
IEEE TRANSACTIONS ON COMPUTERS 1

Cache-based Memory Copy Hardware
Accelerator for Multi-core Systems

Filipa Duarte, Student, IEEE, and Stephan Wong, Member, IEEE

Abstract—In this paper, we present a new architecture of the cache-based memory copy hardware accelerator in a multi-core system
supporting message passing. The accelerator is able to accelerate memory data movements, in particular memory copies. We perform
an analytical analysis based on open-queuing theory to study the utilization of our accelerator in a multi-core system. In order to
correctly model the system, we gather the necessary information by utilizing a full-system simulator. We present both the simulation
results and the analytical analysis. We demonstrate the advantages of our solution based on a full-system simulator utilizing several
applications: the STREAM benchmark and the receiver-side of the TCP/IP stack. Our accelerator provides speedups from 2.96 to 4.61
for the receiver-side of the TCP/IP stack, reduces the number of instructions from 26% to 44% and achieves a higher cache hit rate.
Utilizing the analytical analysis, our accelerator reduces in the average number of cycles executed per instruction up to 50% for one of
the CPUs in the multi-core system.

Index Terms—Hardware accelerator, cache, multi-core, TCP/IP, open-queuing theory

�

1 INTRODUCTION

The message passing protocol of a multiprocessor system
is implemented through sending and receiving mes-
sages. One of the main bottlenecks identified of uti-
lizing a message passing protocol concerns the mem-
ory copies as the messages to be sent or received are
copied between the caches of the multiprocessor. The
message passing protocol is based on two main opera-
tions, namely send and receive (or its variations, i.e.,
various forms of blocking and non-blocking operations).
Only the structures (header queues and payload buffers)
involved in the message passing send/receive opera-
tions are allocated in a shared address space during the
initialization process. The header queues hold informa-
tion about the messages (e.g., type, size, tag), and the
payload for short messages. The payload buffers contain
the payload for large data messages. There are several
data exchange mechanisms and which one is used in a
particular instance is determined by the implementation.
The exchange mechanism depends on the size of the
exchanged data and its performance depends on the
underlying platform. The referred mechanisms mainly
rely on copying the data to and from the header queues
and the payload buffers and mainly the software glibc

memcpy function is used to accomplish the copy.
A typical implementation of the mentioned mecha-

nisms to send and receive data over a message passing
protocol is depicted in Figure 1. The sending process
copies the message along with other information re-
quired for message matching, to the shared memory

Work developed at the Computer Engineering Laboratory of Delft University
of Technology, The Netherlands. Filipa Duarte is currently with the Ultra
Low Power DSP Group at Holst Centre/IMEC, The Netherlands.
E-mails: Filipa.Duarte@imec-nl.nl, J.S.S.M.Wong@tudelft.nl
Manuscript submitted April 7, 2009. Resubmitted on October 17, 2009.
Revised on January 6, 2010. Accepted on January 11, 2010.

area (Shared Buffer in Figure 1). The receiver process
can subsequently match the tags of the posted received
message and, accordingly, copy the correct message to its
own buffer (Receive Buffer in Figure 1). Although this
approach involves minimal setup overhead, it requires
the use of at least two copy operations that will keep
the CPU1 performing the memory copy busy for the
duration of the copy. As the trend is to increase the
number of CPUs in a single chip, the impact of memory
copies is expected to increase for multi-cores.

Fig. 1. A typical message passing protocol

It is important to notice that nowadays, such CPUs
typically are tied with caches with varying sizes. As
caches store the most recently used data, the majority
of the data to be moved by a memory copy is already
present within the cache. This is especially true when
considering that such data must often be processed first.

1. In this paper, a CPU - Central Processing Unit - can either be a
core in a multiprocessor or an uniprocessor.

Digital Object Indentifier 10.1109/TC.2010.41 0018-9340/10/$26.00 © 2010 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON COMPUTERS

The memory copy operation performed in the tradi-
tional way in software involves the utilization of many
loads and stores by the CPU itself to accomplish the
operation and results in cache pollution (overwriting
the to-be-copied data before being copied) and/or in
data duplication (the same data is present twice in the
cache). Moreover, Direct Memory Access (DMA)-based
approaches - typically used to reduce the cost of memory
data movements and, therefore, a very utilized solution
also for memory copies - provide a limited solution
mainly due to 3 reasons:

• DMA controllers (DMAC) are peripheral devices
and therefore there is a significant overhead on the
communication between the CPU and the DMA
controller, as its the initialization has to be per-
formed explicitly;

• The notification of a DMA transfer completion is
performed either through polling or an interrupt,
both being expensive;

• DMACs deal mainly with physical addresses and
therefore user-level application cannot take advan-
tage of them.

In [1], [2] and [3], we proposed a solution that exploits
the presence of a cache to perform memory copies. The
architecture of our accelerator incorporates an indexing
table to be inserted within an existing direct-mapped
cache that points to the original data present in the cache.
The following section describes the concept behind the
accelerator and its architecture.

1.1 Cache-based Memory Copy Hardware Accelera-
tor: Concept and Architecture of the Indexing Table
connected to a Direct-mapped Cache
Starting by assuming that the original data is already
present in the cache (an initial assumption to not com-
plicate the concept), the memory copy operation can be
performed by utilizing an indexing table that is indexed
by the copied data address and that stores the point-
ers to the cache locations containing the original data.
Consequently, we can summarize that a memory copy
operation is reduced to a single action of entering the
copied data address into the indexing table and creating
a pointer to the original data stored in the cache. When
the copied data needs to be accessed, this can be easily
performed by extracting the corresponding pointer from
the indexing table and subsequently accessing the cache
using this pointer. It must be noted that the actual storing
of the copied data to the main memory is deferred
to a later time in the proposed method. In particular,
when either the original or copied data locations are
being overwritten or when the original data location is
evicted from the cache, this must be detected and the
appropriate measures (explained in more detail in [2])
must be taken to store the copied data to the main
memory. Furthermore, the pointer in the indexing table
must be invalidated. An illustration of the proposed
method is depicted in Figure 2 and a brief explanation of

the system follows (for more details an interested reader
is directed to [1], [2] and [3]).

Val
Bit

Index
SRC

Tag
DST

Hit/Miss

Tag Index
from addr bus

Offset

to data bus
Data

Memory Copy Accelerator
Traditional cache

Val
Bit Tag Data

Indexing
Table

Direct-
mapped
cache

Fig. 2. The accelerator concept

A direct-mapped cache (thinner lines, gates and table
in Figure 2) is divided in two main parts: a cache
directory and cache data-memories. The cache directory
can be seen as a list of the main memory addresses of
the data stored in the corresponding location of the cache
data-memory (which is the one that contains the data).
The address provided by the processor is divided into
3 parts: the index, the tag, and the offset. The index is
used to access the cache directory and the cache data-
memories. The tag is written to the cache directory (on
a write) or is used to compare with a tag already in
the cache directory (on a read). Finally, the word to be
supplied to the processor is determined by the offset.

The memory copy operation performs a copy of size
size from a source address src to a destination address
dst. The manner a copy is performed using the indexing
table (ticker lines, gates and table in Figure 2) connected
to a cache is to access the indexing table with the index
part of the dst address and to write the index part of the
src address, the tag part of the dst address and a valid
bit in the entry accessed. The execution of a memory
copy subsequently becomes the filling of the indexing
table.

If there is a read hit in the indexing table (calculated
based on: 1 - the tag part of the requested address; 2 -
the tag part of the dst address stored in the indexing
table; and 3 - the valid bit also stored in the indexing
table), the index part of the src address stored in the
indexing table is provided to the cache (this is the pointer
to the cache entry). It is worth mentioning that, if there
is a read miss on the indexing table, there will be no
penalty in the performance of the system, as the indexing
table and the cache are accessed in parallel. This implies
that on a read miss in the indexing table, the cache is
already being accessed and returns the data in the same
amount of time. On a read hit in the indexing table, we

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

DARTED et al.: CACHE-BASED MEMORY COPY HARDWARE ACCELERATOR FOR MULTI-CORE SYSTEMS 3

require one more clock cycle in order to retrieve from
the indexing table the correct address to provide to the
cache. Without delving into too many details (the more
interested reader can find more details in [1], [2] and [3]),
we also developed a custom load/store unit that differs
from a standard one in the following cases: (1) on the
execution of a memory copy, the custom load/store unit
is responsible for loading all the cache lines part of the
src addresses (and write-back any previous data that
these loads may evict from the cache); (2) on a miss
that loads data from the main memory that evicts src

addresses from the cache. The previously described so-
lution was implemented in a Field-Programmable Gate
Array (FPGA) as a proof-of-concept.

1.2 Contributions and Organization

In this paper, we demonstrate the benefits of our ac-
celerator concept in a multi-core system. Moreover, we
introduce a new architecture of the cache-based memory
copy hardware accelerator tightly coupled with a set-
associative cache. We demonstrate our solution based on
open-queuing theory, where the values for the parame-
ters involved in the analysis are gathered using Simics [4]
full-system simulator by executing the receiver-side of
the TCP/IP stack. The main contributions of the work
described in this paper are:

• An accelerator able to support the message passing
protocol on a multi-core system and achieving a
reduction on the average number of cycles executed
per instruction up to 50% for one of the CPUs in the
system.

• Comparing the execution time of the receiver-side of
the TCP/IP stack with and without our accelerator,
we get the following benefits: 1) speedups ranging
from 2.96 up to 4.61 times; 2) reduction of the num-
ber of instructions ranging from 26% up to 44%; and
3) higher cache hit rate. Moreover, the simulation
of the receiver-side of the TCP/IP stack executed
with our accelerator also provided the necessary
values to correctly perform the open-queuing theory
analysis.

The remainder of the paper is organized as follows. In
Section 2, we describe the related work and in Section 3,
we extend the previously presented cache-based mem-
ory copy hardware accelerator for a multi-core system. In
Section 4, we present the analytical analysis performed
for both a single CPU and a multi-core system. In
Section 5, we first describe the setup utilized in a full-
system simulator. Afterwards, we analyze the results
of executing synthetic benchmarks and the receiver-side
of the TCP/IP stack, in order to gather the necessary
information to accurately model the multi-core system.
Moreover, in this section, the results of utilizing our solu-
tion in a multi-core system supporting message passing
protocol are also presented and discussed. The paper
ends with conclusions in Section 6.

2 RELATED WORK

Several works have been presented in analyzing the
message passing protocol for hardware cache coherent
multiprocessors. In this section, we highlight the more
recent ones.

The authors of [5] and [6] compared the performance
of the shared address space and message passing in-
terface on a hardware cache coherent multiprocessor.
Both studies concluded that removing the extra copy
and using lock-free management queues in the message
passing models can improve performance. The following
situations impacted the performance of the systems ana-
lyzed: (i) remote accesses of cache line granularity on the
remote data that does not have good spacial locality; (ii)
the use of explicit transfers that either put data in the
cache or in the main memory of the destination; (iii)
cache conflict and cache coherence protocol behavior;
and (iv) the usage of barriers. Moreover, the authors
also concluded that the message passing model benefits
from having a hardware cache coherent multiprocessor
as it enhances locality. The authors of [7] presented an
implementation of the message passing interface (MPI)
using a ‘zero-copy’ message transfer primitive supported
by a lower communication layer to realize a high per-
formance communication library.

One of the first machines supporting message passing
protocols were the Cray T3D [8] and the Stanford FLASH
[9]. The designers of both machines identified the need to
alleviate expensive operations in the path of sending and
receiving messages, in order to provide performance. For
that, the solution relied on avoiding message copying
through direct transfer of data between processes, and
overlap computation with communication. The solution
implemented in the Cray T3D was the use of a system
level block transfer engine, which use DMA to transfer
large blocks of contiguous or strided data to or from
remote memories. On the Stanford FLASH [10], the
designers implemented a custom programmable node
controller containing an embedded processor that can
be programmed to implement both cache coherence and
message passing protocol.

However, the need for a data transfer engine is still
a matter of debate. In [11], the authors analyzed the
performance of integrating a data transfer engine in a
system based closely in the Stanford FLASH architecture.
According to the authors, the benefits of block trans-
fer were not substantial for hardware cache coherent
multiprocessors. The reasons given were (i) the relative
modest fraction of time applications spend in communi-
cation; (ii) the difficulty of finding enough independent
computation to overlap with communication latency;
and (iii) the cache lines often capture many of the ben-
efits of block transfer. However, in a more recent work
presented by [12], the authors analyzed the performance
of transferring large data in symmetric multiprocessors.
The authors analyzed five different mechanisms (shared
memory buffers, message queues, Ptrace system calls,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON COMPUTERS

kernel module copies and network cards) in terms of
latency, bandwidth and cache usage. The main con-
clusion was that, as soon as the proper mechanism
was chosen, these mechanisms did provide performance
benefits contradicting the conclusions reached by [11].

We believe that a mechanism that uses the cache
efficiently can correctly capture the block transfers and
enhance performance. Therefore, we have coupled our
accelerator with the second level cache in order to effi-
ciently support the message passing protocol by reduc-
ing the time spend on performing the copies between
the caches in the system.

3 CACHE-BASED MEMORY COPY HARDWARE
ACCELERATOR IN A MULTI-CORE SYSTEM

In this section, we start by illustrating the application
of our accelerator concept to a multi-core system with
3 CPUs supporting a message passing protocol. Subse-
quently, we introduce the architecture of our accelerator
to be tightly coupled with a set-associative cache. We
conclude this section by presenting the hardware costs
involved when implementing the proposed architecture.

3.1 Message Passing Protocol utilizing the Cache-
based Memory Copy Hardware Accelerator
Consider a multi-core system consisting of a data Level
1 cache (L1$) tightly-coupled with each CPU in the
system, a shared unified L2$ for all CPUs, and a bus-
based interconnect network that provides the necessary
functionality for snoop-based hardware cache coherence
protocol. The targeted application is the send/receive
message passing protocol. Figure 3 depicts the system
and the application.

Send Buffer

L1$

Receive Buffer

L2$

Send Buffer

Indexing Table

Send()

Receive()

Send Buffer

Receive Buffer

C PU A C PU B C PU C

Receiver Buffer

L1$ L1$

bus

Main Memory

Processor

Fig. 3. Multi-core system with 3 CPUs supporting a
message passing protocol

When executing the message passing protocol the
cache of each CPU, i.e., the L1$, can have cache lines as-
sociated with either the Send or Receive Buffers involved
in the send and receive operations of the message
passing protocol. When a send/receive operation is

issued by one CPU, all the CPUs in the system need
to write-back any cache line in its L1$ that belongs to
the Send/Receive Buffer and invalidate these cache lines.
This can be achieved by changing the state of the cache
line (part of the coherence protocol) in order to trigger a
write-back of the cache line to the L2$. Moreover, the L2$
now has the necessary information on the Send/Receive
Buffer addresses, therefore it can load the necessary data,
if it is not there yet, and fill the indexing table. When
the receive operation is issued by a particular CPU
(Receive Buffer will miss the L1$ of all CPUs), it will
trigger a request of the data on the bus that will be
answered by the L2$. The requested cache line is loaded
from L2$, using the indexing table, into the L1$ that
requested it. This implies a change in the cache line state
to Shared in the L1$ and to Modified in L2$. When a
cache line in the L1$ part of the Receive Buffer, changes
status from Modified to any other state, the L2$ needs to
write it back to main memory. If another CPU requests a
cache line that is in the indexing table, the L2$ answers
the request and provides the cache line, changing the
state of the cache line to the appropriated one.

The benefit of the presence of our accelerator is two-
fold: (1) it reduces the amount of memory copies in-
volved in the send/receive message passing protocol;
and (2) it reduces the amount of loads and stores needed
to bring the Send/Receive Buffers to the caches. More-
over, it increases the cache hit rate.

3.2 Architecture of the Indexing Table connected to
a Set-associative Cache

In a typical multi-core system, as the one introduced in
the previous section, the L2$ is normally a set-associative
cache. However, the architecture of our accelerator pre-
sented in Subsection 1.1 is tightly coupled with a direct-
mapped cache. Therefore, in this section we extend the
previously presented architecture in order to support set-
associative caches. The indexing table coupled with a
2-way associative cache with hardware cache coherence
protocol is depicted in Figure 4.

As presented in Subsection 1.1, the traditional memory
copy operation requires the following parameters: the
size size; the source address src; and the destination
address dst. Therefore, the indexing table is accessed
by the index part of the dst address and contains the
tag and index parts of the src address, the tag part of
the dst address and a bit stating if it is a valid entry.

In a direct-mapped cache the number of entries of a
cache is the same as the number of indexes, however
in a set-associative cache this is not the case. In a set-
associative cache, the index part of the address will only
give access to a cache congruence class; the tag part of
the address is the one that is used to distinguish which
cache line is actually being accessed.

However, each entry of our indexing table points to
a cache line, therefore, the number of entries of the
indexing table has to be the same as the number of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

DARTED et al.: CACHE-BASED MEMORY COPY HARDWARE ACCELERATOR FOR MULTI-CORE SYSTEMS 5

Val
Bit

Tag
DST

Tag +
Index SRC

Hit/Miss

Tag Index
from addr bus

Offset

LRU Tag Data

to data bus

MESI

LRU Tag Data

Data Data

Val
Bit

Tag
DST

Tag +
Index SRCMESI

Cache
Congruence

Class

Indexing
Table

Congruence
Class

Traditional cache

Memory Copy Accelerator

Fig. 4. Indexing table connected with a 2-way associative cache with support for cache coherence protocol

cache lines the cache has. Therefore, we introduced the
same concept as the cache congruence class, referred to
as indexing table congruence class in Figure 4. The index
part of the address is used to select an indexing table
congruence class which contains as many entries as the
number of sets the cache has.

When filling in the indexing table (i.e., when perform-
ing the copy), the index part of address selects the index-
ing table congruence class and its first entry is used, only
if that entry is taken then the following entry is used.
This has a performance impact on performing a copy as
the time to fill the indexing table now dependents on the
number of sets the cache has. However, the bigger the
size of the copy the more time the CPU spends executing
a memory copy in software. Therefore, the increase in
time to fill the indexing table is still much smaller than
the software version.

A read hit in the cache does not incur in additional
delay because the indexing table and the cache are
accessed in parallel. However, if there is a read hit in
the indexing table, the delay of accessing the indexing
table plus the cache has to be considered.

The index part of the address is used to identity
an indexing table congruence class. As the number of
entries inside of the indexing table congruence class
might be large (because it depends on the number of sets
of the cache), performing a sequential search (i.e., check
each entry of an indexing table congruence class and
compare the stored tag with the one requested to identify
if this is the requested address) is not the most efficient
way. A solution is to use a Content Addressable Memory
(CAM) core for the “Tag DST” field (in Figure 4), which
allows to search the contents of this field in one clock
cycle in order to find a match between the tag stored in

the indexing table and the tag of the requested address.
This means that there will be as many CAM cores as
the indexes with each CAM core having as many entries
as the sets of the cache. Searching the “Tag DST” field,
the first step to determine whether it is a read hit in the
indexing table, can be performed efficiently in one clock
cycle. The content of the “Tag DST” field, accessed based
on the index part of the address, is afterwards (second
step to determine a read hit in the indexing table) feed
in parallel to the “Val Bit” and the “Tag + Index SRC”
fields (see Figure 4) to determine the cache congruence
class of the src address in the cache (and its tag part
of the address). A read hit in the indexing table will
subsequently have a latency of two clock cycles (one
clock cycle for the CAM core of the “Tag DST” field plus
one clock cycle for both “Val Bit” and “Tag + Index SRC”
fields).

Another scenario that the indexing table has to handle
is the case where a src address is evicted from the cache.
In this case, the entry on the indexing table that contains
the corresponding dst address has to be identified in
order to actually perform the copy in the main memory
(this is performed with a custom load/store unit pre-
sented in [1]). For this search in the indexing table to be
efficient, the “Tag + Index SRC” field is implemented
as a CAM core while all other fields of the indexing
table can be Random Access Memory (RAM) cores. A
write request to either a src or dst address will always
trigger a write of the copied data to the main memory,
performed by the custom load/store unit.

In addition, the indexing table is now required to sup-
port a snoop-based hardware cache coherence protocol.
Therefore, we included in the indexing table a new field,
referred to as “MESI” in Figure 4, consisting of two bits

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON COMPUTERS

where the state of each cache line is kept, in order to
support the modified, exclusive, share and invalidate
(MESI) states of the protocol. This field is accessed the
same way as the “Val Bit” and “Tag + Index SRC” fields
are and is implemented as a RAM core.

3.3 Hardware Costs
In order to estimate the size of the indexing table for
different caches organizations, a detailed study was per-
formed. As presented earlier, the indexing table stores
the tag and index parts of the addresses used in the
memory copy. The number of bits stored has an impact
on the size of the memories used to implement the
indexing table. The bigger the number of bits stored the
more hardware resources are necessary.

Assuming a cache size of 1 MB (a typical size for
caches nowadays) and varying the cache line size (from
16 to 128 bytes) and associativity (from 4 to 32), the
hardware resources are estimated for both the indexing
table and the cache. In the interest of space, the figures
depicting the increase of the hardware resources used
in the indexing table compared with the ones used
only in the cache are not presented, however the main
conclusions reached are:

• The increase on associativity does not have a big
impact on the percentage of hardware resources
utilized on the indexing table compared with a
cache (an increase of associativity from 4 to 32
implies an increase of 17% of the hardware resources
utilized due to the presence of the indexing table).
The reason for this is that in order to support
associativity, the cache itself increases the number
of bits stored in this way reducing the impact of the
bigger number of bits also stored in the indexing
table.

• The increase in the cache line size reduces the
percentage of hardware resources utilized on the
indexing table compared with the cache (from 20%
with a cache line size of 16 bytes down to 2.5% with
a cache line size of 128 bytes). This is expected as
one cache line now contains more data, therefore
one entry of the indexing table points to more data.

The increase in the percentage of hardware resources
utilized on the indexing table compared with a cache for
the different situations is mitigated due to the effective
cache size increases for a program executing a large
number of copies. Moreover, due to the effective increase
of the cache size, it is expected that the hit rate of the
cache increases.

4 ANALYTICAL ANALYSIS OF BOTH SINGLE
CPU AND MULTI-CORE

In order to analyze the benefits that our accelerator
can have in a multi-core system, we use the open-
queuing theory to perform an analytical analysis of our
system. Compared with data gathered by real system

measurements, the accuracy of the open-queuing model
was measured to be approximately 3%. The technique
described was also compared with a closed-queuing
model, where the results showed a 3% to 10% maxi-
mum difference (these results are demonstrated on [13]
and [14]).

In the simplest form, any processing system can be
considered to be composed of a number of servers with
a specific service time. These servers can be any shared
resources with a queue, such as a bus or a memory.
The queuing theory correctly models the performance
of such servers in a complex system and, therefore, can
be utilized to model a processing system. The request
rate to each server in the system is assumed to follow a
Poisson distribution, which allows the use of relatively
simple equations to depict queue delays. Studies by [15]
and [16] present traces which closely approximate a
Poisson distribution, justifying the choice for this model.
For the cases where the traces deviate from a Poisson
distribution, there is no simple method to evaluate the
impact of the memory hierarchy. The service time of each
server is assumed to be either constant or exponential
(both analysis are performed). Therefore, the modeled
system falls in Kendall’s notation [17] M/D/1 (Poisson
input, deterministic/constant service time, one server)
or M/M/1 (Poisson input, exponential/Poisson service
time, one server).

The ideal performance of a processing system is mea-
sured in cycles per instruction (CPI) when executed
with an infinite cache (CPI[∞]), i.e., when the L1$
acts as if there were no cache misses and therefore
no fetch penalties. However, the actual performance of
a system (CPI[system]) with a memory hierarchy is
considerably less due to the stalls and delays caused
by the cache misses and thus the fetching actions. In
reality, a CPU and its L1$ are the sources that generate
the outstanding misses to the memory hierarchy, and
therefore also responsible by the fetching actions. This
additional delay, measured as cycles per instructions, is
typically known as the finite cache penalty (FCP). These
two parameters are added together to obtain the actual
processing system performance:

CPI[system] = CPI[∞] + FCP (1)

A problem in this type of analytical queuing analysis is
to determine the queue delays at each server. In particu-
lar, the open-queuing theory requires that the number of
requests at each server cannot be fixed at any point in the
system. In fact, all queues must theoretically be capable
of unlimited length. However, in a real multi-core sys-
tem, each CPU typically permits only a fixed number of
outstanding misses to exist within the memory hierarchy
at any time. The reason is that the outstanding misses
stall the CPU which cannot continue processing until the
fetches (due to the misses) are fulfilled. This means that
the maximum number of requests for fetching is fixed for
all the queues within a memory hierarchy at any instant

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

DARTED et al.: CACHE-BASED MEMORY COPY HARDWARE ACCELERATOR FOR MULTI-CORE SYSTEMS 7

in time. Of course, the number of requests could be fewer
than the maximum at any instant, only the maximum is
fixed. Consequently, there is a negative feedback process
in the memory hierarchy which in practice, guaranties
small and self-limited queues. Consequently, there is
no need to complicate the model using closed-queuing
theory to model the system.

Another way of viewing the mentioned negative feed-
back is the following: the finite cache penalty delays
depend on the request rates for the memory hierarchy,
which are inversely proportional to the cycles per in-
struction - the smaller the cycles per instruction is, the
faster the instructions are processed, thereby generat-
ing more memory hierarchy requests. The increase in
memory hierarchy requests create larger queue delays,
which subsequently increase the finite cache penalty
value and the cycles per instruction value, reducing the
queue delays, and so on and so forth. Consequently,
the analysis require an iterative calculation, but it will
converge in a maximum of 10 interactions.

4.1 Single CPU with and without our Accelerator,
M/D/1 Model
In a system with a multi-level cache hierarchy, each main
memory access can incur a different delay determined by
which level of the hierarchy contains the desired data
at that moment. The finite cache penalty delay is the
weighted sum of the hits at each level multiplied by
the delay per hit at each level. The finite cache penalty
(FCP) equation for a single CPU with tandem caches (3
level hierarchy) is:

FCP = (mr1 −mr2)T2 + (mr2 −mrmain)Tmain

+mrmainTmain

= mr1[(1− mr2
mr1

)T2 +
mr2
mr1

Tmain]

(2)

where the mrk are the miss rates and Tk are the fetching
times of each cache level, k = {1, 2,main}.

In a memory hierarchy in which misses can occur
at various levels, the probability of a miss reaching
any given cache level will vary as determined by the
given miss rates for each cache. This is expressed as
the visitation probability (V), which is simply the hit
probability per L1$ miss rate. From Equation (2), the
visitation probability (V) at each level can be determined
to be simply:

V2 = 1− mr2
mr1

Vmain =
mr2
mr1

(3)

To determine the fetching time of each level (i.e., the
value of Tk, with k = {1, 2,main}), it is assumed that
each cache is simply an individual server. In a simple
open-queuing model, the queue length at an individual
server is determined by the utilization (U), which itself
depends on the request rate (R) and the service time
(S) of the server. For a memory hierarchy, the visitation

probability (V) has to be included in the utilization (U)
of each server. For a single CPU with tandem caches (3
level hierarchy), the utilization (U) of each server is:

U2 = V2 × S2 ×R

Umain = Vmain × Smain ×R
(4)

where the request rate (R) is given by R =
mr1/(CPI[system]× TCPU)

2.
Assuming a constant service time (S), the fetching

delay (T) for the single CPU with tandem caches (3 level
hierarchy) case is:

T2 = V2 × S2 × (1 +
0.5U2

1− U2
)

Tmain = Vmain × Smain × (1 +
0.5Umain

1− Umain
)

(5)

The previously mentioned negative feedback can be
monitored utilizing the queue size, as the queues sizes
became a constant size when the system converges:

Q2 =
U2 − 0.5U2

2

1− U2

Qmain =
Umain − 0.5U2

main

1− Umain

(6)

Assuming a write-back L2$, when a cache miss re-
quires the replacement of a cache line, this cache line
must be written to a higher cache level. The use of our
accelerator influences the rate that this happens. If the
src address is not present in the cache at the moment
of filling the indexing table, it has to be fetched from
the main memory, which implies writing the evicted
cache line back to the main memory. The same situation
happens if a miss in the L1$ also misses in the L2$. This
situation triggers a load of the missed cache lines and
the replacement of the cache lines present in the cache.
Both situations will probably evict some cache lines from
the L2$. This is referred to as cast-out (CO) and typical
values range from 20% to 40% (as reported by [13]
and [14]). The utilization of our accelerator influences
this parameter.

Moreover, due to the increase of the cast-out (CO) of
the L2$, there will be an increase in the visitation proba-
bility (V) of the main memory. This is modeled through
a factor of eviction (FE). As it will be demonstrated
in Section 5, the values for the factor of eviction (FE)
are also dependent of the application besides the use of
our accelerator. Therefore, the visitation probabilities (V)
presented in Equation (3), become:

V2 = 1− mr2
mr1

Vmain =
mr2 + FE ×mr2

mr1
, where

FE = 0, if the accelerator is not used

(7)

2. Note that the request rate is inversely proportional to cycles
per instruction (CPI) providing the negative feedback process in
the memory hierarchy and the reason for an iterative calculation, as
introduced early.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON COMPUTERS

A memory hierarchy that provides the critical word
first is assumed. If the CPU requires another word in
the cache line that is being transferred at the moment,
the CPU must wait until it is available. This is referred
to as trailing-edge (TE) delay, which typically ranges
from 10% to 30% (as reported by [13] and [14]). With the
use of our accelerator, it is necessary to also consider the
case of a first read to a copied address that will always
miss in all L1$. These accesses have go to the L2$ and if
another word is requested while the cache line is being
transferred, there will be an increase of the trailing-edge
(TE) delay.

With the utilization of our accelerator, the copied data
is accessible in the L2$ as well as the data that was
already in the cache before the copy was performed.
This means that both the src and the dst addresses are
available through either the indexing table or the cache
itself, without evicting any cache lines. This implies a
decrease in the original L2$ miss rate (mr2).

The total delay (Ttotal) is given by the summation of
Equation (5), with the utilization (Uk) given by Equa-
tion (4) and the visitation probability (Vk) given by
Equation (7), with k = {1, 2,main}. It must be noted
that our accelerator is not modeled as another server
in the system. However, its impact is modeled in the
values attributed to the L2$ miss rate (mr2), the visitation
probability of the main memory (Vmain), the cast-outs
(CO) and the trailing-edge (TE) delay.

4.2 Multi-core with and without our Accelerator,
M/D/1 Model

In a multi-core system like the targeted one (Figure 3),
it is necessary to include in the previous analysis the
impact of shared resources in the system, namely the
bus. The utilization (U) of the bus depends of several
situations:

• It depends on the number of misses generated by
the CPUs and their L1$, which affects the amount
of data transferred on the bus;

• It depends on the cache coherence protocol, i.e., a
read miss in one L1$ that can hit in any other L1$
and a write that either forces the invalidation or the
update of the data in the others L1$.

The use of a shared bus changes the previously de-
scribed visitation probabilities (V) in Equation (7). The
visitation probability (V) of the bus is 1, because all
misses in any L1$ imply utilizing the bus. The proba-
bility of visiting the L2$ now not only depends on the
miss rate of each L1$ (OwnL1), but also on the miss
rate of other L1$ (OtherL1) that share the bus. Besides,
the number of hits/misses of a particular cache line in
the OtherL1 is also dependent on the application. [18]
presents typical values for the hit rate in OtherL1, which
are in the range of 10% to 50%. This parameter will be
referred to as the hit rate in OtherL1 (HRO1). Therefore,
the new visitation probability (Vk), with k = {1, 2,main},

for each CPU in the system is:

Vbus = 1

V2 = 1−HRO1− mr2
mr1

Vmain =
mr2 + FE ×mr2

mr1
, where

FE = 0, if the accelerator is not used

(8)

To determine the service time (Sk), with k =
{1, 2,main}, of the shared bus, we need to determine
the amount of data transferred, the bus cycle time and
the bus width. A bus that has separate lines for data and
control has two different services times:

Scontrol = bus cycle time× control request size

bus control width

Sdata = bus cycle time× L1 cacheline size

bus data width

(9)

Therefore, the total utilization (Uk), with k =
{1, 2,main}, of the shared bus, both control (CB) and
data (DB) busses, due to misses in any of the 3 L1$
(OwnL1), in the other L1$ (OtherL1) and due to the cast-
outs (CO) is:

UOwnL1DB = Vbus × Sdata ×R

UOwnL1CB = Vbus × Scontrol ×R

UOwnL1CO = CO × Vbus × Sdata ×R

UOtherL1DB = 3× Vbus ×HRO1× Sdata ×R

UOtherL1CB = 3× Vbus ×HRO1× Scontrol ×R

(10)

And the corresponding fetching delay (Tk), with k =
{1, 2,main}, for both control (CB) and data (DB) busses,
due to misses in any of the 3 L1$ (OwnL1), in the other
L1$ (OtherL1), and due to the cast-outs (CO) is:

TOwnL1DB = Vbus × Sdata × (1 +
0.5UOwnL1DB

1− UOwnL1DB
)

TOwnL1CB = Vbus × Scontrol × (1 +
0.5UOwnL1CB

1− UOwnL1CB
)

TOwnL1CO = CO × Vbus × Sdata

× (1 +
0.5UOwnL1CO

1− UOwnL1CO
)

TOtherL1DB = 0.5× Vbus ×HRO1

× Sdata × (1 +
0.5UOtherL1DB

1− UOtherL1DB
)

TOtherL1CB = 0.5× Vbus ×HRO1

× Scontrol × (1 +
0.5UOtherL1CB

1− UOtherL1CB
)

(11)

The queue sizes (Qk), with k = {1, 2,main}, for both
control (CB) and data (DB) busses, due to misses in
any of the 3 L1$ (OwnL1), in the other L1$ (OtherL1),

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

DARTED et al.: CACHE-BASED MEMORY COPY HARDWARE ACCELERATOR FOR MULTI-CORE SYSTEMS 9

and due to the cast-outs (CO) are:

QOwnL1DB =
UOwnL1DB − 0.5UOwnL12DB

1− UOwnL1DB

QOwnL1CB =
UOwnL1CB − 0.5UOwnL12CB

1− UOwnL1CB

QOwnL1CO =
UOwnL1CO − 0.5UOwnL12CO

1− UOwnL1CO

QOtherL1DB =
UOtherL1DB − 0.5UOtherL12DB

1− UOtherL1DB

QOtherL1CB =
UOtherL1CB − 0.5UOtherL12CB

1− UOtherL1CB

(12)

The trailing edge (TEk), with k = {1, 2,main}, delay due
to other L1$ (OtherL1) and L2$ (L2) is given by:

TOtherL1TE = (
L1 cacheline size

bus data width
− 1)

× TE × bus cycle time

TL2TE = (
L2 cache line size

bus data width
− 1)

× TE × bus cycle time;

(13)

4.3 M/M/1 Model

Until now it is assumed a constant service time for
each server (M/D/1). As this parameter models the time
each resource of the system takes, it is interesting to
study the impact of changing this value. Therefore, the
following assume an service time (S) of each server to
be exponential (M/M/1). Subsequently, the delay given
by Equation (5) and Equation (11) became:

T2 = V2 × S2 × (1 +
U2

1− U2
)

Tmain = Vmain × Smain × (1 +
Umain

1− Umain
)

TOwnL1DB = Vbus × Sdata × (1 +
UOwnL1DB

1− UOwnL1DB
)

TOwnL1CB = Vbus × Scontrol × (1 +
UOwnL1CB

1− UOwnL1CB
)

TOwnL1CO = CO × Vbus × Sdata

× (1 +
UOwnL1CO

1− UOwnL1CO
)

TOtherL1DB = 0.5× Vbus ×HRO1

× Sdata × (1 +
UOtherL1DB

1− UOtherL1DB
)

TOtherL1CB = 0.5× Vbus ×HRO1

× Scontrol × (1 +
UOtherL1CB

1− UOtherL1CB
)

(14)

And the corresponding queue sizes:

QOwnL1DB =
UOwnL1DB

1− UOwnL1DB

QOwnL1CB =
UOwnL1CB

1− UOwnL1CB

QOwnL1CO =
UOwnL1CO

1− UOwnL1CO

QOtherL1DB =
UOtherL1DB

1− UOtherL1DB

QOtherL1CB =
UOtherL1CB

1− UOtherL1CB

(15)

Finally, the total delay (Ttotal) for each CPU in the
multi-core system is given by the summation of Equa-
tion (5), Equation (11) and Equation (13) (with the
utilization (Uk) given by Equation (10) and the visita-
tion probability (Vk) given by Equation (8), with k =
{1, 2,main}), for a constant service time. If a exponential
service time is used the total delay (Ttotal) is calculated
by the summation of Equation (14) and Equation (13)
(with the utilization (Uk) given by Equation (10) and the
visitation probability (Vk) given by Equation (8), with
k = {1, 2,main}). The cycles per instruction (CPI) for
each CPU in the multi-core system is then given by:

CPI[system] = CPI[∞] +mr1 × Ttotal (16)

Table 1 depicts a summary of the equations required
to calculate the total delay (Ttotal) for each case.

Single Multi-core Multi-core
CPU (M/D/1) (M/M/1)

Ttotal Eq. 5 Eqs. 5 + 11 + 13 Eqs. 13 + 14
V Eq. 4 Eq. 8 Eq. 8
U Eq. 7 Eq. 10 Eq. 10
Q Eq. 6 Eq. 12 Eq. 15

TABLE 1
Analytical analysis summary

The impact of using our accelerator in both in a single
CPU system or a multi-core system with a L1$ for each
CPU, a unified L2$ and a main memory is studied in
the Section 5, to evaluate the model. The values of the
cast-outs (CO) and the trailing edge (TE) delay are
given by [13] and [14] (based on real application mea-
surements). Typical values for the hit rate in OtherL1
(HRO1) are presented in [18], and we also evaluate
(in Section 5) its impact. The factor of eviction (FE) is
related with our accelerator and, because there are no
measurements for it, a wide enough range of values
are evaluated to determine the impact of utilizing our
accelerator. Moreover, the L2$ and the main memory
service times (S), the cache line sizes and the miss rates
of both caches (mr1 and mr2) utilized in this analytical
analysis are the same as the ones used in Simics simu-
lator, when executing the receiver-side of TCP/IP stack
(in Section 5).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON COMPUTERS

5 RESULTS

As introduced in previous sections, the results gathered
by utilizing our accelerator in a full-system simulator
are inputs to the analytical analysis presented in Sec-
tion 4. Therefore, we start by presenting the results of
our accelerator when running synthetic benchmarks and
the receiver-side of the TCP/IP stack. Afterwards, we
present the results for the multi-core using the values
gathered previously.

5.1 Full-system Simulation Results

In order to gather the necessary numbers we performed
a complete system analysis of the previously described
cache-based memory copy accelerator, using Simics full-
system simulator [4]. The platform modeled contains a
data and instruction L1$, a unified L2$ and a DRAM
DDR 2 main memory. Moreover, we created a model
of our accelerator to be incorporated in the simulator
with the delays derived from the actual hardware imple-
mentation (presented in [1], [2] and [3]). The simulation
parameters are described in Table 2.

CPU
Type Pentium 4
Frequency 2GHz
CPI 1
Operating System Linux 2.4

Caches
L1 I/D Caches 32kB, 64B cache line,

direct-mapped,
write-through

L1$ Hit Time 2 clk
L2 Unified Cache 2MB, 128B cache line,

8-way, write-back
L2$ Hit Time 15 clk

Accelerator
Fill Index Table Time 2 clk
Index Table Read Hit Time 2 clk + L1$

read hit time
Write to SRC or DST addr 2 clk
Write-back evicted data L2$ access time

Memory
Type DRAM DDR2 400 MHz
Avg. Access time 240 clk

TABLE 2
Simulation Parameters

Finally, we implemented an instruction-set architec-
ture extension by a single instruction that is used to
substitute the software function calls. This instruction,
besides communicating to the hardware to provide the
necessary parameters (src, dst and size), performs the
necessary checks of the boundary conditions. In our case,
the boundary conditions are checked using a simple if

statement to determine if: 1) the size of the copy is
smaller or bigger than the hardware can support (if the
size of the copy is outside of the sizes supported by the
hardware, then the software implementation is utilized);
and 2) the src and dst addresses are aligned (and if
they are not, then perform the necessary alignment in

STREAM Memory Benchmark
Total memory required = 16.0 MB.
Number of runs = 10
1st level cache Working on Arrays of 800 B.

Function Rate (MB/s) Avg. Time (ns)
1 copy 32 212.31 14.25
2 copy 64 294.38 13.43
3 copy 32x2 140.58 19.33
4 copy 32x4 150.15 30.89
5 glibc memcpy 600.37 2.66
6 our Acc. 722.34 2.21

TABLE 3
Stream benchmark results

STREAM Benchmark
of Copies 100,000
of Read Hits in the Indexing Table 18
of Writes to SRC addr. 180
of Writes to DST addr. 44

TABLE 4
Memory copy statistics for the Stream Benchmark

software before calling the hardware; if a cache line
alignment is not possible then the software implemen-
tation is utilized). The overhead imposed by this new
instruction is simply the two new comparisons. There
are no architectural changes needed to the processor.
We substituted all memory copies function calls by our
instruction in all the benchmarks used to verify our
solution.

5.1.1 STREAM synthetic benchmark
In order to determine the raw throughput that our solu-
tion can provide, we used the STREAM [19] benchmark
to compare the benefits of our accelerator with several
copy kernels: copy_32, copy_64, copy_32x2, copy_32x4,
and glibc memcpy. The first four kernels perform copies
on loops of either integers (32 bits) or doubles (64 bits),
using two or four intermediary variables. The glibc

memcpy uses the standard glibc algorithm implemented
in the Linux kernel, which is optimized in assembly.

The STREAM benchmark provides the average copy
throughput measured over 1 000 000 executions, the pro-
cess is repeated 10 times and the best time is displayed.
It provides the throughput for copies of arrays of 800B
(to test the L1$ throughput).

The STREAM benchmark does not use the copied
data and executes several copies in order to average the
results. As such, the accelerator has, for each repetition,
to write-back the previously performed copy, fetch the
necessary data from the main memory into the cache and
fill the indexing table, which is the worst-case scenario
for our accelerator. Table 3 presents the results and
Table 4 presents the statistics of the hardware.

The speedup in terms of both throughput and average
execution time (for the glibc memcpy and our acceler-
ator) for the STREAM benchmark is 1.2 (as it can be

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

DARTED et al.: CACHE-BASED MEMORY COPY HARDWARE ACCELERATOR FOR MULTI-CORE SYSTEMS 11

calculated by dividing row 5 by row 6 of Table 3). As
expected the number of writes to either the src or the
dst addresses are small due to the write-back of the
copy previously performed before each new iteration,
as presented in Table 4.

5.1.2 Receiver-side of the TCP/IP stack
As the STREAM benchmark is a synthetic benchmark,
we evaluated our solution with a more realistic work-
load, such as the receiver-side of the TCP/IP stack that is
also bounded by memory copies. Consider packets arriv-
ing at very high speeds at a CPU and going through the
TCP/IP protocol. The data is subsequently copied from
the network interface card to the system’s main memory
(typically using a DMA), processed, and copied again
from the operating system (OS) to the user application.

Therefore, we used the user-space implementation of
this part of the stack to evaluate our accelerator. We
captured the packets generated by sending a file of 10MB
over a TCP connection. The file was divided into 8,418
packets of which 92.8% have 1,260 Bytes. We fed the
packets captured into the receiver-side of the TCP/IP
stack in user-space, measured the average number of
cycles per packet and repeated the process 10 times.

The software version (using the function glibc

memcpy) took on average 54,972 cycles/packet while with
our accelerator it was reduced to 11,930 cycles/packet
(Table 5 presents the results). It is worth mentioning that
these numbers are given by the application itself and not
measured in the simulator (the application returns an
approximation due to interference of the OS). In order
to have more accurate results we measured, with the
simulator, the execution time and number of instructions
executed. Table 5 presents the statistics gathered by the
application, the simulator and by the accelerator itself.

From Table 5, we can calculate a speedup of 4.61
(corresponding to a 78% reduction) in execution time,
when our accelerator is used. Besides, we reduced the
number of instructions executed by 44% (because we do
not use loads and stores) and we have a higher cache
hit rate compared with the software version (because we
fetch the src data from the main memory to the cache
while executing the memory copy).

It has to be noted that the receiver-side of the TCP/IP
stack does not include the reading of the copied data
by the application that is receiving this data (as it can
be noticed by the zero read hits in the indexing table
in Table 5). In order to correctly evaluate our proposal,
we included a read of every packet received in order
to mimic the normal behavior of an application. Table 5
also presents the statistics for this case. The simulator
provided a speedup of 2.96 (corresponding to a 66%
reduction) in execution time. The reason for this decrease
is the increase in execution time of the stack, as seen
by the number of instructions executed (in this case,
our hardware only reduces the number of instructions
compared with the software case by 26%). As such, the
clear benefits of our solution are diluted over the total

Standard TCP/IP stack

App. Stats. SW Exec. Time 54,972 cycles/pkt
HW Execution Time 11,930 cycles/pkt

Sim. Stats.

SW # Instr. 25,256,762
SW Exec. Time 232 msec
SW L1$ Read Hit 92.12%
SW L1$ Write Hit 89.53%
HW # Instr. 13,968,064
HW Exec. Time 51 msec
HW L1$ Read Hit 98.05%
HW L1$ Write Hit 96.02%

HW Stats.

Copies 8,414
Read Hits Index. 0
Writes SRC Addr. 262
Writes DST Add. 481,685
TCP/IP stack with reads

App. Stats. SW Exec. Time 98,693 cycles/pkt
HW Exec. Time 57,097 cycles/pkt

Sim. Stats

SW # Instr. 534,685,789
SW Exec. Time 268 msec
SW L1$ Read Hit 92.77%
SW L1$ Write Hit 90.24%
HW # Instr. 180,120,983
HW Exec. Time 90 msec
HW L1$ Read Hit 97.82%
HW L1$ Write Hit 96.18%

HW Stats

Copies 8,414
Read Hits Index. 4,299
Writes SRC addr. 22,686
Writes DST addr. 1,194,569

TABLE 5
Memory copy statistics for the receiver-side of the

TCP/IP stack

execution time, however we still achieve a higher cache
hit rate than the software.

In order to evaluate the impact of changing the num-
ber of packets processed, we repeated the experiment
with a smaller file. The speedup provided by our acceler-
ator (measured by the simulator) was 5.68 times, where
the hardware kept the same average cycles per packet
(the software execution time increased). This means that
our accelerator keeps the same performance independent
of the number of packets processed. In contrast, the
software version behaves better for a bigger number of
packets processed. Analyzing the code, we can find that,
per session, there is a loop to process the packets of
that session. Therefore, the bigger the number of packets
per session, the better the software version behaves.
However, in a typical web-browsing or e-mail sessions
(in contrast with FTP session), the number of packets
processed per session is limited.

Finally, we compare our accelerator with the solution
presented by [20]. In that paper, the authors modified the
standard memory controller in order to support memory
copies and evaluated their solution with the receiver-side
of the TCP/IP stack. The authors used SimpleScalar [21]
simulator that does not support multiprocessor plat-
forms, and in order to simulate a 4-way platform, the
authors claim that they assigned the correct timing to
each model as it would have in a 4 core system.

In order to be able to compare our solution with theirs,
we used the same delays for our simulation with Simics.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON COMPUTERS

We utilized the same memory hierarchy and the same
receiver-side TCP/IP stack implementation. The main
differences in the works are:

• Type of configuration: the authors of [20] present
results for both synchronous and asynchronous con-
figurations of their copy engine. The asynchronous
version provide computation overlap, allowing the
copy instruction to retire even before the copy
transaction is complete, and therefore, allowing for
the higher speedups. The synchronous version can
include or not load bypass, i.e., allowing the cache
misses generated by the CPU to be interleaved
with the copy engine requests. For the synchronous
version, the highest speedup is obtained when load
bypass is used, because the CPU does not have to
stall until all outstanding copies are completed. As
our approach is to hold the processor while the
indexing table is being filled, we would expect to
be a worst solution than the ones presented in [20].
However, because the time needed to perform the
copy in our case (i.e., filling the indexing table) is
negligible, this is not the case.

• The payload size of the packets being processed: the
authors of [20] analyzed the impact of their solution
for 100,000 packets of payloads of 512, 1,024 and
1,400 bytes. The packet sizes studied in our case is
the 1,024 bytes payload and the traces have 8,418
packets. The different sizes would not have impact
in our results as soon as the payload is bigger than
a cache line size.

Taking into account the mentioned differences, we
present a 78% reduction in execution time while the
authors of [20] present 52.5% for the same case (i.e.,
synchronous copy without load bypass and payload size
of 1,024 bytes). The highest speedup achieved in the
work of [20] is 72,8% for an asynchronous copy, which
is still below the numbers we report. Our benefits are
mainly due to performing the copy faster (as it is done
initially in the cache), to better utilizing the bus (when
we actually perform the write-back) and obtaining a
higher cache hit rate.

5.2 Analytical Analysis Results
The analytical analysis introduced in Section 4 is utilized
to model the impact of applying our accelerator in a
multi-core system. The finite cache penalty of a baseline
scenario without the usage of our accelerator is com-
pared with the finite cache penalty of a system utilizing
our accelerator. These comparisons are performed for
both a single CPU case (to validate the model) as well as
the multi-core system assuming the two different service
time of the servers in the system.

The values utilized to model the multi-core system
are presented in Table 6. The baseline scenario depicted
in the second column corresponds to the typical values
used in real systems. In particular, the L2$ and the
memory service times and the cache lines sizes are the

same as the ones used for the Simics simulator; the hit
rate in OtherL1 (HRO1), the cast-outs (CO) and trailing
edge (TE) delay are given by [13] and [14] (based on
real application measurements) and the cache miss rates
(mr1 and mr2) were observed when our accelerator was
implemented in Simics simulator. The other parameters
are typical values. The factor of eviction (FE) is related
with our accelerator and, because there is no possibility
of performing measurements to determine its value, a
wide enough range of values is evaluated to determine
the impact of utilizing our accelerator. The third column
presents the parameters’ range used to evaluate the
system, as these are the parameters that either depend
on the application (the hit rate in OtherL1 - HRO1), or
on the use of our accelerator (miss rate in L2$ - mr2
and factor of eviction - FE), as introduced in Section 4.
It is clear from Table 5, that the factor of eviction (FE)
decreases from the case where the receiver-side of the
TCP/IP stack does not perform reads to the case where
it does3. This is due to the increase of the number of
instructions executed from one case to another. For the
case of the receiver-side of TCP/IP stack, the factor of
eviction (FE) ranges from 3.45% (no reads) to 0.6% (with
reads). As the value of FE has high influence on the final
result, we made the FE value range from 0% to 40% in
order to correctly evaluate the impact.

First, the single CPU case is analyzed in order to eval-
uate the model. Figure 5 depicts the impact of increasing
the miss rate in L2$ (mr2) and the factor of eviction (FE)
values on the finite cache penalty (FCP), compared with
the baseline scenario described in Table 6. In this case,
the hit rate in OtherL1 (HRO1) is zero, as there are no
other CPUs in the system.

Baseline vs HW single CPU analysis

0

1

2

3

4

5

6

7

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

% of L2$ Miss Rate

F
in

it
e
 C

a
c
h

e
 P

e
n

a
lt

y

1 10 20 30

% of Factor of Eviction

FCP Baseline

Fig. 5. Single CPU analysis

It is clear from Figure 5 that our accelerator can
provide benefits for a wide range of miss rate in L2$
(mr2) and factor of eviction (FE) values and that, in the
best case, those benefits can reach a decrease of finite
cache penalty (FCP) of 57.1% (the best FCP is when

3. The FE can be calculated from Table 5 by summing the number
of writes to both the src and dst addresses and dividing the result
by the number of instructions executed.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

DARTED et al.: CACHE-BASED MEMORY COPY HARDWARE ACCELERATOR FOR MULTI-CORE SYSTEMS 13

Parameter Default Value Range
L2$ Service 15 clk
Time (S2) (used in Simics) -

Memory Service 240 clk
Time (Smain) (used in Simics) -

L1$ Miss 10%
Rate (mr1) (returned by Simics) -
L2$ Miss 3%

Rate (mr2) (returned by Simics) 0.5% to 3%
Hit Rate of 20% (given by

OtherL1 (HRO1) [13] and [14]) 10% to 50%
Factor of 0%

Eviction (FE) (wide range) 1% to 40%
Cast-Outs 20% (given by

(CO) [13] and [14]) -
Trailing Edge 10% (given by
(TE) delay [13] and [14]) -

L1 cacheline size 32 bytes
(typical value) -

L2 cacheline size 128 bytes
(typical value) -

bus data width 8 bytes
(typical value) -

control req size 1 bytes
(typical value) -

bus control width 1 bytes
(typical value) -

bus cycle time 1 clk
(typical value) -

TABLE 6
Parameters defining the system modelled

the value of mr2 is 0.5% and the value of FE is 1%).
However, if the FE and the mr2 values are too high, then
the utilization of our accelerator can actually decrease
the performance. On the other hand, this is not a realistic
scenario once the presence of our accelerator will always
decrease the value of mr2, as can be seen from Table 5.
Moreover, as presented in Section 5.1, the value of FE
for the receiver-side of the TCP/IP stack (for both with
and without reads) ranges from 0.6% to 3.45%.

In addition, the previous section mentioned the pos-
sible influence of the cost-outs (CO) value and of the
trailing edge (TE) delay. Therefore, the value of CO and
the TE delay was increased by 20%, which increased
the finite cache penalty (FCP) by 1.2% for the first case
and 4.5% for the second. Subsequently, these parameters
have a small impact in the system.

As mentioned before, one of the parameters of the
multi-core system depends on is the application, mod-
eled through the hit rate in OtherL1 (HRO1) value.
Therefore, the impact of changing this parameter’s val-
ues is studied and the benefit of one of the CPUs in the
system (as the model calculates the FCP of one of the
CPUs taking into account the presence of the others) is
analyzed. Figure 6 depicts the impact of changing the
HRO1 values, compared with the baseline scenario. As
expected, the increase in HRO1 value reduces the FCP
of the system compared with the baseline scenario.

As demonstrated for the single CPU, the usage of
our accelerator is modeled mainly through the miss rate
in L2$ (mr2) and the factor of eviction (FE) values.

5 10 15 20 25 30 35 40
11

12

13

14

15

16

17

18

19

% of the HRO1

Fi
ni

te
 C

ac
he

 P
en

al
ty

 (%
 o

f t
he

 b
as

el
in

e
sc

en
ar

io
)

Analysis of the Hit Rate in OtherL1 (HRO1)

Fig. 6. Hit Rate in OtherL1 (HRO1) analysis

Therefore, our accelerator for a multi-core system is
evaluated by analyzing the impact on the finite cache
penalty (FCP) that the accelerator has for different
parameter’s values. Figure 7 depicts the percentage of
FCP decrease compared with the baseline scenario for
a constant service time (M/D/1). The analysis increases
the mr2 and the FE values in a multi-core system,
keeping the remainder of the parameters with the default
values described in the Table 6.

Baseline vs HW multi-core analysis - constant service time

0

1

2

3

4

5

6

7

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

% of L2$ Miss Rate

F
in

it
e
 C

a
c
h

e
 P

e
n

a
lt

y

1 10 20 30

% of Factor of Eviction

FCP Baseline

Fig. 7. Multi-core system analysis with constant service
time

From the previous analysis it is possible to reach a
FCP decrease of 54.1% for one of the CPUs for the best
case (the best FCP is when the value of mr2 is 0.5% and
the value of FE is 1%).

Figure 8 depicts the same analysis, now assuming a
exponential service time (M/M/1) for each server. For
this case it is possible to reach a finite cache penalty
(FCP) decrease of 54.6% for one of the CPUs for the
best case (the best FCP is when the value of mr2 is 0.5%
and the value of FE is 1%). Moreover, an exponential
service time imposes increase on the baseline FCP by
9.2%, compared with the constant service time. However,
the different service times in the servers have a smaller
impact on the usage of our accelerator, approximately
7.9%. Moreover, the impact on using an exponential
service time for our accelerator is bigger for higher miss

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON COMPUTERS

Baseline vs HW multi-core analysis - exponential service time

0

1

2

3

4

5

6

7

8

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

% of L2$ Miss Rate

F
in

it
e
 C

a
c
h

e
 P

e
n

a
lt

y

1 10 20 30

% of Factor of Eviction

FCP Baseline

Fig. 8. Multi-core system analysis with exponential ser-
vice time

rate in L2$ (mr2).
As mentioned previously, the other parameters that

have impact in the system are the cast-outs (CO) value
and the trailing edge (TE) delay. However, as demon-
strated for the single CPU case, these have small impact
on the system.

The previous results are for a 3 CPU system. If the
system is scaled to a larger system, there will be an in-
crease in the finite cache penalty (FCP) (with or without
our accelerator), due to the bus bottleneck. Therefore, the
benefits of our accelerator depend on the performance
of the system without it, as the architecture of our
accelerator does not depend on the number of CPUs
connected to the system, but on the cache it is connected
to. As such, our accelerator can be used in any system
but its benefits are depending on the performance of the
system without it.

6 CONCLUSIONS

In this paper, we presented the cache-based memory
copy hardware accelerator in a multi-core system sup-
porting message passing communication model and we
utilized an analytical analysis based in open-queuing
theory to study the system. The accelerator (that was
previously presented) is able to accelerate data-intensive
algorithms with no data-parallelism, such memory copy
algorithms. Our solution performs memory copies faster
than the traditional manner (utilizing loads and stores)
and avoids cache pollution and duplicating data in the
cache (as the copy is simply a pointer to the original
data). The access to the copied data is also faster, be-
cause the pointer allows the copied data to be accessed
from the cache. Furthermore, we delay the actual data
movement until its impact in the system is minimized.

In order to correctly model our solution in a multi-
core system supporting message passing communica-
tion model, we gathered the necessary information by
utilizing a full-system simulator. We demonstrate the
advantages of our solution utilizing several applications:
the STREAM benchmark and the receiver-side of the

TCP/IP stack. Our accelerator reaches speedups from
2.96 to 4.61 for the receiver-side of the TCP/IP stack,
reduces the number of instructions from 26% to 44% and
achieves higher cache hit rate.

In addition, we presented the analytical analysis based
on open-queuing theory. We validated the analysis by
first gathering the results for a single CPU case and
afterwards for the multi-core system. Our cache-based
hardware accelerator is able to achieve a reduction on the
average number of cycles executed per instruction up to
50% for one of the CPUs in the system, when executing
the message passing protocol.

REFERENCES
[1] S. Vassiliadis, F. Duarte, and S. Wong, “A Load/Store Unit for a

memcpy Hardware Accelerator,” in Proceedings of the International
Conference on Field Programmable Logic and Applications, 2007, pp.
537–541.

[2] S. Wong, F. Duarte, and S. Vassiliadis, “A Hardware Cache memcpy
Accelerator,” in Proceedings of the IEEE International Conference on
Field-Programmable Technology, 2006, pp. 141–148.

[3] F. Duarte and S. Wong, “A memcpy Hardware Accelerator So-
lution for Non Cache-line Aligned Copies,” in Proceedings of the
International Conference on Application-specific Systems, Architectures
and Processors, 2007, pp. 397–402.

[4] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hll-
berg, J. Hgberg, F. Larsson, A. Moestedt, and B. Werner, “Simics:
A Full System Simulation Platform,” IEEE Computer, vol. 35, no. 2,
pp. 50–58, Feb. 2002.

[5] H. Shan and J. P. Singh, “A Comparison of MPI, SHMEM and
Cache-Coherence Shared Address Space Programming Models on
Tightly-Coupled Multiprocessors,” International Journal of Parallel
Programming, vol. 29, no. 3, pp. 283–318, May 2001.

[6] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,
M. Horowitz, and C. Kozyrakis, “Comparing Memory Systems
for Chip Multiprocessors,” ACM SIGARCH Computer Architecture
News, vol. 35, no. 2, pp. 358–368, May 2007.

[7] F. O’Carroll, H. Tezuka, A. Hori, and Y. Ishikawa, “The design and
implementation of zero copy MPI using commodity hardware
with a high performance network,” in Proceedings of the 12th
International Conference on Supercomputing, 1998, pp. 243–250.

[8] “Cray T3D System Architecture,” Cray Research, Inc.
[9] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-

chorloo, D. N. J. Chapin, M. H. J. Baxter, A. Gupta, M. Rosenblum,
and J. Hennessy, “The Stanford FLASH Multiprocessor,” in Pro-
ceedings of the 21st Annual International Symposium on Computer
Architecture, 1994, pp. 302–313.

[10] J. Heinlein, K. Gharachorloo, R. Bosch, M. Rosenblum, and
A. Gupta, “Coherent Block Data Transfer in the FLASH Multi-
processor,” in Proceedings of the 11th International Symposium on
Parallel Processing, 1997, pp. 18–27.

[11] S. C. Woo, J. P. Singh, and J. L. Hennessy, “The Performance
Advantages of Integrating Block Data Transfer in Cache-Coherent
Multiprocessors,” in Proceedings of the 6th International Conference
on Architectural support for Programming Languages and Operating
Systems, 1994, pp. 219–229.

[12] D. Buntinas, G. Mercier, and W. Gropp, “Data Transfers between
Processes in an SMP System: Performance Study and Application
to MPI,” in Proceedings of the 2006 International Conference on
Parallel Processing, 2006, pp. 487–496.

[13] R. E. Matick, “Comparison of Analytic Performance Models using
Closed Mean-Value Analysis versus Open-Queuing Theory for
Estimating Cycles per Instruction of Memory Hierarchies,” IBM
Journal of Research and Development, vol. 47, no. 4, pp. 495–517, Jul.
2003.

[14] R. E. Matick, T. J. Heller, and M. Ignatowski, “Analytical Analysis
of Finite Cache Penalty and Cycles per Instruction of a Multipro-
cessor Memory Hierarchy using Miss Rates and Queuing Theory,”
IBM Journal of Research and Development, vol. 45, no. 6, pp. 819–842,
Nov. 2001.

[15] L. Kleinrock, Queueing Systems, Vol. I: Theory, Vol. II: Computer
Applications. John Wiley and Sons, Inc., 1975.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

DARTED et al.: CACHE-BASED MEMORY COPY HARDWARE ACCELERATOR FOR MULTI-CORE SYSTEMS 15

[16] S. Lavenberg, Computer Performance Modeling Handbook. Aca-
demic Press, Inc., 1983.

[17] D. Gross and C. M. Harris, Fundamentals of Queueing Theory. John
Wiley and Sons, Inc., 1998.

[18] T. Lovett and R. Clapp, “STiNG: A CC-NUMA Computer Sys-
tem for the Comercial Marketplace,” ACM SIGARCH Computer
Architecture News, vol. 24, no. 2, pp. 308–317, May 1996.

[19] J. D. McCalpin, “A Survey of Memory Bandwidth and Machine
Balance in Current High Performance Computers,” in IEEE Com-
puter Society Technical Committee on Computer Architecture (TCCA)
Newsletter, 1995, pp. 19–25.

[20] L. Zhao, L. Bhuyan, R. Iyer, S. Makineni, and D. Newell, “Hard-
ware Support for Accelerating Data Movement in Server Plat-
form,” IEEE Transactions on Computers, vol. 56, no. 6, pp. 740–753,
Jun. 2007.

[21] “SimpleScalar,”
http://www.simplescalar.com/.

Filipa Duarte received her PhD in Computer En-
gineering from the Electrical Engineering, Math-
ematics and Computer Science faculty of the
Delft University of Technology, The Netherlands,
in December 2008. She is currently a researcher
at the Ultra Low Power DSP group at the Holst
Centre/IMEC, The Netherlands. Her research
interests include ultra low power digital design, in
particular memory and IO subsystem of uni- and
multiprocessors, both from performance and low
power perspectives.

Stephan Wong received his PhD in Computer
Engineering from the Electrical Engineering,
Mathematics and Computer Science faculty of
Delft University of Technology, The Netherlands,
in December 2002. He is currently working as an
assistant professor at the Computer Engineering
Laboratory at Delft University of Technology, The
Netherlands. He has considerable experience in
the design of embedded reconfigurable media
processors. He has worked also on microcoded
FPGA complex instruction engines and the mod-

eling of parallel processor communication networks. His research in-
terests include embedded systems, multimedia processors, complex
instruction set architectures, reconfigurable and parallel processing,
microcoded machines, and distributed/grid processing. He is a member
of the IEEE and ACM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 20,2010 at 12:02:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

