the MDCS provides an improvement of
43%, averaged over all video sequences.

The performance of the MDSC reflects the
machine organization used for this study. The
Cell processor has two memory channels, but
a single SPU cannot use both channels. The
access latency does not change when one or
two SPUs are accessing data simultaneously,
as depicted in Figure 2. As future work, the
impact of the MDSC on a processor that can
communicate via multiple channels simultane-
ously will be studied. It is expected that this
will increase the performance improvements
achieved by the MDSC. Also, a lightweight
hardware accelerator for software caches will
be investigated that reduces the overhead of the
MDSC withoutsignificantly increasing the area
or power consumption.

REFERENCES

Alvarez, M., Salami, E., Ramirez, A., & Valero, M.
(2007). HD-VideoBench: A benchmark for evalu-
ating high definition digital video applications. In
Workload Characterization (pp. 120-125). Wash-
ington, DC: IEEE Computer Society. DOI:10.1109/
IISWC.2007.4362188

Azevedo, A., Zatt, B., Agostini, L., & Bampi, S.
(2007). MoCHA: A bi-predictive motion compen-
sation hardware for H.264/AVC decoder targeting
HDTV. In Circuits and Systems (pp. 1617-1620).
DOI: 10.1109/ISCAS.2007.378828

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

InternationalJournalofEmbeddedandReal-TimeCommunicationSystems, 1(4),1-20, October-December2010 19

Balart, J., Gonzalez, M., Martorell, X., Ayguade, E.,
Sura, Z., & Chen, T. (2007). A novel asynchronous
software cache implementation for the Cell-BE
processor. In Proceedings of Languages and Com-
pilers for Parallel Computing . Urbana (Caracas,
Venezuela), IL, 125-140. doi:.doi:10.1007/978-3-
540-85261-2 9

Banakar, R., Steinke, S., Lee, B., Balakrishnan,
M., & Marwedel, P. (2002). Scratchpad memory:
A design alternative for cache on-chip memory in
embedded systems. In Proceedings of Hardware/
Software Codesign, Estes Park (pp. 73-78). New
York: ACM. DOI:10.1145/774789.774805

Chen, T., Zhang, T., Sura, Z., & Tallada, M. G.
(2008). Prefetching irregular references for soft-
ware cache on Cell. In Code Generation and Op-
timization (pp. 155-164). New York: ACM. DOIL:
10.1145/1356058.1356079

Edler,J., & Hill, M. D. (2010). Dinero 1V trace-driven
uniprocessor cache simulator. Retrieved January
28, 2010, from http://pages.cs.wisc.edu/~markhill/
DinerolV/

Example Library API Reference. (2010). Retrieved
January 28, 2010, from https://www-01.ibm.com/
chips/techlib/techlib.nsf/techdocs/3B6ED257EE62
35D900257353006E0F6A/$file/SDK._Example_Li-
brary API v3.0.pdf

Gonzalez, M., Vujic, N., Martorell, X., Ayguade, E.,
Eichenberger, A. E., Chen, T., et al. (2008). Hybrid
access-specific software cache techniques for the
Cell BE architecture. In Parallel Architectures and
Compilation Techniques (pp. 292-302). New York:
ACM. DOI: 10.1145/1454115.1454156

Gschwind, M., Hofstee, H., Flachs, B., Hopkins, M.,
Watanabe, Y., & Yamazaki, T. (2006). Synergistic
processing in Cell’s multicore architecture. JEEE
Micro, 26(2), 10-24. .doi:10.1109/MM.2006.41

Kahle, J., Day, M., Hofstee, H., Johns, C., Maeu-
rer, T., & Shippy, D. (2005). Introduction to the
Cell multiprocessor. [Riverton, NJ: IBM Corp.].
IBM Journal of Research and Development, 49(4),
589-604. doi:10.1147/rd.494.0589

Lee, J., Seo, S.,Kim, C.,Kim, J., Chun, P., Sura, Z.,
et al. (2008). COMIC: A coherent shared memory
interface for Cell-BE. In Parallel Architectures and
Compilation Techniques (pp. 303-314). New York:
ACM. DOI: 10.1145/1454115.1454157

Power Architecture Version 2.02. (2010). Retrieved
January 28,2010, from http://www-106.ibm.com/de-
veloperworks/eserver/library/es-archguide-v2.html

Senthil, G., Gudla, S., & Baruah, P. K. (2008). Ex-
ploring software cache on the Cell BE processor. In
High Performance Computing (p. 5).

Seo, S., Lee, J., & Sura, Z. (2009). Design and
implementation of software-managed caches for
multicores with local memory. In High Performance
Computer Architecture (pp. 55-66). DOI:10.1109/
HPCA.2009.4798237

Shahbahrami, A., Borodin, D., & Juurlink, B. (2008).
Comparison between color and texture features
Jfor image retrieval. Circuits, Systems and Signal
Processing.

Zatt, B., Azevedo, A., Agostini, L., Susin, A., &
Bampi, S. (2007). Memory hierarchy targeting bi-
predictive motion compensation for H.264/AVC de-
coder. In VLSI(pp. 445-446). Washington, DC: IEEE
Computer Society. DOI:10.1109/ISVLSIL.2007.64

Arnaldo Azevedo received the BSc degree in computer science from the UFRN University, Natal,
RN, Brazil, in 2004 and the MSc degree in computer science from UFRGS University, Porto
Alegre, RS, Brazil, in 2006. Since 2006, he is a doctoral candidate in the Computer Engineering
Laboratory of the Faculty of Electrical Engineering, Mathematics and Computer Science of Delft
University of Technology, the Netherlands. He is currently investigating multimedia accelerators

architecture for multi-core processors.

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

20 InternationalJournalofEmbeddedandReal-TimeCommunicationSystems, 1(4),1-20,October-December2010

Ben Juurlink is professor for Embedded Systems Architectures in the Faculty of Electrical Engi-
neering and Computer Science of the Technische Universitdt Berlin (DE). He has an MSc degree
Jfrom Utrecht University (NL) and a PhD degree from Leiden University (NL). In 1997-1998 he
worked as a post-doctoral research fellow at the Heinz Nixdorf Institute in Paderborn (DE).
From 1998 to 2009 he was a faculty member of the Computer Engineering Laboratory of the
EEMCS faculty of Delft University of Technology (NL). His research interests include multi- and
many-core processors, embedded processors, low-power techniques, and memory systems. He
has (co-)authored more than 80 papers in international conferences and journals and received a
best paper award at the IASTED PDCS conference in 2002. He is the leader of the NWO project
Archivire and a work package leader in the EU FP6 project SARC. He is a senior member of the
IEEE, a member of the ACM, and a member of the HIPEAC NoE. He served in many program
committees and is the subject area editor for the field of Processor Architectures of the Elsevier
Journal on Microprocessors and Microsystems (MICPRO) — Embedded Hardware Design. He
has supervised four PhD students and is currently supervising five PhD students.

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

