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Bioinformatics 1
1.1 A recap of molecular biology

What follows is a short recapitulation of the basics of molecular biology. Although
no in-depth knowledge is required of the chemical processes involved, subjects such as
DNA and protein construction are critical to understanding the relevance of sequence
alignment, the procedure upon which much of this thesis is based. The information in
this section largely comes from [37] and [57].

1.1.1 Cells, amino acids and proteins

All living organisms consist of one, or many more, examples of a basic functional unit:
the cell. Classified as being ‘alive’ (the smallest organisms consist of a single cell),
cells can process and excrete molecules (metabolism), alter their electrical potential and
procreate by cell division. Many of the processes inside cells are governed by proteins.
Proteins are complex chains of molecules known as amino acids. Some amino acids, the
‘non-essential’ ones, can be synthesized by the cell. The other, essential, amino acids
must be procured through the ingestion and breakdown of proteins in foods such as
meat. Again, this breaking down of food products is performed by proteins, this time
existing outside any cell.

Proteins have a wide array of functions: for instance actin aids muscle contraction
while the proteins of the cytoskeleton form a cell’s ‘skeleton’, giving it its shape and
protecting it. Another important role of proteins is to act as catalysts; these proteins
are called enzymes. Enzymes act as catalysts by binding to the reagents of a reaction
and lowering the activation energy required for it to take place. Designed to only be
compatible with those specific reagents due to their structure, enzymes are not consumed
in the reaction and can be reused. To return to the example of breaking down food into
nutrients, there are enzymes which split proteins into their component amino acids,
enzymes which break down fat molecules, and enzymes that allow ingested nucleic acid
to be reused for the construction of DNA.

1.1.2 Chromosomes and DNA

It is obvious that cells require the presence of proteins, both internally and externally,
to survive. In fact, the reproduction of cells relies heavily on proteins too, such as those
of the aforementioned cytoskeleton, which facilitate the division of the cell membrane.
Proteins are created, from scratch and to specification, within the cell itself. This is where
deoxyribonucleic acid (DNA) comes in. DNA is stored in structures called chromosomes.
Made up of the DNA molecules and a supporting protein packaging, chromosomes are
‘wadded up’ in the cell similar to a ball of string. Attached to these chromosomes, the

1



2 CHAPTER 1. BIOINFORMATICS

DNA is protected and more compact; in this way it is able to fit in the cell (nucleus).
The structure and number of chromosomes varies on a per species basis, and the shape
of the chromosomes is also determined by which life cycle stage the cell currently resides
in. Figure 1.1 shows a bacterium cell with its single chromosome at the center.

Figure 1.1: The single-cellular E. coli bac-
terium.

Source: howstuffworks.com [38].

The DNA itself contains the genetic
instructions that describe how the vari-
ous proteins should be constructed. The
structure of DNA is shown in Figure 1.2.
DNA consists of two long, coiled nu-
cleotide polymer strands that take the fa-
miliar double-helix form. These polymers
are strengthened by a skeleton of sugars
and phosphate groups; connected to these
sugars are the bases, pairs of molecules
that specify the genetic code. One end of
each strand of DNA is called the 5’ end
(pronounced five-prime) while the other
end is called the 3’ end. These ends are
named after the carbon of the deoxyri-

bose structure which they link up to. Due to the anti-parallel nature of the strands,
their ends are mirrored: one strand’s 3’ end is matched by the other strand’s 5’ end.
When talking about DNA, these ends can be used to indicate in which direction a strand
is being built/interpreted/etc.

Figure 1.2: The structure of DNA.

Source: National Institute of Health [67].

Four different bases exist: adenine
(A), cytosine (C), guanine (G) and
thymine (T). A base on one strand will
be matched by and connected to its twin
base on the other by means of hydrogen
bonds. Adenine is always paired with
thymine; cytosine and guanine form the
second combination. This duplication of
the bases is central to the replication of
DNA, and as such that of the cell and the
survival of the host organism.

During the replication of DNA muta-
tions can occur, thus altering the genes of
a host organism. This ties into the theory
of evolution and the field of phylogenet-
ics, the study of relatedness among organ-
isms by comparing their genetic makeup.

1.1.3 RNA and transcription

The bases of DNA can be seen as letters
(A, C, G and T). These letters are com-
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bined together in groups of three to rep-
resent ’words’ called codons. Each codon describes a single amino acid (as discussed,
amino acids are the building blocks of proteins). A portion of DNA that codes for a
protein is known as a gene. As there are four bases and as they appear in words of
three, there are 43 possible codons. However, only 20 different amino acids are encoded.
This means that some words code for the same amino acid. Additionally, some words
have special functions: the start (ATG) and stop (TAG, TAA, TGA) codons function as
markers to aid in the correct interpretation of the code at the ribonucleic acid (RNA)
stage. A sequence of codons that starts with a start codon and ends with a stop codon
is called an open reading frame.

The process of interpreting the genetic code and using it to synthesize proteins is
called genetic expression. The first step is the generation of RNA, which will mirror the
gene in question and be transported to the cell’s ‘protein factory’. Genes are transcribed
to RNA by an enzyme called RNA polymerase; this is bound to the correct place on
the DNA by means of a promoter, which is a sequence of codons that influence the
binding of RNA polymerase directly or indirectly by means of proteins. The DNA
strand that the RNA will be based on is called the coding strand ; this can be either
of the strands, depending on the gene in question. When generating RNA, the strands
are separated and the complementary strand, called the template strand, is traversed in
the 3’ → 5’ direction. The strand’s bases are then paired with a new strand of again
complementary bases (with thymine replaced by uracyl (U)). This is the RNA. This
strand is separated from the DNA once transcription is complete, after which the DNA’s
structure is restored. In effect, the created RNA is a copy of the coding strand with T
replaced by U.

Example: consider a strand of DNA coding a gene:
5’ A T G G C C T G G A C T T C A ... 3’ coding strand
3’ T A C C G G A C C T G A A G T ... 5’ template strand

The resultant RNA will then be:
5’ A U G G C C U G G A C U U C A ... 3’

Note the start codon ATG (AUG for the RNA).
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Figure 1.3: A ribosome building a peptide (amino acid chain).

Source: Wikipedia [34].

This RNA is transported to the ribosomes, the cell components which assemble pro-
teins by chaining together amino acids. Figure 1.3 shows a ribosome in action. Here
the RNA is traversed and interpreted from the start to the stop codon. The codons
are interpreted by means of transfer-RNA (tRNA). These tRNA molecules carry amino
acids to link up to the protein peptide chain. By having a structure complementary to
that of the codons, they are matched to the sequences that code for the amino acids they
are carrying. The ribosomes themselves (again) consist of proteins and ribosomal RNA.

This review of genetic expression glosses over many things. Although the process
is more involved than described here, especially in humans, more information is not
required to appreciate the workings of sequence alignment.
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1.2 Bioinformatics and sequence alignment

The field of bioinformatics involves the development of algorithms and software that
can analyze huge amounts of biological data and automate previously labor-intensive
tasks. It is also the development of tools, for example with which to view 3D models of
biological structures.

Examples of bioinformatics goals and research are the determination of a protein’s
shape and function from a sequence of amino acids (protein folding), the sequencing (i.e.
mapping) of genomes, the construction of evolutionary trees and the determination of
protein functions [37].

1.2.1 Biological sequences

An important aspect of bioinformatics is the analysis of DNA and protein sequences.

DNA
As discussed in Section 1.1.2, DNA consists of the four bases A, C, G and T. One
might say that DNA is a sequence, or string, of the alphabet {A,C, G,T}. Not
surprisingly, RNA can be looked at similarly, with the alphabet {A,C,G,U}.

Proteins
Proteins, too, can be viewed as strings of an alphabet. In this case, the alphabet
of the 20 amino acids {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}. The amino
acids corresponding to these letters are shown in Table 1.1.

Table 1.1: The 20 amino acids

Letter Amino acid Letter Amino acid

A Alanine L Leucine
R Arginine K Lysine
N Asparagine M Methionine
D Aspartic acid F Phenylalanine
C Cysteine P Proline
Q Glutamine S Serine
E Glutamic acid T Threonine
G Glycine W Tryptophan
H Histidine Y Tyrosine
I Isoleucine V Valine
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1.2.2 Sequencing

Figure 1.4: Chain-sequencing result strip;
the dark bands show dideoxy bases.

Source: John Schmidt [54].

The nucleotide makeup of DNA/RNA
and the amino acid makeup of proteins
can be determined by methods known as
sequencing. Once a sample has been se-
quenced, its letter sequence is known and
it can, from a bioinformatics perspective,
then be treated like the aforementioned
sequences or strings. There are multiple
approaches to both types of sequencing.

A popular approach for DNA is the
chain termination method [57][54], in
which the DNA in question is mixed with:
a ‘primer’ strand of DNA; DNA poly-
merase; the four bases; and a dideoxy ver-
sion of one base. The mixture is heated
until the DNA separates; the primer
DNA then attaches to the now separate
coding strand and DNA polymerase initi-
ates the copying process, effectively recre-
ating the template strand. However, if
one of the dideoxy bases is used (quite

how often this happens depends on the ratio between the amount of normal and dideoxy
variant present), the new strand cannot be extended and is terminated. The process is
repeated until replication has terminated at all possible points. The lengths of the new
strands then reveal where the base, of which the dideoxy version was, used is present.
The process is then, in turn, repeated for each of the four bases. The locations of the
dideoxy bases can be shown by means of gel electrophoresis; Figure 1.4 gives an example,
the type of which might well be familiar from popular media.

Chain termination sequencing can work with sequences of up to around 900 bases.
For longer sequences, approaches such as shotgun sequencing are used: random pieces are
sequenced after which the results are stitched together in a process known as sequence
assembly, which is another area of bioinformatics. For more information on protein
sequencing, see [53].

1.2.3 Sequence alignment

If two DNA, RNA or amino acid sequences are similar, there is a chance that they are
homologous. Homologous sequences share a common ancestral sequence and their relative
differences are the result of mutations. These mutations might manifest themselves in
various ways: as substitutions where one symbol is replaced by another, insertions where
a new symbol is inserted into the sequence, and deletions, the removal of a symbol. To
establish the degree of homology, the sequences are aligned : lined up in such a way that
the degree of similarity is maximized. Some applications of sequence alignment will now
be given:



1.2. BIOINFORMATICS AND SEQUENCE ALIGNMENT 7

Figure 1.5: Part of a phylogenetic tree based on sequenced genes.

Finding homology
One of the main purposes of sequence alignment is to find homology. Homology
means that two sequences share a common ancestor; evolution dictates that all
cells must eventually come from the same ancestor. Finding homology between
organisms might enable knowledge of one to be applied to the other, or to infer
the function of one organism’s gene from that of a related species.

Determining the origin of a sequence
If a DNA or protein sample is recovered but its originating species is unknown,
sequence alignment can be used to find likely sources, that is to say, the known
sequences that most closely match the sample.

Finding specific sequences
Suppose that we have discovered the function of part of species X’s genetic code. It
might then be attractive to search species Y’s code for the sequence. If something
similar is found, it might give clues as to the location of a similar gene in Y [37].
Similarly, let us suppose that we have perhaps found the piece of code that expresses
a trait, such as a physical characteristic or the presence of a genetic disease, in one
piece of genetic code. Searching other pieces known to either feature or lack this
trait might help validate or disprove the theory.

Constructing Hidden Markov Models
Hidden Markov models (HMMs) are probabilistic tools which can be used for se-
quence alignment [39], to find sequences in genetic code [37], to infer protein struc-
ture [52] or to build profiles of DNA and proteins [52]. Such profile HMMs can
be used to determine whether a sequence is part of a family of DNAs or proteins.
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HMMs are based on the probability of a sequence adhering to certain characteris-
tics. To determine these probabilities, machine learning principles are used; in the
case of a profile HMM, the learning set is a multiple alignment. For more informa-
tion on HMMs as sequence alignment tools see Section 2.3. For a more in-depth
description of the workings of (profile) HMMs, see Chapter 3 of [52].

Constructing evolutionary trees
From homology data, evolutionary (phylogenetic) trees can be constructed [52].
These trees are built using the ‘genetic distance’ between species and give insight
into inter-species relationships and the course of evolution. Using the concept of an
evolutionary rate, the species’ sequence homology can be translated into the time
taken to develop from ancestral species. The actual construction of the tree can be
done in many ways; examples include maximum parsimony methods (building the
tree so that the lowest amount of evolutionary change is required) and distance
methods such as the UPGMA algorithm which builds the tree from the result
matrix of a multiple alignment. Figure 1.5 provides an example of a phylogenetic
tree.

1.2.4 Types of sequence alignment

1.2.4.1 Structural alignment

Structural alignment [50] is the process of attempting to infer similarity between proteins
by comparing their three dimensional shapes, or tertiary structures. As a protein’s shape
is determined by its amino acid makeup which, in turn, determines its function, it is
obvious that structural alignment is an attractive tool for homology research. In fact,
different protein letter sequences might result in similar 3D structures [50]: from an
evolutionarily point of view, protein structure is better conserved than protein sequence
[35].

Unfortunately, the determination of the tertiary structure of proteins requires costly,
time consuming procedures such as X-ray crystallography and nuclear magnetic reso-
nance imaging (bioinformatics databases contain far fewer protein structures than letter
sequences) [37]. One field of bioinformatics concentrates on unraveling the mysteries
of protein folding, the process in which an unfolded random coil amino acid gains its
characteristic tertiary structure. Using computational protein folding, any of the myriad
available protein sequences could be converted to a 3D representation. Then, in turn,
structural alignment could be used to infer homology. Currently, however, protein fold-
ing is still an open-ended problem, and current approaches have such high computational
requirements that researchers have turned to super or distributed computing [58].

Although mainly used for proteins, structural alignment is also promising for strands
of RNA [49]. It is not suitable for DNA as that always has the double-helix structure.

1.2.4.2 Global alignment

The following alignment methods operate directly on the sequence letters. As stated, the
idea is to line up two (or more) sequences so that their degree of similarity is maximized.
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For DNA and RNA this means matching identical bases; in the case of proteins, amino
acids are matched if they are identical or can be derived from one another through
substitutions that are likely to occur [37]. Although matching two sequences directly
will take into account substitution mutations, to handle insertions and deletions the
notion of gaps is introduced. Marked by the symbol ‘-’, a gap can be chosen to be
inserted into any of the sequences to obtain a closer match.

Example (from [52]). With base sequences TACCAGT and CCCGTAA:

No gaps Gaps
T A C C A G T T A C C A G T − −
C C C G T A A C − C C − G T A A

The alignment with gaps is more relevant and better exposes the similarities between
the sequences. Note that other alignments are possible: an option would be

T A C C A G T − −
− − C C C G T A A

As multiple alignments are possible even in this simple case, it makes sense to devise
a way to rate and then select the best alignment(s). A simple way to accomplish this
is to assign scores to the alignment letters. A simple scheme is 1 for a match, -1 for
a mismatch and -2 for a gap. Such a scheme is said to have a linear gap penalty. A
more advanced method is to introduce an affine gap penalty ; this assigns different scores
to the starting of a new gap and the extension of a current one. Generally, starting
a new gap is given the largest penalty as this is biologically the hardest [52]. Using
the aforementioned linear scoring system, the first gapped alignment scores (-1-2+1+1-
2+1+1-2-2)=-5 and the second option does so as well with (-2-2+1+1-1+1+1-2-2)=-5.
So in this case, both gapped alignments are ‘as good as’ one another. However, this does
not automatically mean that they both have the same biological relevance. To judge how
relevant an alignment’s score is, probabilistic methods can be used; the idea is to check
whether the probability of an alignment attaining the score in question is adequately
small (see Chapter 7 of [52]). Note that if an affine gap penalty system had been used,
the second alignment would have had the best score as it contains two gaps instead of
three.

As noted, the same approach can be used for amino acids as opposed to DNA bases.
Instead of working with fixed scores, amino acid substitutions have been rated by their
evolutionary likeliness and are available as standard 20x20 triangular substitution matri-
ces. The two most well-known matrices are the PAM and BLOSUM families [37]. Figure
1.6 shows the BLOSUM62 matrix.

The Needleman-Wunsch algorithm (Section 2.1.1) performs global alignment.

1.2.4.3 Local alignment

Local alignments are similar to global ones, only instead of attempting to align the
complete sequences to one another, portions of similarity are aligned.
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Figure 1.6: The BLOSUM62 amino acid substitution matrix.

Example: with sequences GTGTACTCCAGAG and GTACCCAAG:

Global alignment Local alignment
G T G T A C T C C A G A G G T G T A C T C C − A G A G
G − − T A C − C C A − A G − − G T A C − C C A A G − −

Looking for a local alignment will better expose ‘patches’ of homology in two relatively
dissimilar sequences; this might lead to more biologically relevant results [52].

The Smith-Waterman algorithm (Section 2.1.2) performs local alignment.

1.2.4.4 Multiple alignment

The previous examples focused on aligning only a pair of sequences, but in some cases
it might be more interesting to consider the similarities between a group of sequences.
For example, if the structure of a protein is unknown, a similarity to a group of other
proteins might give clues. Global and local alignment algorithms can be adapted to
deal with multiple alignments, though this quickly becomes extremely computationally
expensive. An alternative is to use specifically designed heuristic algorithms; an example
is ClustalW (Section 2.2.3).
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1.3 Bioinformatics databases

Various databases and search engines for biological data, such as protein and DNA se-
quences, exist. This section takes a look at the major offerings. Bioinformatics databases
are incredibly useful for research purposes as they give researchers access to huge amounts
of data, which can be searched, inspected or used for (multiple) sequence alignment.
This is critical as, for example, searching for homology is quite irrelevant without a large
amount of species to compare to. The databases also allow researchers to submit data
and share it with the rest of the community. When a biological sequence is submitted
to a database it is assigned an accession number, a unique global identifier that allows
the sequence to be updated when needed and referred to in publications.

1.3.1 International Nucleotide Sequence Database Collaboration

The International Nucleotide Sequence Database Collaboration (INSDC) [16] is a collab-
oration between the three major global bioinformatics database providers: NCBI, EBI
and DDBJ. Data gets shared between the three so that each is more complete, has less
visitors to serve and can apply its search engine(s) to as much data as possible.

1.3.1.1 NCBI

The American National Center for Biotechnology Information (NCBI) [17] offers the
GenBank database, which is “a collection of publicly available annotated nucleotide
sequences, including mRNA sequences with coding regions, segments of genomic DNA
with a single gene or multiple genes, and ribosomal RNA gene clusters.” [13]. Data is
submitted by third parties and, though some quality control checking is done, it is mostly
up to the author to check and revise any submitted data. Database entries contain a
description, protein codon ranges and amino acid translations for DNA/RNA and finally
sequence data in a simple text format e.g. ‘atgtagc’. GenBank nucleotide sequences that
code a protein will be annotated with the protein’s name and a link to its amino acid
sequence data. GenBank data is exchanged daily with the other INSDC participants.

The NCBI also offers the Reference Sequence (RefSeq) database, a curated collection
of DNA, RNA, and protein sequences. Curated means that its contents is hand-picked
and carefully annotated with details such as gene functions by the NCBI. As opposed to
GenBank, which can contain multiple variants of the same record, RefSeq only offers a
single, ‘best’ one, which is updated and annotated as new data becomes available.

1.3.1.2 EBI

The EBI [10] (European Bioinformatics Institute)’s EMBL-Bank database is similar
to GenBank. Its data is shared with INSDC. The EBI hosts the ClustalW2 multiple
alignment tool, see Section 2.2.3.

1.3.1.3 DDBJ

DDBJ (DNA Data Bank of Japan) [9], the sole nucleotide data bank in Asia, is the third
of the INSDC participants and, again, similar to the others.
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1.3.2 UniProt

UniProt (Universal Protein Resource) [29] is a curated protein sequence database; no
DNA or RNA data is kept. UniProt gets its protein sequences from the INSDC databases,
but further processes the data for one of two sub-databases: Swiss-Prot and TrEMBL.
Swiss-Prot contains manually curated and annotated proteins, and is considered to be
the gold standard for protein information [66]. Of course, the high quality of Swiss-Prot
entries means that only a fraction of available proteins are documented there. However,
UniProt’s second database, TrEMBL, does offer all other proteins available, although
with lower quality, automatically generated annotations. Apart from getting data from
the INSDC databases, UniProt annotations also link to their entries.

1.3.3 Search engines

As there are massive amounts of data available in aforementioned bioinformatics
databases, various ways of accessing them are offered. Users can retrieve entries by
accession number, browse by taxonomy or use a variety of search engines to find relevant
sequence data. Appendix A illustrates the use of these tools with a practical example.

1.3.3.1 Database content search engines

All databases offer plain-text search engines where users can search for terms such as
‘tissue inhibitor’ or ‘mouse’. NCBI offers the Entrez search engine, EBI has EB-eye.
DDBJ has ARSA. These search engines allow one to sort results by category such as
‘nucleotide sequences’, ‘protein sequences’ or ‘enzymes’, and in the case of ARSA also
search UniProt. UniProt’s own search engine obviously only searches proteins and allows
filtering by Swiss-Prot or TrEMBL results. Figure 1.7 shows an example Entrez search
for ‘mouse’. Note how the results include nucleotide data, three dimensional structures
and species information.

1.3.3.2 Database alignment search engines

In many cases one will want to search the databases not for plain-text but for (similarity
to) a sequence. Being able to perform alignments with all known sequences makes for
a very powerful tool. To do this, all of the discussed databases offer web interfaces to
the FASTA and/or BLAST local sequence alignment tools. The user simply enters a
nucleotide or amino sequence and sets some parameters if desired. A heuristic-based
sequence alignment tool will then search the entire database and present a ranked list of
results: the sequences that managed to attain the highest scores. Figure 1.8 shows the
settings available to FASTA users; some might be familiar from Section 1.2. Note that
in this instance the EBI’s search engine also allows searches of the UniProt database,
once again an example of how closely tools and data are shared. The FASTA algorithm
is discussed in Section 2.2.1; BLAST in 2.2.2.

The databases also offer the Clustal multiple alignment tool. With this multiple
sequences (if desired, from the database using accession numbers) can be aligned. The
Clustal algorithm is discussed in Section 2.2.3. Appendix A shows an example of how
the databases are integrated and the usage of their search tools.
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Figure 1.7: An Entrez (NCBI) search for ‘mouse’.

Figure 1.8: The settings of the EBI’s FASTA alignment tool.
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Sequence alignment algorithms 2
This chapter covers algorithms that attempt to determine the optimal local or global
alignment(s) of two sequences (for more on sequence alignment, see Section 1.2.4). Figure
2.1 shows an overview of the various sequence alignment algorithms. There are two
classes of algorithms; the first class, the dynamic programming algorithms, will always
recover all optimal alignments. However, these algorithms are computationally expensive
and searching a database with them would require every single database entry to be run
through the algorithm, which is prohibitively expensive. The second class, the heuristic
methods, are much faster (and are used in database searches) but are not guaranteed
to find the optimal alignment(s); interesting alignments might be overlooked. Heuristic
methods can be based either on dynamic programming or probabilistic methods. For
both optimal and heuristic algorithms speedups are, of course, desired: the best case
would be the ability to use the optimal dynamic programming algorithms for database
searches.

Sequence alignment algorithms

Heuristics (approximate)Dynamic programming (optimal)

Dyn. prog. based Probabilistic

Figure 2.1: Classification of sequence alignment algorithms.

15
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2.1 Dynamic Programming algorithms

Dynamic Programming (DP) is the approach of breaking down a problem into smaller
subproblems. This section shows how the Needleman-Wunsch (global alignment) and
Smith-Waterman (local aligment) algorithms use DP for sequence alignment by produc-
ing an optimal alignment from a matrix of subsequences.

Note that these algorithms perform pairwise alignment; as stated in Section 1.2.4.4,
they can be used to ‘brute-force’ multiple alignments but the sheer amount of work
involved due to this method’s exponential complexity means that specifically designed
heuristic methods (Section 2.2.3) are preferred.

The content in this section is largely based on Chapter 2 of [52], a recommended
reference on these algorithms.

2.1.1 The Needleman-Wunsch algorithm

Two versions of the Needleman-Wunch algorithm exist: one with linear and one with
affine gap penalties (see Section 1.2.4 for information on gap penalties). Both will now
be described.

2.1.1.1 Linear gap penalties

The Needleman-Wunsch algorithm [68] has three phases: initialization, matrix fill and
traceback. Suppose we have a sequence x of length n and another sequence, y, of length
m. The algorithm operates on an (n + 1) × (m + 1) matrix F . For each of the matrix
elements for i, j > 0 the (i, j)th element is the score of an optimal alignment between
x1..i and y1..j . For i = 0 the (i, j)th element is the score resulting from aligning y1..j
to a gap of length j and analogous to that for j = 0 the (i, j)th element is the score
resulting from aligning x1..i to a gap of length i. These scores are calculated as in Section
1.2.4, using scoring rules for nucleotide sequences and, additionally, scoring matrices for
proteins.

Initialization
The (0, 0)th matrix element is set to 0. The top row and and leftmost column are
initialized with the costs of gaps of lengths i and j. Figure 2.2 shows the initial-
ization phase for the nucleotide sequences GAATCT and CATT with gap penalty 2.

Matrix fill
Next the matrix is processed from the top left to bottom right corner. The exact
approach does not matter (row by row, column by column, alternating rows and
columns) as long as the other elements on which the current cell depends are
available. To assign a score to each matrix element (i, j), three possible options
are considered: aligning i with j, aligning i with a gap and aligning j with a gap.
Respectively, this translates to continuing on from the (i, j − 1)th, (i− 1, j)th and
(i− 1, j − 1)th elements and adding the proper score. The highest-scoring option
is taken to ensure an optimal alignment. In formula form:
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0 1 2 3 4
F − C A T T

0 − 0 -2 -4 -6 -8

1 G -2

2 A -4

3 A -6

4 T -8

5 C -10

6 T -12

Figure 2.2: Needleman-Wunsch initialization phase.

This example has been adapted from Example 2.1 in [52].

F (i, j) = max


F (i− 1, j − 1) + s(xi, xj)

F (i− 1, j)− d

F (i, j − 1)− d

(2.1)

With s(x, y) the score function for the alignment of the elements, which will be
match/mismatch for nucleotides and a matrix lookup for proteins. d is the gap
penalty. Figure 2.3 shows the example alignment after the matrix fill phase. The
gap penalty is still -2, the score for an alignment is 1 and a misalignment is -1.
Once the matrix fill phase is complete, the bottom right element, (n,m), holds the
score of the alignment: in this case, -2.

0 1 2 3 4
F − C A T T

0 − 0 -2 -4 -6 -8

1 G -2 -1 -3 -5 -7

2 A -4 -3 0 -2 -4

3 A -6 -5 -2 -1 -3

4 T -8 -7 -4 -1 0

5 C -10 -7 -6 -3 -2

6 T -12 -9 -8 -5 -2

Figure 2.3: Needleman-Wunsch matrix fill phase.

Traceback
During the matrix fill phase it is recorded which of the three options was chosen
for each cell. Note that if multiple options result in the same score, all are
recorded. This can be done by storing ‘predecessor’ pointers for each cell, or
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0 1 2 3 4
F − C A T T

0 − (0, 0) (0, 1) (0, 2) (0, 3)

1 G (0, 0) (0, 0) (0, 1) (1, 1) (0, 2) (1, 2) (0, 3) (1, 3)

2 A (1, 0) (1, 0) (1, 1) (1, 1) (2, 2) (2, 3)

3 A (2, 0) (2, 0) (2, 1) (2, 1) (2, 2) (2, 2) (2, 3) (3, 3)

4 T (3, 0) (3, 0) (3, 1) (3, 2) (3, 2) (3, 3)

5 C (4, 0) (4, 0) (4, 2) (4, 3) (4, 3) (4, 4)

6 T (5, 0) (5, 1) (5, 1) (5, 2) (5, 2) (5, 3) (5, 3)

Figure 2.4: Predecessor pointers for Needleman-Wunsch traceback.

by saving the results of each of the three equations in separate matrices and
looking up which had the highest result for a cell [43]. Figure 2.4 shows the
predecessor pointers for the example matrix. Then, from the bottom-right cell,
a route is traced back to the top left cell; this gives an alignment. If multiple
routes are possible, there are multiple optimal alignments. Looking at Figure
2.4, starting at element (6, 4) we trace back to (5, 3), from which it was derived;
this is a diagonal movement (the top option in Formula 2.1 was used) which
means the letters are aligned (TT). On the other hand, (5, 3) was derived from
(4, 3), a vertical movement (second option in Formula 2.1), which means a gap
(C−). (4, 3) was derived using a diagonal movement (TT). (3, 2) can be aligned
as AA by tracing to (2, 1) or A− by means of (2, 2). This is because its score
of -2 could have been attained from -3+1 or 0-2. Tracing back all the way,
and taking into account that multiple routes exist where two options from the
formula resulted in an equal score, the three optimal alignments, with score -2, are:

G A A T C T G A A T C T G A A T C T
C − A T − T C A − T − T − C A T − T

2.1.1.2 Affine gap penalties

Note that the preceding explanation used a linear gap penalty. To extend the algorithm
with support for affine gap penalties, an additional two (n ×m) matrices are required,
say Ix and Iy.

Initialization
The (0, 0)th matrix element of F is set to 0. The top row and and leftmost column
are initialized with the costs of gaps of lengths i and j, keeping in mind the gap
opening and extension penalties (elements (0, 1) and (1, 0) are set using the opening
penalty, the rest extend from there). The I matrices are left blank. Figure 2.5
shows the initialized F matrix for gap opening penalty 3 and extension penalty 2.

Matrix fill
For each element of Ix, the (i, j)th element is the score of an optimal alignment
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0 1 2 3 4
F − C A T T

0 − 0 -3 -5 -7 -9

1 G -3

2 A -5

3 A -7

4 T -9

5 C -11

6 T -13

Figure 2.5: Needleman-Wunsch initialization phase for affine gap penalties.

between x1..i and y1..j given that the alignment ends with xi aligned to a gap. Iy is
analogous, but for yi. In effect, these new matrices store either the score of starting
a new gap or extending an existing one. Additionally, the original matrix F now
does not have the option of aligning with gaps anymore; instead, the options are
to continue an existing alignment or to start a new one (closing a gap). In formula
form:

F (i, j) = max


F (i− 1, j − 1) + s(xi, xj)

Ix(i− 1, j − 1) + s(xi, xj)

Iy(i− 1, j − 1) + s(xi, xj)

(2.2)

Ix(i, j) = max

{
F (i− 1, j)− d

Ix(i− 1, j)− e
(2.3)

Iy(i, j) = max

{
F (i, j − 1)− d

Iy(i, j − 1)− e
(2.4)

With d the gap opening penalty and e the gap extension penalty.

Traceback
Traceback now starts at one of the three matrices, depending on which has the
maximum value for the final (bottom right) entry. Otherwise it proceeds similar
to that for linear gap penalties, but with the possibility of jumping from matrix to
matrix.

2.1.2 The Smith-Waterman algorithm

The Smith-Waterman algorithm [77] is similar to Needleman-Wunsch, but produces local
alignments, which might be more biologically interesting.

Initialization
The top row and leftmost column are initialized to 0.



20 CHAPTER 2. SEQUENCE ALIGNMENT ALGORITHMS

Matrix fill
A new option is introduced: that of starting a new alignment, which might result
in a better score than continuing an existing one. This translates into resetting the
current score to 0. In equation form:

F (i, j) = max


0

F (i− 1, j − 1) + s(xi, xj)

F (i− 1, j)− d

F (i, j − 1)− d

(2.5)

Traceback
As the alignment can end before the sequences are over, instead of starting at the
bottom right matrix element, traceback starts at the maximum value in the matrix
and then traces back until a 0 is encountered.

Smith-Waterman can be extended for affine gap penalties in a fashion similar to
Needleman-Wunsch [81]; in this case the F matrix top row and leftmost column are
initialized to zeros:

F (i, j) = max


0

F (i− 1, j − 1) + s(xi, xj)

Ix(i, j)

Iy(i, j)

(2.6)

Ix(i, j) = max

{
F (i− 1, j)− d

Ix(i− 1, j)− e
(2.7)

Iy(i, j) = max

{
F (i, j − 1)− d

Iy(i, j − 1)− e
(2.8)

2.2 Heuristics: FASTA, BLAST and ClustalW

As stated, heuristic approaches are imperfect and might overlook optimal alignments.
However, they are much faster than their dynamic programming counterparts and are
widely used for database searches, see Section 1.3. FASTA and BLAST both perform
pairwise alignment; ClustalW is a multiple alignment tool. There is no clear guideline
on when to use FASTA and when to use BLAST; supposedly, FASTA is more sensitive
but slower than BLAST [1]. The bioinformatics databases can be searched with either.
In any case, as high scoring alignments can be found by chance, statistical analysis of
the significance of the resulting scores is advised [52].
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2.2.1 FASTA

The FASTA heuristic is based on the Smith-Waterman algorithm. Looking at the similar
Needleman-Wunsch traceback example, it is apparent that only part of the matrix is
used for the traceback; the almost diagonal ‘route’ back to (0, 0). In larger matrices,
this difference between the interesting area used during traceback and the size of the
complete matrix only grows. FASTA is meant to exploit this difference by concentrating
on these areas of interest: the areas are determined and Smith-Waterman is run only on
these, which is where the speed boost comes from.

These areas of interest are constructed using a ‘dot matrix’ method. The algorithm
operates as shown in Figure 2.6 [32] [73]:

Find runs of matches
Shown in Figure 2.6a. A matrix of both sequences is constructed, and runs of
matches between the sequences are marked (for protein sequences whether two let-
ters ‘match’ is determined using a scoring matrix). Next only matching sequences
of the given length k are kept. This k-tuple length can be set by the user, see
KTUP in Figure 1.8. A larger k-tuple value will speed up the search, but make it
less sensitive. For protein sequences, a value of 2 is frequently used; for nucleotide
sequences a value between 4 and 6 is recommended. On-line search engines might
enforce certain values; for example EBI requires a minimum value of 6 for nucleotide
sequences [10]. The top ten matches advance to the next step.

Trim match regions
Shown in Figure 2.6b. The regions are trimmed using a second pass with the
scoring matrix or scores for nucleotide insertions/deletions. Regions are allowed to
become smaller than the k-tuple size.

Join regions
Shown in Figure 2.6c. Regions from the previous step are joined if they do not
overlap and the gaps between them are smaller than a set cutoff value. Only the
new highest-scoring region advances to the final step.

Apply DP to area
Shown in Figure 2.6d. Smith-Waterman is run on an area surrounding the region
from the previous step; the width of this region determines how exhaustive (but
slow) this step is. A width of 32 is used for the EBI search engine [10]. Cells
outside this area are assigned a value of -∞, making them completely unattractive
choices for the Smith-Waterman matrix fill step to build on.

2.2.2 BLAST

BLAST (Basic Local Alignment Search Tool) is another heuristic sequence alignment
algorithm, although unlike FASTA it is not based on a dynamic programming method.
The steps are as follows [32]:
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Figure 2.6: The FASTA algorithm.

Score query words
The query sequence is split up into a set of k-letter words, with k usually 3 for
proteins and 11 for DNA/RNA. For example, the amino acid sequence ARNDCQ
gives the three-letter words {ARN, RND, NDC, DCQ}. All possible k-letter words
in the alphabet (203 for proteins and 411 for DNA/RNA) are then scored with these
query words. The scoring is again done using scoring matrices for amino acids and
fixed scores for (mis)matches of nucleotides. All words that score higher than a
certain threshold continue on to the next step. Setting k higher will increase the
search sensitivity but decrease speed; setting the scoring threshold higher will do
the opposite as more words will make it to the next step [30].

Search database
The database is searched for the selected words, requiring an exact match. To
accommodate this, the database has been preprocessed and converted to BLAST
format [23].

Extend matches
The matches are extended (to some maximum extent dictated by a parameter)
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in both directions in an attempt to decrease gaps and increase the score of the
alignment to be higher than some threshold. These extended query words are
scored as before. The score threshold and extension degree are again parameters
that are either part of the algorithm or can be set by the user.

BLAST has been extended with filters to automatically remove biologically uninteresting
parts from query sequences. Furthermore, variations on BLAST exist such as PSI-
BLAST [21] which is geared towards finding distant evolutionary relationships and BLAT
[55] which is faster than BLAST (as it keeps the entire target genome in RAM) but less
sensitive.

2.2.3 ClustalW

ClustalW [4] is a heuristic multiple alignment tool that uses a progressive alignment
method; though the dynamic programming algorithms can be used to determine multiple
alignments, this requires expanding them to operate on n-dimensional matrices (to align
n sequences), which quickly becomes prohibitively expensive. ClustalW is based on the
Clustal program; its second version, ClustalW2 is currently in use. The Clustal algorithm
works as follows [79], see Figure 2.7:

Pairwise alignment
Shown in Figure 2.7a. All pairs of target sequences are aligned using an approxi-
mate method that scores the alignments in a seemingly BLAST like fashion which
is detailed in [80]. ClustalW introduced the ability of using the more accurate, but
slower, dynamic programming algorithms. The scores of each pairwise alignment
are stored in a triangular matrix as distances from 0 to 1.

Similarity tree
Shown in Figure 2.7b. A similarity tree is constructed in two steps: first an un-
rooted tree is constructed from the distance matrix using the Neighbor-Joining
method of creating phylogenetic trees. Then the tree is transformed to a rooted
version; for the Clustal algorithm all sequences get the same total weight, for
the newer ClustalW version a sequence’s weight depends on its distance from the
root and what branches it has in common with other sequences. For example the
‘Hbb Human’ sequence in the example figure is scored as its own unique branch
plus half of the branch it shares with ‘Hbb Horse’ plus a quarter of the branch to
the ‘Hbb’/‘Hba’ groups plus one fifth of the branch those share with ‘Myg Phyca’
plus one-sixth of the branch also encompassing ‘Glb5 Petma’. This gives it the
shown score of (0.081 + 0.113 + 0.01525 + 0.003 + 0.0103) = 0.221.

Progressive alignment
Shown in Figure 2.7c. The progressive alignment is performed from the ends of
the tree branches back to the root. Looking at the example figure, the order
of alignments would be (1) ‘Hbb Human’ vs. ‘Hbb Horse’; (2) ‘Hba Human’ vs.
‘Hba Horse’; (3) the result of (1) vs. the result of (2); (4) the result of (3) vs
‘Myg Phyca’; (5) the result of (4) vs ‘Glb5 Petma’ and finally the result of (5) vs.
‘Lgb2 Luplu’. Once all sequences have been compared a final alignment is found;
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Hbb_Human
Hbb_Horse
Hba_Human
Hba_Horse
Myg_Phyca
Glb5_Petma
Lgb2_Luplu

1
2
3
4
5
6
7

1 2 3 4 5 6

-
.17 -
.59 .60 -
.59 .59 .13 -
.77 .77 .75 .75 -
.81 .82 .73 .74 .80 -
.87 .86 .86 .88 .93 .90

(a) Pairwise alignment

.081 Hbb_Human: 0.221

.064 Hbb_Horse: 0.225

.055 Hba_Human: 0.194

.064 Hba_Horse: 0.203

.226

.219

.061

.015

.062
.398 Myg_Phyca: 0.411

.389 Glb5_Petma: 0.398

.442 Lgb2_Luplu: 0.442

(b) Similarity tree

(c) Progressive alignment

Hbb_Human atgcatgcatcgatgc
Hbb_Horse aggcgtgcaccgatgc

Figure 2.7: The Clustal algorithm.

Source: Adapted from [79].

of course, gleaning actual biologically interesting information will require careful
interpretation.

These progressive alignments are performed using dynamic programming algo-
rithms, with some side notes. When a gap is introduced, it cannot be removed
at a later stage. Furthermore, if a gap is introduced within an existing gap, the
full gap creation penalty is deducted. ClustalW expands on this by varying the
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scoring matrices used depending on the distances between the sequences being
compared and, in turn, varying the gap creation and expansion penalties depend-
ing on the current scoring matrix, sequence similarity, sequence lengths and the
current position of the alignment within the sequences.

2.3 Heuristics: Hidden Markov Models and HMMER

Hidden Markov Models are an approach rooted in probability theory that can be ap-
plied to sequence alignment problems, for example multiple alignment [37] and database
searches [42]. The information on hidden Markov models in this chapter comes from [42]
and Chapter 3 of [52].

2.3.1 Hidden Markov Models

Figure 2.8: A Markov chain.

Hidden Markov models come from
Markov chain theory. A Markov chain
is a state machine: for each state, there
are probabilities (adding up to a total
of 1) of entering another (or the same)
state. Furthermore, they adhere to the
Markov property that the next state only
depends on the current state, not the past
state(s) that have been visited. To deter-
mine where the chain starts, initialization
probabilities, for each state the probabil-
ity of starting there, are used. The chain
is said to generate a sequence of states:
an example sequence generated by the
chain in Figure 2.8 would be {’Bull Mar-
ket’ ’Bull Market’ ’Recession’}.

Markov chains can be used to model
phenomena. For instance, if one has a Markov chain that captures the probabilities of
each of the four nucleotides succeeding one another, it can be evaluated whether some
nucleotide string has a significant probability of being generated by that model. Then,
if that probability is higher than a certain threshold, one can decide that the string
adheres to the model and is, as such, a valid nucleotide sequence. If we expand our
model to take into account substitutions, deletions and insertions, the same sequence
can be generated in multiple ways. For example the sequence ‘CATG’ could arise from
‘T’ being inserted into ‘CAG’, or from ‘T’ being deleted from ‘CATTG’. In cases where
only the generated strings are observed, and not the probabilities behind them (the way
the string was generated), the model is said to be a hidden Markov model (HMM); a
HMM that models, or profiles a set of sequences is called a profile hidden Markov model.

Evaluating the probability of a sequence being generated by a certain HMM can be
done using the dynamic programming Forward algorithm; finding the most likely path
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through the HMM for a given sequence can be accomplished using the similar Viterbi
algorithm.
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Figure 2.9: The Plan7 nucleotide/protein
HMM connectivity [69].

Note the insertion, deletion and match
states marked I, D and M respectively.

As with any Markov chain, a profile
HMM consists of a layout, or connectivity
and a set of transition probabilities. The
connectivity is designed by hand to
match the phenomena at the core of
the model being investigated; Figure 2.9
shows such a connectivity. The transi-
tion probabilities can be determined in
two ways. In the case of a biological
sequence, the simplest approach is to
infer the transition probabilities from
an existing multiple alignment and build
the HMM using these probabilities. A
more useful approach, however, might be
to train the HMM using a collection of unaligned sequences, the training set. Using
algorithms such as Baum-Welch training or Viterbi training the HMM’s transition
probabilities can be estimated.

Using all this knowledge, we can use a profile HMM to perform a multiple sequence
alignment:

Connectivity selection
A fitting connectivity is chosen, with a length that matches the data being worked
with; in case of a multiple alignment, it can be set to the average length of the
sequences in question.

Training
Using one of the training algorithms, the Markov chain’s probabilities are estimated
from the target sequences.

Path determination
The Viterbi algorithm is used to determine the most likely path through the model
for each sequence.

Path comparison
The resulting paths are compared: if two paths share the same match states for
a letter, the sequences’ letters are introduced, otherwise a gap is added. Different
alignments can arise from the fact that sequences of unequal lengths can be lined
up in various ways during this step.

2.3.2 HMMER

HMMER can be used to align sequences to a profile HMM or to extract a profile HMM
from a multiple alignment; it can also be used as a database search tool like FASTA
and BLAST. Sequences can be searched against sequence and profile databases (such as
Pfam [45]); profiles, in turn, can be searched against sequence databases. As given in
[14], HMMER is described as follows:
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“HMMER is used for searching sequence databases for homologs of protein se-
quences, and for making protein sequence alignments. It implements methods using
probabilistic models called profile hidden Markov models (profile HMMs). Com-
pared to BLAST, FASTA, and other sequence alignment and database search tools
based on older scoring methodology, HMMER aims to be significantly more accurate
and more able to detect remote homologs because of the strength of its underlying
mathematical models. In the past, this strength came at significant computational ex-
pense, but in the new HMMER3 project, HMMER is now essentially as fast as BLAST.”

However, HMMER cannot search for nucleotide sequences [24] and it is currently
not offered in web interface format by any of the bioinformatics databases discussed in
Section 1.3.

HMMER profiles use the ‘Plan 7’ connectivity shown in Figure 2.9, built from mul-
tiple alignments. Although HMMER cannot be trained using unaligned sequences (its
author recommends using Clustal to align these first), it can create a profile from a
single sequence for its phmmer sequence vs. sequence database search. It does this by
converting protein score matrix (BLOSUM62) entries to probabilities [24].
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2.4 Hardware acceleration of sequence alignment algo-
rithms

As discussed at the start of this chapter, dynamic programming approaches to sequence
alignment can be too computationally expensive to be applied to database searches. In
fact, even the speed of heuristic algorithms might sometimes be insufficient. It would
be desirable to speed up both types of algorithms, ideally getting enough speed out
of dynamic programming to be able to search databases in a quick manner that still
produces optimal alignments. This is where hardware acceleration comes in: a dedicated,
(semi)specifically designed piece of hardware will (generally) be faster at a given task
than a general purpose CPU such as that in a PC. Of course, trade-offs arise, such as
cost, ease of development, flexibility and configurability.

2.4.1 Acceleration options

Although efforts have been made to implement sequence alignment algorithms on dedi-
cated chips or application specific integrated circuits (ASICs) [36] [40] [47], especially in
research more flexible platforms such as field-programmable gate arrays (FPGAs) and
graphics processing units (GPUs) are preferred. GPU acceleration is dealt with in Chap-
ter 3 and is the main focus of this thesis. However, the FPGA approaches discussed in
this chapter show earlier work that compares to, and contrasts with, GPU implementa-
tions.

FGPAs are integrated circuits that can be configured via software using description
languages such as VHDL. This makes it easy to quickly try and modify approaches
to hardware acceleration; this ease of use means development costs are much cheaper.
Trade-offs apply: FPGAs are generally not as fast as ASICs, consume more power, and
their per-unit costs are higher [11] [33]. Still, FPGAs have been used in commercial
sequence alignment products, for example those offered by [3] and [26].

2.4.2 The systolic array

One approach to FPGA acceleration is the systolic array. This focuses on the matrix fill
step of the Smith-Waterman algorithm (Section 2.1.2) as used for database searches. As
Smith-Waterman produces local alignments, it is a more popular choice than Needleman-
Wunsch, although both can be hardware accelerated in similar ways. Furthermore, the
matrix fill step is the most time consuming phase of the algorithm, and needs to be run
for each (database) sequence to be compared. As such, it makes sense to implement this
step in hardware and return the maximum matrix value: the score of the alignment. The
top-scoring sequence pairs, which are a tiny group compared to the complete database,
can then have traceback performed in a separate step, probably on the personal com-
puter that controls the FPGA board. Not performing traceback on the FPGA frees up
hardware resources to speed up matrix filling.

Looking at the Smith-Waterman algorithm in Section 2.1.2, each matrix element is
dependent on just three others: F (i− 1, j − 1), F (i− 1, j) and F (i, j − 1). This means
that elements on the matrix diagonals are calculated sequentially. Figure 2.10 shows this;
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Figure 2.10: Parallelism of the Smith-
Waterman algorithm [81].

Figure 2.11: Systolic array for matrix
multiplication.

first only the element marked ‘1’ can be calculated, after that both elements marked ‘2’
can be calculated, etc. Note how the cells sharing the same number form anti-diagonals:
all cells on these anti-diagonals can be filled in parallel.

Figure 2.12: Linear systolic array perform-
ing Smith-Waterman matrix fill [81].

This is where the systolic array comes
in. Systolic array approaches are used in
many hardware implementations [36] [46]
[72] [74] [81]. A systolic array is a ma-
trix of simple processing elements (PEs).
The operands of the calculation to be
performed are streamed into the array,
the PEs perform the required calculation
on their two values and pass the result
to their neighbors. For example, a ma-
trix multiplication could be performed by
streaming two matrices row-by-row and
column-by-column into the array; Figure
2.11 illustrates this. Returning to Smith-
Waterman, using such a two-dimensional
array would result in PEs being idle a lot
of the time [36] [48], wasting hardware re-
sources; as such an one-dimensional lin-
ear systolic array is used.

Figure 2.12 shows a linear array being used to fill the aforementioned anti-diagonal
lines. The PEs are each assigned one of the query sequence letters, and the database
sequences are streamed through horizontally; the PEs pass intermediate values to one
another as the sequence is streamed through. The figure illustrates the processing order:
each PE effectively handles a matrix column. Each PE performs alignment of its query
sequence letter and the current letter of the database sequence at its position. The PEs
keep a current maximum cell value and compare this to that of their predecessor: the
largest of the two is saved and passed on. This way, once the entire query sequence has
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been streamed through, the last PE will hold the alignment score.
If there are enough hardware resources available, multiple arrays can be synthesized

to handle database sequences in parallel. Unfortunately, more likely the opposite will
be true: not enough hardware resources to create an array of the same length as the
target sequence [72] [81]. In this case, the computation will need to be split up into
multiple passes. Part of the query sequence is assigned to the array and the database is
run through it. Each output value of the last PE is saved. Then when the next part of
the query sequence is assigned, these values can be used as inputs. In effect, if there are
N PEs, the Nth column of the matrix is saved and then used in the next pass.

Figure 2.13: Two connected Smith-Waterman processing elements.

Source: Adapted from [81].

A straightforward design of the actual PEs is shown in Figure 2.13, which shows two of
them connected as they would be in the array. Note the Max-out output, which handles
the aforementioned maximum value; it is updated as needed from the predecessor’s
output or from the result of the PE’s calculations. This particular PE operates with
affine gap penalties (Formulas 2.6, 2.7 and 2.8). Note how F and Iy are passed on
between the elements; F is delayed a clock cycle in F-diag so it will in effect be the
value of the PE’s upper left matrix element instead of its left neighbor. The Ix-values
are reused in one PE as the next element to be processed by this PE will be the one
below the current one, see Figure 2.12.
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GPU accelerated sequence
alignment 3
A somewhat recent development in the field of bioinformatics is the application of graph-
ics processing units (GPUs) to computational problems such as sequence alignment.
Originally intended for video gaming, GPUs have since become powerful and flexible
vector processors. They are vendor-supported as a viable platform for general-purpose
computing and simulations such as fluid dynamics, electrical fields and rigid-body physics
[6].

3.1 Overview of GPU evolution and programmability

Vertex processing
(transforms)

Fragment processing
(lighting, texturing)

Rasterization

Figure 3.1: The graphics pipeline.

Figure 3.2: A teapot mesh, made up of tri-
angular polygons.

This section takes a look at the
changes GPUs have undergone in the last
decade and a half, and how these changes
resulted in applicability to general pur-
pose computation.

3.1.1 The fixed-function GPU

Depending on one’s exact definition of
the word ‘GPU’, it is arguable whether
the early, non-programmable graphics ac-
celerators can be qualified as such. How-
ever, they are clearly related to the cards
in use today. In this context a graph-
ics accelerator is a piece of hardware that
aids in the display of three-dimensional
graphics, offloading the CPU from tasks
such as matrix transformations and tex-
ture mapping.

33
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Although present in the high-end workstations of the early 90s, graphics accelerators
only gained mainstream appeal with their application to PC gaming in the mid-90s. For
the first time offered at an affordable price point, cards with chips such as the 3DFX
Voodoo (1996) greatly increased the graphics quality and frame rates for video games
and set the tone for the devices that would follow.

Three-dimensional computer graphics are drawn using the steps shown in Figure
3.1. 3D shapes are specified using points called vertices that form triangles. These
triangles are called polygons, see Figure 3.2. In the first pipeline step, vertex processing,
the vertices are transformed to their final on-screen positions. This involves multiple
position transformations, which are applied using matrix transforms. The vertices of,
for instance, the player character are first transformed to their correct position in the
world. Then, a perspective transformation is applied to create the illusion of depth:
distant objects become smaller and parallel lines converge to a vanishing point. The
second step, rasterization, is the conversion of the point data to pixels or fragments.
In this step care must be taken when dealing with overlapping objects, especially when
they are translucent. Algorithms such as Z-buffering aid in this. Finally, the pixels are
assigned a color. This color depends on the object’s material properties and the positions
of lights in the scene. Additionally, objects can be textured with an image, such as a
photo of bricks in case of a wall.

These earliest graphics accelerators implemented only the rasterization and texture
mapping steps in hardware. Vertices were provided fully transformed to their on-screen
positions and for each a color was supplied, the result of lighting calculations performed
on the CPU. The colors of the vertices were then interpolated across their polygons’
resultant pixels.

The next big improvement in accelerators was the introduction of Hardware Trans-
form & Lighting with the NVIDIA Geforce 256 in 1999. As the name suggests, this
meant that the rest of the pipeline was implemented in hardware too; programs now
specified transformation matrices and light positions to the graphics card, which took
care of the rest.

The graphics pipeline as discussed here is known as the fixed-function pipeline. Al-
though various pixel blending modes and support for techniques such as environment
and bump mapping meant that developers had a collection of effects at their disposal,
the fundamental operation of the pipeline was set in stone.

3.1.2 Shaders and programmability

In 2001 the NVIDIA Geforce 3 graphics card was introduced, and this can be seen as
the first true GPU. The vertex and fragment processing stages were now flexible and
could be customized using small programs called shaders. For example, a vertex shader
could be used to apply a sine wave transform to a plane mesh, simulating rippling water.
Pixel shaders could be used to calculate lighting per-pixel instead of it being interpolated
from per-vertex values, and allowed for effects such as heat haze. Throughout the years
various new cards improved performance and flexibility by offering more texture reads
per shader, various new instructions and greatly improved support for flow control.

Finally, in 2006 the distinction between vertex and pixel shaders was dropped on the
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Figure 3.3: Layout of a modern GPU.

hardware level. Unified shader architecture GPUs have just one type of processor that
can run instructions relevant to any type of graphics operation. This change simplified
the hardware and introduced the flexibility required for general purpose computing.
Modern GPUs are highly parallel floating point stream processors [71]. Graphics work
is inherently parallel: vertices and pixels can be processed completely independently. To
that end, GPUs consist of a large amount of processing elements that are little more
than parallel ALUs, optimized for floating point vector work. These processing elements
are grouped into multiprocessors that offer facilities such as shared memory. Figure 3.3
shows the architecture of a modern GPU. The amounts of multiprocessors per GPU and
processing elements per multiprocessor vary; a currently reasonably high-end Geforce
GTX 275, see Figure 3.4, offers 30 multiprocessors with 8 processing elements each, for
a total of 240 processing elements.

Figure 3.4: A NVIDIA
Geforce GTX 275 graphics
card.

An array of data, such as pixels (each of which is a 4-
component floating point value), is streamed through the
processors. Each multiprocessor’s elements perform the
same operation on their pixels: the multiprocessors are Sin-
gle Instruction Multiple Thread (SIMT) processors. This
streaming paradigm is reflected in architectural tradeoffs:
memory latency is rather high, but is compensated for by
the streaming’s predictable access patterns. Flow control
is allowed, but as all of a multiprocessor’s elements must
remain in sync, it is accomplished by temporarily halting
multiprocessors that do not agree on the path taken.
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3.1.3 General purpose computing and CUDA

Although general purpose computing on GPUs has been experimented with since the
introduction of shaders, it had always been rather convoluted: users were stuck with
graphics APIs such as OpenGL and Direct3D. Problems had to be expressed in terms of
graphics primitives such as vertices and textures, then rendered to another texture and
this result had to be read back. Fortunately, things became easier with the release of
NVIDIA’s Compute Unified Device Architecture (CUDA). CUDA offers a more general
parallel programming model than before and allows the GPU to be programmed in a
C-like fashion. Nowadays alternatives to CUDA exist, that run on the same hardware.
Examples are OpenCL [18], DirectCompute [8] and the gaming-aimed Direct3D Compute
Shaders [7]. These are largely similar, but as CUDA is the most widely used and mature,
this section will focus on that.

3.1.3.1 The CUDA thread hierarchy

Host PC

GPU

Grid

Multiprocessor

Block
ThreadThread

Block
ThreadThread

Thread Thread

ThreadThread

Multiprocessor

Block
ThreadThread

Block
ThreadThread

Thread Thread

ThreadThread

Figure 3.5: The CUDA thread hierarchy.

CUDA accelerated programs are laid out as shown in Figure 3.5. The PC system,
the host, invokes a kernel by calling it from C/C++ code. This kernel is the code that
each processing element will run in parallel. A kernel is launched as a grid of threads;
the threads are bundled as blocks. This block abstraction allows for hardware scaling:
if GPU x has twice the multiprocessors of GPU y, it can run twice as many blocks in
parallel with no further code changes. Furthermore, on multi-GPU systems a grid can
be launched on each GPU.

Each block consists of a number of threads; how many threads make up a block
can be chosen by the programmer. The threads in a block are executed by the same
multiprocessor and can communicate using its shared memory. A multiprocessor can run



3.1. OVERVIEW OF GPU EVOLUTION AND PROGRAMMABILITY 37

multiple blocks at the same time by interleaving them; it can also interleave bundles of
threads from one block. On the hardware level, a block’s threads are executed as warps.
A warp is executed in parallel by a multiprocessor’s processing elements. For example,
for NVIDIA G80 and GT200 GPUs, a warp consists of 32 threads; each multiprocessor
has eight processing elements that run four threads in a quad-pumped fashion. The
execution of threads as warps and half-warps is important as it ties into optimization
factors, such as bundling memory accesses and preventing control flow divergence.

How many threads to run in total, and how to split these up into blocks, depends on
various factors. First of all, it makes sense to run a thread for each parallel subproblem.
It is also advantageous to run as many threads as possible at any time, to prevent
processing elements from idling, or delays while waiting for memory accesses. However
there is a hard limit on the number of threads per block, and all threads in a block have
to share a multiprocessor’s resources such as registers. The number of threads should
be a multiple of the warp size to prevent warps from leaving processing elements idle
[70]. Yet there is also a limit on the total number of threads active on a multiprocessor
at any one time, which might make it more attractive to have multiple smaller blocks
using this full capacity than one large block that does not. The documentation sets some
guidelines, but recommends experimenting with the parameters as they depend on the
specific GPU and kernel in question.

3.1.3.2 The CUDA memory hierarchy

Besides the threading model, another thing that sets CUDA programming apart from
working with a general purpose CPU is its memory layout. The physical memories are
shown in Figure 3.3, but some of these offer various memory spaces. The complete set
of CUDA memory spaces is:

Registers
Each multiprocessor offers a bank of registers, shared between its processing ele-
ments. Depending on the capabilities of the device, there are between 8k and 32k
registers per multiprocessor.

Global memory
Global memory is the GPU’s off-chip RAM. On modern GPUs the amount of
global memory tends to be around one gigabyte. Accessing it has a high latency,
which can be hidden by switching between threads. Furthermore, memory accesses
can be coalesced, which means memory accesses of multiple threads in a warp can
be bundled. This takes place if certain criteria are met; most importantly, each
thread in a half-warp (16 threads) must access a neighboring address. Access sizes
can be 32, 64 and 128 bytes. For example, if the threads in a half-warp read
neighboring 4-byte values, one 64-byte access will be issued. If accesses are not
coalesced, they must take place sequentially, resulting in slower performance and
wasted bandwidth; the minimum access size will still be 32 bytes. If the 16 threads
in the half-warp each read aforementioned 4-byte values at unrelated addresses, 16
32-byte accesses will take place, wasting 16× 32− 64 = 448 bytes of bandwidth.
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Local memory
Local memory is a per-thread portion of global memory; it is used to spill registers
and for large variables. Has the same speed as global memory. 16-48 kilobytes per
thread.

Shared memory
Shared memory is on-chip fast memory shared between all threads in a block.
Depending on the capabilities of the GPU, this can be 16 or 512 kilobytes per
multiprocessor. Shared memory is divided into banks, and performance is improved
if all threads in a half-warp access different banks. However, if multiple threads
within a half-warp access the same 32-bit address, these accesses are bundled into
a single broadcast to the relevant threads.

Constant memory
The constant memory is a 64 kilobyte portion of read-only global memory that is
cached on each multiprocessor. Accessing data is as fast as if it were a register, as
long as all threads in a half-warp read from the same address.

Texture cache
Textures are cached ‘windows’ into global memory, optimized for spatially local
reads. Textures can be one, two or three-dimensional and they offer various func-
tions of the texture mapping hardware such as interpolation and clamping modes.
Each multiprocessor can cache up to 8 kilobytes of texture data.

As can be seen, there are six memory types to deal with; compared to general purpose
CPU work where there are usually only registers and RAM, CUDA programming requires
care to optimize the kernel’s memory access patterns to best exploit the hardware.

3.2 GPU accelerated Smith-Waterman

This section focuses on using GPUs to accelerate optimal sequence alignment against a
database using the Smith-Waterman algorithm (Section 2.1.2). As with FPGA imple-
mentations (Section 2.4), usually only the time consuming matrix fill step is implemented
on the GPU. The sequences with the highest scores are subjected to a second pass on
the CPU, where they are aligned again and have traceback performed.

3.2.1 The OpenGL approach

The first known implementations of Smith-Waterman on a GPU are described in [59]
and [61]. These approaches are similar and use OpenGL (CUDA did not exist yet) to
search protein databases. They closely match the FPGA based systolic array approach.
First the database and query sequences are copied to GPU memory as textures. The
score matrix is then processed in the familiar anti-diagonal fashion. For each element of
the current anti-diagonal, a pixel is drawn. Drawing this pixel executes a pixel shader
that calculates the score for the cell. The results are written to a texture, which is then
used as input for the next pass, similar to how the systolic array elements pass on values.
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The implementation of [59] searched 99,8% of Swiss-Prot (almost 180,000 sequences
at the time) and managed to obtain a maximum speed of 650 MCUPS compared to
around 75 for the compared CPU version. The performance in cell-updates per second
(CUPS) is the total number of Smith-Waterman score matrix cells that are updated per
second; the formula is shown in Equation 3.1.

CUPS = query length ∗ total database size/run time (3.1)

Another implementation discussed in [61] offers the ability to run in two modes, one
with and one without traceback. The version with no traceback managed to perform at
241 MCUPS, compared to 178 with traceback and 120 for the compared CPU imple-
mentation. Note that a database of just 983 sequences was used. Both implementations
were benchmarked using a Geforce 7800GTX graphics card.

3.2.2 The CUDA approach

The first known CUDA implementation, ‘SW-CUDA’, is discussed in [65]. The approach
is different from the systolic array method: each of the GPU’s processing elements
performs a complete alignment instead of them being used to stream through a single
matrix. The advantage of this is that no communication between the processing elements
is required, which cuts down on memory reads and writes. The database is stored
in global GPU memory, sorted by length so the threads in a warp will have similar
execution times. To speed up substitution matrix accesses, a query profile is generated:
an expanded substitution matrix that has the query sequence elements as its columns,
see Figure 3.6. Its rows are still the protein alphabet. Query profile accesses are less
random than accessing a substitution matrix: when processing a database sequence
letter, a bundle of alignment scores with the query sequence can be prefetched. Each
kernel iteration processes four cells, making use of the memory’s ability to fetch and store
vectors. This implementation managed to perform at 1.9 GCUPS on a single Geforce
8800GTX GPU when searching Swiss-Prot, compared to around 0.12 GCUPS for the
compared software implementation. Furthermore, it was shown to scale almost linearly
with the amount of GPUs used by simply splitting up the database.

A L R K

A 4 -1 -1 -1

R -1 -2 5 2

N -2 -3 0 0

D -2 -3 -2 -1

... ... ... ... ...

V 0 1 -3 -2

Figure 3.6: Query profile for sequence ALRK using the BLOSUM62 matrix (Figure 1.6).
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3.3 Other GPU-based sequence alignment approaches

Although this section has so far focused on database searches using Smith-Waterman,
there exist additional GPU based sequence alignment tools which merit a mention.

Pairwise sequence alignment
MUMmerGPU [76] is a CUDA accelerated version of the MUMmer tree-based
approach to pairwise alignment. It is targeted towards aligning a set of small
DNA query sequences with a large reference sequence. The data used is stored
in global memory and split up into multiple horizontal and vertical parts mapped
as textures, for improved spatial locality and, as such, cache performance. It is
able to accomplish a more than three times speedup compared to the benchmarked
software implementation.

CUDAlign [75] is a GPU based pairwise sequence alignment program aimed at
aligning two large sequences of more than a million bases (tests were performed on
47-million base sequences). It only operates on DNA, not proteins.

Multiple sequence alignment
An early OpenGL-based multiple sequence alignment method is discussed in [60].
Multiple pairwise alignments are performed in parallel to keep the processing ele-
ments busy, and sequences are sorted by length to prevent superfluous computa-
tions. The authors later implemented a CUDA based method, discussed in [64],
which works similar to ClustalW (Section 2.2.3) and managed to obtain a speedup
of more than 36 times compared to a CPU implementation.

Heuristics
CUDA-BLASTP [5] is a GPU implementation of BLAST (Secton 2.2.2) and is
claimed to be ten times faster than CPU BLAST. However, not much further
information on this method is available in the literature.

In [41] and [51] the Viterbi algorithm (Section 2.3) part of HMMER is GPU accel-
erated.

3.4 Optimizing GPU accelerated Smith-Waterman

Since the approach detailed in [65], various improvements have been suggested. As
detailed in Section 3.1.3, GPUs are sensitive to how the various memories are used;
optimizing this is a good starting point for speed improvements. In [31], it is observed
that storing the query profiles in texture memory can lead to a large amount of cache
misses. To combat this, it is opted to store the substitution matrix in constant memory,
ordered alphabetically so the values can be looked up by ASCII value.

In [62] the database sequences are stored in vertical columns of global memory, so the
reading of the database across multiple threads can be coalesced. Furthermore, writes
to global memory are first batched in shared memory for better coalescing. Finally, for
sequences of more than 3,072 amino acids an ‘inter-task parallelization’ method similar
to the systolic array and OpenGL approaches is used as this, while slower, requires
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less memory. This ‘CUDASW++’ solution manages a maximum speed of about 9.5
GCUPS searching Swiss-Prot on a Geforce GTX 280. The authors examined the ‘SWAT’
optimization, which is a heuristic that allows certain cells to be skipped in some cases.
However, this actually decreased performance due to warp control divergence.

An improved version, ‘CUDASW++ 2.0’ [63] has been released. It differs from the
original by using query profiles in texture memory like the implementation described in
[65] and by more closely packing data in vectors. Additionally, an alternative approach
is evaluated: porting a SIMD CPU algorithm [44] to the GPU, viewing collections of
processing elements as part of a single vector. This approach resulted in performance
similar to the alignment-per-element method used before. CUDASW++ 2.0 is currently
the fastest GPU implementation of Smith-Waterman and manages 17 GCUPS on a single
GTX 280 GPU; it outperforms BLAST in its benchmarks.

As generally each processing element processes its own database sequences completely
independently from the others, computation can be sped up by using multiple GPUs,
multiplying the amount of processors. The database is simply split up across the differ-
ent GPUs and generally a somewhat linear performance increase is observed [63] [65].
Additionally, in [56] multiple PCs are networked using Message Passing Interface (MPI)
so their GPUs can work in conjunction.
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A GPU-accelerated protein
database search tool 4
This Chapter discusses the steps taken to produce a Smith-Waterman based database
search tool for GPUs. Section 4.1 goes into the goals set for the implementation, and the
design decisions that would shape it. A simple implementation is presented in Section
4.2. Next various program and practical database optimizations are discussed in Sections
4.3 and 4.4; the speed gains resulting from these optimizations are summarized in Section
4.5. Finally, a user friendly web interface for the program is presented in Section 4.6.
For a summary of the implementation’s final features and limitations please see its user’s
guide (Appendix B)

4.1 Requirements and design decisions

4.1.1 Goals and requirements

The following goals were decided on:

• A GPU-based bioinformatics database search tool will be implemented and tested
to compare with other CPU and GPU implementations, theoretical limits will be
looked at, etc.

• The program will be based on the Smith-Waterman algorithm so optimal align-
ments can be found. Affine gap penalties will be used.

• The program will be completely usable (i.e. not just a proof of concept) and
fully-featured with user configurable settings and lenient limits on input data.

• The program will offer an easy to use interface that makes it convenient for re-
searchers to use.

4.1.2 Fundamental design decisions

From the discussed goals, knowledge of GPU programming and the existing implemen-
tations looked at in Section 3.2, a set of basic decisions were made that would govern
the rest of the implementation.

4.1.2.1 Implementation languages and toolkits

NVIDIA CUDA [6] was decided on as the toolkit to be used in the implementation
phase. As of writing, CUDA is the most mature GPU programming toolkit and has
been successfully used for the previously discussed GPU-based bioinformatics tools. The
host-side language used in conjunction with CUDA is C++.

43
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4.1.2.2 Target database

It was decided to focus on protein (not DNA) searches and the Swiss-Prot database [29]
in particular. The reasons for this are twofold. First of all, as protein searches are more
complicated due to the use of substitution matrices and a larger alphabet, supporting
DNA searches once proteins can be searched is relatively simple. The second reason
is that modern GPUs have around one gigabyte of on-board memory, while INSDC
databases [16] such a GenBank are 200+ gigabytes in size; searching those would require
working around memory limitations. In contrast, the August 2010 release of Swiss-Prot
weighs in at 232 megabytes. It should also be noted that existing GPU implementations
mostly focus on Swiss-Prot as well, making for easier performance comparisons.

4.1.2.3 Returning alignment scores

The choice was made to only have the search tool return maximum Smith-Waterman
scores, not the actual alignments. This approach is generally used by the FPGA and
GPU projects discussed in Section 2.4 and Chapter 3. Doing this significantly simplifies
the implementation as the algorithm’s traceback step can be skipped; additionally no
traceback data structures, such as a pointer list, need to be kept, decreasing memory
consumption.

To be able to meet the goal of being a fully-featured search tool, however, the ability
to produce full alignments was deemed a necessity. To accomplish this, the decision
was made to add the feature of exporting a user-configurable number of top-scoring
sequences to a new database file. This database can then be searched by a third-party
(CPU) tool that generates full alignments, such as the FASTA suite’s SSearch program.
This approach does of course lead to redundancy as some sequences are aligned twice.
However, the number of such sequences is relatively tiny: by default 20 top scoring
sequences are returned while all of Swiss-Prot contains more than 500,000. For practical
information on using an external tool to find full alignments, see the implementation’s
user’s guide (Appendix B).

4.1.2.4 Algorithm parallelism

As discussed in Section 2.4 and Chapter 3, multiple processing elements can be used
to search a single sequence, passing data from element to element in a systolic array
fashion; another approach is to have different processors perform alignments for different
sequences in parallel. These approaches can even be blended, as discussed in Section 3.4’s
description of [62], where multiple processing units are used for long sequences.

The second approach, that of performing a complete individual alignment on each
processing element, was chosen for various reasons. First of all, as a GPU has a fixed
amount of processing elements that offer a full instruction set, there is no trade-off be-
tween the number of processing elements versus their features, which is the case when
working with an FPGA. Secondly, it eliminates the need for inter-processing-element
communications or, even worse, inter-multiprocessor communications. As described in
Section 3.1.3, the processing elements of one CUDA multiprocessor can communicate
using shared memory, while slow global memory must be used to transfer data between
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multiprocessors. Apart from memory accesses being a major bottleneck (as reaffirmed in
Section 4.3), each memory type has its own set of caveats and guidelines for optimal us-
age. In short, avoiding the systolic-array style approach to parallelism and, as such, the
need for inter-processor communication, simplifies the implementation. Finally, apart
from avoiding the need for communication, performing one alignment on each process-
ing element results in a kernel where each processing element is doing the exact same
thing independently. This not only bodes well for converging execution paths, but also
simplifies implementation and testing, as there is little parallelism to deal with in the
algorithm itself.

GPUs might contain hundreds of processing elements (240 for the NVIDIA GTX275
used in development), but Swiss-Prot contains more than 500,000 sequences as of writing.
This means that it should be possible to keep all processing elements well occupied. A
disadvantage of the chosen approach to parallelism is that of different sequence lengths:
one processing element could be aligning with a database sequence of tens of thousands
of proteins while another might be working on a sequence of just a few. As a result, the
element that finishes first might be idle while the long alignment is being handled.

Furthermore, unless care is taken when assigning sequences to processing elements,
this effect might be compounded by some processing elements having to handle multiple
sequences, resulting in a larger total length than the workload for others. Section 4.4
discusses this problem in more detail and describes how the implementation works around
it.

4.1.2.5 User interface

For ease of development and usage flexibility, the search tool was decided to be imple-
mented as a command-line application. This way the program could easily be tested or
incorporated into a script, while also being easier to port to different platforms. To offer
a more attractive, easy to use interface, a web-based interface was decided on. Such an
interface not only works on any platform that supports the necessary web server, but
also allows users to run alignments from client computers that do not have a powerful
GPU. Finally, it can offer links to database (Swiss-Prot) annotations on used sequences.

PHP [19] was chosen as the language for the web interface since this language is
commonly used for all sorts of web projects [20] and is supported by the popular Apache
[22] and IIS [25] web servers.
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4.2 A straightforward implementation

This section describes a straightforward, largely unoptimized implementation of the
database search tool. First, a simple general algorithm is presented, with no GPU
specific traits. Next, used input file types are discussed. Finally, the algorithm is ported
to the GPU. This implementation is then optimized in the next section.

4.2.1 Basic algorithm

An example implementation is shown in Figure 4.1. This version of the Smith-Waterman
algorithm uses linear gap penalties (see Equation 2.5) and does not include any GPU-
specific code. In fact, this specific implementation will perform alignments for the com-
plete database, effectively offering no parallelism at all.

Although simple, this implementation already includes some specific design decisions.
First of all, instead of a score matrix for each alignment, only a sole score column is
kept: as no traceback is performed, values do not need to be saved for the duration of
the algorithm and can be overwritten. This column stores the values to the left of the
currently processing column: F (i, j − 1) in Equation 2.5. The size of this temporary
data column is set to the query sequence, not database sequence size. This way the
column can have one fixed size for all database sequences, while usually requiring less
memory as it is unlikely that the query sequence will be as long as the longest database
sequence. The column is set to zero whenever a new database sequence is started. Apart
from the temporary score column for values to the current cell’s left, variables are used
to keep the values of the top and top-left cells required by the algorithm (F (i− 1, j) and
F (i− 1, j − 1) in Equation 2.5).

Note how the query, not database, sequence is accessed in the inner loop. The inner
sequence is accessed for every single outer sequence letter; it would be attractive to store
it in a fast (small) memory. The (sole) query sequence is a much better candidate for
this than a database of hundreds of thousands of sequences.

Figure 4.2 shows the implementation extended with support for affine gap penalties
(see Equation 2.6, 2.7, 2.8). This slightly complicates matters: a second temporary data
column is added for Ix values. Additionally, an upper Iy value is kept.
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Figure 4.1: Basic Smith-Waterman algorithm.
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Figure 4.2: Smith-Waterman with affine gap penalties.
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1 >K1HUAG | 1091 | Ig kappa chain V-I region (Ag) - Human @P:51 -90

2 DIQMTQSPSSLSASVGDRVTITCQASQDINHYLNWYQQGPKKAPKILIYDASNLETGVPs

3 rfsgsgfgtdftftisgLQPEDIATYYCQQYDTLPRTFGQGTKLEIKR*

4
5 >CCHU | 1 | Cytochrome c - Human @P:25 -85

6 MGDVEKGKKIFIMKCSQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGYSYTAANKNKGIIW

7 GEDTLMEYLENPKKYIPGTKMIFVGIKKKEERADLIAYLKKATNE

Listing 4.1: FASTA format database

4.2.2 File formats

The discussed figures gloss over the code where the query sequence, database and sub-
stitution matrix are loaded. Loader classes were written for FASTA format databases
and substitution matrices; furthermore, a database format specifically tailored towards
GPU use was designed and an application to convert FASTA databases to this format
was developed.

The FASTA sequence format is a simple plain-text format in which popular databases
such as Swiss-Prot can be downloaded; a simple two-sequence example database is shown
in Listing 4.1. Each entry consists of a larger-than sign, a comment that might include
a database-specific accession identifier and then a multi-line sequence that goes on until
a next larger-than sign or the end of the file is encountered. Query sequences are simply
files that contain a single sequence.

Sequences and their descriptions are loaded into records, stripping newlines and
whitespace from sequences and converting them to all-upper-case. Various information
such as sequence lengths, database size and the total amount of symbols in the database
is recorded.

FASTA files support the symbols {UO*}, which are not present in FASTA format
substitution matrices. These three symbols are replaced by {CKX} upon loading the
file, in line with the FASTA application suite [2]. In practice this means that the seleno-
cysteine protein is replaced by ‘normal’ cysteine, pyrrolycine is replaced by lycine and
that a translation stop (stop codon) is replaced by the wildcard-like ‘any’ symbol.

Furthermore, to allow for quick array-based substitution matrix indexing, internally
the symbols are replaced by their numeric position in an (arbitrarily ordered) array of
the letters.

Query sequences are loaded directly, but FASTA-format sequence databases are con-
verted to another format to better match the GPU’s capabilities. First of all, sequence
descriptions are useless on the GPU: only the sequence index in the database is needed
to assign it a score. Secondly, substitution matrix lookups can be simplified by using
numeric values instead of letters for sequence symbols. Finally there are the matters of
coalescing and preventing divergence. Coalescing is described in Section 3.1.3. The issue
of divergence involves the single-instruction-multiple-thread nature of GPU multiproces-
sors: if threads in a half-warp have diverging execution paths, these will be executed in
turn. This can result in major slowdowns.

To take care of these issues, FASTA format databases are converted to a custom
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‘GPUDB’ format. This is done by the dbconv tool. A database needs to be converted
only once, after which it is stored on disk in the new format. The conversion process is
illustrated in Figure 4.3.
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Figure 4.3: The first form of database conversion.

First the FASTA file is loaded as always, as shown in Figure 4.3a. Next it is sorted
by sequence length (Figure 4.3b): this way a half-warp processing neighboring sequences
will have less threads idle while waiting for longer sequences to finish. They must be
idle instead of processing another sequence, as this would both lead to divergence and
prevent coalescing. The sorted sequences are then written to file in an interlaced fashion
(Figure 4.3c): the database is split up into half-warp sized blocks of 16 sequences. The
sequences of a block are written in an alternating fashion: one char-format symbol of the
first sequence is written, then one of the second one, etc. This way, the first character
of all 16 sequences is written, then the second character, etc. In this simple version,
all sequences in a rectangular block are padded to the length of the block’s longest
sequence with blank symbols. As each interlaced block has the size of a half-warp (16
sequences), all of a half-warp’s threads will load database symbols from neighboring
addresses: coalescing takes place.

Apart from the sequences, the file contains a header that includes the number of
sequences in the database and the total number of symbols in the database. Furthermore,
it contains a list of offsets to each block and a list of sequence lengths so the GPU kernel
knows where to start and when to stop aligning. Each portion of the file is aligned to a
256-byte boundary to guarantee optimal access by the GPU.

The sequence descriptions are written to a separate file, in the sorted order used by
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1 # Matrix made by matblas from blosum62.iij

2 A R N D C

3 A 4 -1 -2 -2 0

4 R -1 5 0 -2 -3

5 N -2 0 6 1 -3

6 D -2 -2 1 6 -3

7 C 0 -3 -3 -3 9

Listing 4.2: FASTA format matrix

the GPU database. These descriptions are never uploaded to the GPU; the search tool
uses them when displaying alignment scores and when exporting sequences back to a
FASTA format database.

Besides sequences, another type of input data is required: a substitution matrix.
FASTA format substitution matrices are again plain-text format; a few rows and columns
of the BLOSUM62 matrix are shown in Listing 4.2. Substitution matrices are loaded
into a ‘map’ data structure that allows matrix entries to be accessed by their letters, such
as ‘(R,C)’. Functions are offered to convert this map to array-based formats or query
profiles in GPU memory.

4.2.3 The GPU implementation

Now that the database has been converted to a format suitable for GPU use, the im-
plementation can be modified to follow suit. A diagram of the GPU implementation is
shown in Figure 4.4. As can be seen, the code must be split up into a host and device
part, with some redundancy as data structures will need to be copied around. Further-
more, work must be split up among the GPU cores. A simple but fine approach is to just
have each half-warp keep processing database blocks until none are left. The resulting
host (CPU) code is shown in Figure 4.5; the device (GPU) code is shown in Figure 4.6.
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Figure 4.4: Overview of the GPU implementation.
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Figure 4.5: Host-side implementation.
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Figure 4.6: Device-side implementation.
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The host code is mostly concerned with loading data structures, copying them to
the GPU and copying back and presenting the results. One large temporary data area
is created, with space for a temporary score and Ix column for each GPU thread. The
GPU code bears some more explanation. First, the location where each thread can store
its temporary data is determined; this is calculated using the thread id and the length
of the temporary data for each thread. This thread id is an unique numeric identifier
for each thread; threads in a (half-)warp will have neighboring ids. Next, the thread’s
current sequence is set to the thread id: this way each thread starts out processing a
different (neighboring) sequence. When processing the sequence, the database block it
belongs to is determined and it is located in memory, able to be loaded in a coalesced
fashion thanks to the database conversion process. Once the database sequence has been
processed, the sequence index is increased by the total number of GPU threads, again
resulting in each thread processing a different, neighboring sequence. Execution is halted
when no sequences are left.

It is important to note how the temporary storage is used in this example: each
thread accesses a continuous chunk of 2× queryLength values, the first half of which is
used for score values and the second half of which is used for Ix values. This is shown
in Figure 4.7a for two threads and a sequence length of four. Note that the rest of the
figure shows optimizations discussed in the next sections.
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Figure 4.7: Temporary data access schemes. Query length is 4. To decrease the figure’s
size only two threads, T0 and T1, are used. They are in the same half-warp so that their
reads can be coalesced. Si values are temporary scores for query symbol i; Ixi are Ix
values.
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4.3 Optimizing the implementation

Although a fully functioning GPU algorithm has been presented, its simple implemen-
tation is extremely slow: more than 30 seconds to search a test database with a 218
residue query sequence. This test database was synthetic: randomly generated sequences
of a specifically picked length. To be precise, 240000 sequences of 352 characters. The
number of sequences was chosen so that searches would be fast enough for convenient
benchmarking. Furthermore, 240000 = 240 × 1000. The NVIDIA GTX 275 GPU used
during development has 240 processing elements; setting the number of sequences to
a multiple of 240 was bound to result in favorable resource usage characteristics. The
sequence length of 352 is the average sequence length of the August 2010 release of
Swiss-Prot [28]. Finally, it should be noted that all sequences in the database were set
to this length. Identical sequence lengths prevent two complications that might nega-
tively influence benchmark results: padding space between sequences of varying lengths
and different block sizes, which could result in differing workloads for multiprocessors.

Of course, an actual database such as Swiss-Prot will not have characteristics this
favorable. However, it was decided to first focus on improving all-round performance
and then comparing this to the Swiss-Prot case, attempting to get that performance as
close as possible. That optimization phase is discussed in Section 4.4.

This section discusses the optimization steps taken to eventually reach a benchmark
database search time of 0.780 seconds: an almost 40 times speedup.

4.3.1 Sequence and temporary data accesses

This section discusses optimizations related to data accesses: coalesced temporary data
accesses, coalesced database reads and multi-character query sequence reads. Figure
4.8 shows the results of these optimizations. A sub-block worth (i.e. eight symbols)
of database symbols are read in a coalesced fashion, and for each of these the query
sequence is accessed in four-symbol chunks. The symbols are then aligned by aligning
each loaded query symbol with the eight database symbols. The figure also shows how
temporary data accesses only take place for every second query symbol as described in
this section.

Temporary data
Benchmarking and commenting out various parts of the code revealed that memory
accesses were the worst bottleneck of the algorithm shown in Figure 4.6. Each inner
loop iteration involves reading and writing two temporary values, for four accesses
total. As these reads and writes were both uncoalesced, 32 byte reads/writes were
issued for each access. This meant that per half-warp 16×32×2×2 = 2048 bytes of
bandwidth were used. Steps were taken to decrease this to one 128-byte coalesced
read and write for every second inner loop iteration of the half-warp, for 128 bytes
of bandwidth total on average. This is a 16 times improvement. 128 bytes is the
largest allowed coalesced access size, and is faster than multiple smaller coalesced
accesses.

First it was decided to use the 2-byte unsigned short data type for the temporary
values, cutting the theoretically required bandwidth in half and allowing for better
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Figure 4.8: Sequence alignment with optimized data accesses.

coalescing later on. A disadvantage of using unsigned shorts is a maximum score
value of 216 − 1 = 65535, however with the longest sequence in Swiss-Prot being
35213 proteins and most sequences being much smaller, this was deemed accept-
able. Another disadvantage of the data type is its being unsigned. Although scores
will never be less than zero for Smith-Waterman, the temporary Ix values might.
This was taken care of by moving the max(0,...) operation from the calculation
of the score to the calculation of Ix.

The next step was to actually allow for coalescing. This was done by rewriting the
algorithm in such a way that each thread stores one temporary value in turn, as
shown in Figure 4.7b. Instead of direct array accesses, a pointer into the temporary
storage was started at the thread id, and increased by the total number of threads
to move to the next cell. As each thread in a half-warp now read a 2-byte unsigned
short coalesced, this meant that instead of one 32-byte access per thread, one
such access took place per half-warp. This sixteen times bandwidth improvement
resulted in an almost ten times speedup.

To again halve the number of memory accesses, the temporary score and Ix values
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were interleaved. This is shown in Figure 4.7c. This was done by simply defining
a TempData structure consisting of two unsigned shorts and using this to access
the score and Ix values for an iteration in one go. At this point, a half-warp
would access two unsigned short values in one read, for a total of 16× 2× 2 bytes
bandwidth. The result was 64-byte coalesced accesses.

To finally move to 128-byte accesses, the temporary values were interleaved in two-
cell chunks. This is shown in Figure 4.7d. Apart from going from two 64 byte to
one 128 byte access, this had the additional benefit of temporary reads/writes only
being required for every second query sequence symbol processed.

The move to 32-byte coalesced accesses resulted in a huge speed boost of almost
ten times; going from there to 128-byte accesses resulted in an improvement of
about 10%. In the following item temporary data accesses are further optimized,
as a side effect of larger database sequence reads.

Database sequences
Although database sequence accesses were already coalesced as a result of the
database conversion process, there was still room for improvement. As the se-
quences were stored in a per-symbol alternating fashion, each half-warp would
issue one 32-byte coalesced read to fetch 16 bytes of sequence data. Not only
would larger coalesced reads be preferable, even within the 32-byte read half the
bandwidth was wasted. Furthermore, just as important as the resultant coalescing,
if not more so, is the fact that larger database fetches mean that more symbols
can be processed in one algorithm iteration. By loading x symbols at a time, x
database symbols can be aligned with a query symbol before a temporary data cell
has to be read and written.

To be able to fetch multiple database sequence symbols in one access, dbconv was
modified to write sequences in multi-character sub-blocks. For example, with a
sub-block size of eight, 8 characters of sequence 0 are written, then 8 characters of
sequence 1, etc. Sequences are padded to a full amount of sub-blocks with blank
data that results in the alignment score not being modified; this was found to be
faster than conditionally checking how many characters of the sub-block are valid.

A sub-block size of 8 results in coalesced memory accesses of 16×8 = 128 bytes and
eight times as few temporary data read/writes as before, which in turn resulted in
a two times total speed improvement for the complete algorithm. Although faster
than the alternatives, such as 4-character sub-blocks for 64-byte accesses, these 8-
byte sub-chunks do result in significantly increased register pressure: registers must
be allocated to keep eight database characters for the duration of each iteration.
Furthermore, the top(left) score and Iy variables now have to hold eight times as
much data as before: the temporary data storage has shifted from main memory
to the registers. Register pressure is discussed in more detail in Section 4.3.4.
As this optimization cut the amount of temporary reads/writes by eight and the
optimizations discussed in the part on temporary data did so by sixteen, these
inner-loop memory accesses have been decreased by a total of 128 times over the
starting case.
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Query sequences
From the start, query sequences were stored in constant memory. Constant mem-
ory is as fast as reading from a register as long as all threads in a half-warp read
the same 4-byte address. This is always true for the discussed implementation
as each thread will always be at the exact same iteration within a database sym-
bol alignment; the database sequence length does not matter for this. Constant
memory can hold up to 64 kilobytes of data, which was deemed enough as the
longest sequence in the August 2010 release of Swiss-Prot is about half that size.
Constant memory does not support, or benefit from, coalescing, as this involves
threads reading from different addresses.

As the discussed GPUs are 32-bit systems, reading just one character at a time from
constant memory was rather wasteful. The algorithm was modified to read four
symbols at a time; this resulted in a slight speed improvement. Moving to larger
reads, such as eight characters at a time, resulted in increased register pressure
with no speedup compared to the single-character case. The final speed improve-
ment was only about 2%. Note that reading the query sequence would become
unnecessary with the addition of query profiles (Section 4.3.2).

4.3.2 Substitution matrix accesses

Aligning proteins requires the use of a substitution matrix, as discussed in Section 1.2.
This matrix is accessed every time two symbols are aligned, which means that its access
speed is critical to the algorithm’s performance. Substitution matrix access locations
are dependent on both the query and database sequences, complicating the choice of
memory used. Global memory is unattractive for usage this frequent to begin with, and
the unpredictable nature of the accesses makes them very difficult to coalesce. Constant
memory is fast, but only if all threads read the same address, which again does not apply.
This is why initially the choice was made to store the matrix in per-multiprocessor shared
memory.

Shared memory has a latency roughly 100 times lower than that of global memory.
However, some disadvantages apply. First of all, data must be copied from global to
shared memory in the kernel code; there is no way to directly upload shared data from
the host. Fortunately, this only has to be done once per thread block, and the copying
can be threaded by having each processing element copy part of the data. A bigger
disadvantage for the use with substitution matrices is shared memory’s organization
into banks. Shared memory consists of a number of banks (16 or 32 depending on the
GPU), with each alternating 32-bit integer belonging to a different bank. This way
accesses are sped up if all threads in a (half) warp read neighboring values. However, if
the threads access values in the same bank, these accesses are sequentialized, resulting in
a performance penalty. As the used FASTA-format substitution matrices are 576 bytes
large, each bank was used multiple times, resulting in frequent conflicts. An attempt
was made to alleviate bank conflicts by storing a copy of the substitution matrix in each
bank and assigning each processing element one of these. However, the logic to deal with
this resulted in such register pressure that the result was a net slowdown.

As an alternative, the substitution matrix was stored in texture memory. Texture
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memory is a cached window into global memory that offers lower latency and does not
require coalescing for best performance. In short, it is well suited to random accesses.
Data can also be copied directly to it from the host. Switching from shared to texture
memory for the substitution matrix resulted in a total speedup of 25%.

Texture memory has the ability to fetch four values at a time; in graphics usage these
will be a texture’s color and alpha components. However, this mechanism can also be
used to fetch four substitution matrix values from a query profile. Query profiles are
described in Section 3.2. To reiterate, they are a substitution matrix with the query
sequence, instead of the protein alphabet, used to fill the columns. This means that for
a given database symbol, the substitution matrix columns that will be used next are
known: multiple substitution scores can be fetched at once.

After giving the matrix loading class the capability to generate query profiles, the
alignment algorithm shown in Figure 4.8 was modified to load query profile values for
the four current query characters and pass them to the Smith-Waterman function, from
which the substitution matrix lookup was removed. As the query symbols were only
used to fetch substitution matrix scores, they did not have to be looked up anymore
either; the loads from constant memory were removed as well. Only the position within
the query is required to load query profile scores for a database character.

As the approach shown in Figure 4.8 aligns each query symbol with the loaded
database symbols before advancing on to the next query symbol, query profile values for
all eight database symbols had to be loaded. This meant that 8 × 4 = 64 values had
to be stored in registers, resulting in significantly increased register pressure. For the
synthetic test database, performance was 5% slower than before. Swiss-Prot performance
was checked as well, however, and gained a 2% performance boost, perhaps due to the
sequences being less random.

To decrease register pressure, the algorithm was rewritten to align the four current
query symbols (loaded query profile values) with each loaded database symbol. Although
this approach results in increased register pressure when no query profile is used, with
query profile support it is much more favorable than the original method. This ‘trans-
posed loop’ algorithm is shown in Figure 4.9. Note that the temporary data column is
still accessed using two separate 128-byte reads/writes even though these take place in
direct succession. Combining these accesses into 256-byte accesses (containing the data
for all four query symbols) resulted in the loss of coalescing and a significant perfor-
mance penalty. Switching to this query profile method resulted in a 10% performance
improvement for the synthetic database and a 17% improvement for Swiss-Prot.

As the GTX 275 GPU used in development has 8KB of texture cache per multiproces-
sor and each query profile column stores values for 20 amino acids and 3 extra characters,
a sequence length longer than 8× 1024/23 = 356 residues will result in increased cache
misses, as described in [31]. Searching the test database with a 218-residue query se-
quence resulted in 7 × 10−7% of all lookups being misses, while with an 8000-residue
sequence, this increased to 9 × 10−3%. This is still a relatively tiny miss percentage.
Furthermore, even for long sequences query profile performance was found to be better
than the other tested substitution matrix schemes.
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Figure 4.9: Transposed loops: each database symbol is now aligned with the current
query symbols; note the vertical ’align’ brackets. Query profile support is shown as well.

4.3.3 Miscellaneous optimizations

Various straightforward small-scale optimizations were included:

• The use of optimal data types for structures, to conserve memory and to allow for
better coalescing. This includes using the unsigned short type for both tempo-
rary and final scores and for temporary Ix values.

• The use of numeric instead of letter values for proteins. By assigning each protein
a numeric value, they can be looked up in a substitution matrix or query profile
directly.

• The use of intrinsic instructions, where appropriate. Fortunately the max() oper-
ation is already a single instruction, and (u)mul24 was used instead of normal
multiplications.

• Setting the temporary data to zero when processing a new database sequence was
replaced with a multiplication by zero of the loaded value, if the current column is
the first one.

• Code was reordered and data was given its own variables or made to reuse existing
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ones for maximum speed. This was done by experimenting, and the results of this
might be different using other GPUs or compilers.

• The gap penalty and gap extension penalty values were pre-added to make
gapPenaltyTotal. This and the gap extension penalty were stored in constant
memory instead of registers to decrease register pressure, as these values are con-
stant and have to be propagated all the way to the most inner loop. The query
sequence length was stored in constant memory as well.

• Integer divisions were replaced by shifts with the Log2 of the divisor and integer
modulus operations such as x%y with y a power of 2 were replaced by x&(y − 1)
in accordance with the CUDA programming guide.

4.3.4 Execution configuration and occupancy

CUDA code cannot just be blindly optimized: there is a trade-off between theoretically
faster code and hardware demands that might result in decreased parallelism or the use
of slower memory. Kernels are launched in a certain execution configuration of blocks
and threads, as discussed in Section 3.1.3. The execution configuration will in part decide
the occupancy, the ratio of the possible to maximum number of threads running on a
multiprocessor. For CUDA devices with compute capability (feature set) 1.2 and higher,
this maximum number of threads per multiprocessor is 1024. A block can contain at
most 512 threads. So, for 100% occupancy, two blocks of 512 threads can be launched,
or four blocks of 256 threads, etc.

Things are complicated by the fact that threads need to share some of the multi-
processor’s resources. All active threads are allocated registers from the same pool, and
all concurrently executing blocks have to share the same shared memory space. As the
amount of registers required by a kernel increases, the number of concurrent threads that
can be run on the multiprocessor decreases, decreasing the occupancy. Decreased occu-
pancy results in worse performance: not only will blocks have to be processed in turn,
memory latencies and register dependencies become harder to hide. However, higher
occupancy does not always equal higher performance. Occupancy influences the execu-
tion configuration: if threads are more demanding, less can be executed per block. The
optimal execution configuration depends on the GPU and kernel in question; some exper-
imentation is in order. For the Smith-Waterman database search kernel, the best number
of blocks was found to be four times the number of GPU multiprocessors (4× 30 = 120
on GTX 275). The optimal number of threads per block was found to be 64, 1/8 of the
permitted maximum. This results in 120 × 64 = 7680 total threads on GTX 275. This
configuration was settled on early in development and periodically re-checked; through-
out the various optimizations this configuration kept performing the best.

The first completely working, but unoptimized, versions of the kernel required around
20 registers. This resulted in 50% occupancy, enough to hide memory and register access
latencies [70]. Most of the discussed optimizations increased register pressure: more
query and database symbols had to be stored in registers, as did query profile scores.
If too few registers can be allocated, they are spilled into slow local memory, negating
the optimization work. A solution is to allow the kernel to consume more registers than
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the default 32, which is a compiler setting. However, this in turn decreases occupancy
as the multiprocessor’s hardware resources are spread thinner. Allowing each thread to
use up to 64 registers decreased the occupancy to 25%, a less than optimal amount.
However, the performance increases resulting from the optimizations that led to this
increased register usage were found to be worth the hit. Implementing query profiles
for the original algorithm pushed register usage to over 64 registers, resulting again in
either spillage into local memory or an occupancy of just 12.5%. This resulted in an
unacceptable performance penalty, but was resolved by transposing the query/database
sequence alignment calculations as discussed in Section 4.3.2. The final register usage
and occupancy are 63 and 25% respectively.

4.4 Improving practical database search performance

At this point, search performance of the test database had been improved to 0.780
seconds for the 218-residue test sequence, which translates to about 24 GCUPS on the
NVIDIA GTX 275 graphics card used. However, Swiss-Prot performance, which is what
actually matters, was lagging at around 12 GCUPS. The only possible explanation for
this discrepancy was the difference in structure of the databases. The test database was
specifically constructed with each sequence set to the same length, to counter any side
effects that varying lengths might have had. Swiss-Prot’s structure is quite different.
The August 2010 version of the database has sequence lengths ranging from 2 to 35213
amino acids; a histogram is shown in Figure 4.10.

4.4.1 Filling database blocks

The database conversion process discussed in Section 4.2.2 sorted the database sequences
by size and then bundled them in 16-sequence blocks. Even though the sequences were
sorted, significant length differences could arise within a block, especially between the
first and sixteenth sequence. For the used Swiss-Prot database, the longest sequence
has a length of 35213; the sixteenth-longest is only 9535 residues long. To allow for
coalescing, each database block is effectively rectangular, and shorter sequences were
padded to the total block length: the length of the longest sequence in the block. This
resulted in significantly wasted space and idle processing elements, waiting for their
neighbor to finish its longer sequence before the whole half-warp could move on to the
next block. Again looking at the Swiss-Prot example, the largest block had a size of
35213 × 16 = 563408 residues, of which only 237180 were actually used, which is less
than half. In other words, twice the amount of sequence data could have been aligned
in the time it took to process the block.

It was concluded that this discrepancy in sequence lengths and the resulting padding
might be the reason for the performance difference between the two databases. As
such, dbconv was rewritten to try and fill wasted space with other sequences. This is
shown in Figure 4.11a. Each block now consisted of sixteen sequence groups: sets of
concatenated sequences. Each such group consisted of the longest sequence left in the
database, followed by the longest sequences that could be found to fill the leftover space
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Figure 4.10: Swiss-Prot August 2010 sequence length histogram.

Source: [28].

resulting from the differing lengths. As the first sequence in the block determined the
block size, this was always the sole sequence in its group.

To modify the GPU kernel to match this, further changes were made. Instead of
looping through the sequences by length, they were now delimited by special terminating
sub-blocks; one type to signify the end of a sequence, another type to signify the end
of a complete sequence group. These work similar to the null character at the end of
C-style strings: when the kernel loads a sub-block, its value is checked and acted upon
if necessary. In the case of a sequence group terminator, resulting from there being no
suitable sequences to further fill out the block, the kernel sits idle as before. However,
upon encountering a sequence terminator, the current sequence score is reset to zero and
the current entry into the score array is changed to match the new sequence’s index.
To facilitate this, for each block the database indexes of its groups’ first sequences were
written to file. This way when a block gets processed all threads can index into the
member of the score array for their group’s first sequence. When a new sequence is
started, the index only needs to be increased by one. Database descriptions were written
to file to match: in the order used to fill the groups instead of their original sorted order.

Upon implementing and testing all this, however, a complete lack of any speed dif-
ference was discovered. A reason for this might be the fact that each processing element
executes multiple threads in an interleaved fashion; being idle in one thread might be
made up for by being able to run other threads more often. Although the performance
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difference between databases had to result from the varying sequence lengths, the pres-
ence of padding within the blocks seemed not to be the culprit.

Block 0

Block 1

(a) Sequence groups filled to block length (b) Sequence groups filled to largest block length

Sequence group terminator sub-block

Sequence terminator sub-block

Block 0

Block 1

One sub-block

Figure 4.11: Optimized database conversion.

4.4.2 Same-length blocks

Although the sequence groups within a block now had the same length, the blocks
themselves still had greatly varying sizes. As block size was determined by the longest
sequence in the group, the largest block in the database was 35213 by 16 amino acids;
the smallest 2 by 16. This was changed for the final dbconv implementation.

Each block is now padded to the length of the longest sequence in the database,
filling the leftover space with other sequences similar to what was previously done for
the last 15 sequences of each block. This is shown in Figure 4.11b. This resulted in a
no less than 42% performance improvement in seconds over the original case (also see
Section 5.1.2); this translates to a roughly 1.75 times as high performance in GCUPS, or
21 GCUPS in total. It seems that the fact that each thread block now requires the same
amount of work by each multiprocessor is the reason for this speed improvement. At first,
multiprocessors were working with thread blocks of wildly differing workloads, of which
some might be finished before others, resulting in an inability to interlace their execution.
This was further compounded by the fact that there were (much) more sequence blocks
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than GPU threads: each half-warp of threads had to process multiple database blocks.
If one half-warp ended up processing multiple large blocks in succession while others had
to deal with fewer or shorter ones, execution time differences between thread blocks on
a multiprocessor and between multiprocessors in general were unavoidable.

This performance of 21 GCUPS means a 24− 21 = 3 GCUPS, or 14% performance
difference with the test database. This difference can be explained by the overhead in
processing the terminating sub-blocks, the fact that not all blocks will be completely
filled, and the decreased number of blocks. As each block is now larger than before,
there are fewer of them. For example, the August 2010 release of Swiss-Prot is converted
into 336 blocks of 16 sequence groups, for 336 × 16 = 5376 sequence groups total. As
described in Section 4.3.4, on GTX 275 7860 threads are launched, which means that
7680− 5376 threads have no work to do. Although total time consumed is now less than
if these threads did perform any work, it results in worse interlacing of threads and as
such, worse hiding of memory and register accesses. In short, if more threads had work
to do, the total runtime would go up but so would the performance in GCUPS. It was
attempted to improve performance by, for instance, creating shorter and longer blocks
so that there were exactly 7680/16 = 480 of them, one for each GPU multiprocessor.
However, this only resulted in decreased performance due to the now again different
block sizes. A look was taken at other methods to schedule sequence blocks in such a
way that each GPU thread block would perform the same amount of work. One possible
method would be to create sequence blocks of differing lengths as before, but to have
each thread block process a selection of database blocks resulting in an about equal
workload for each thread. However, this would require some mechanism by which each
half-warp can look up which, if any, block to process next. Furthermore, it would be
difficult to guarantee equal work per multiprocessor in this case; the details of thread
to multiprocessor mapping are vague. It was deemed unlikely that schemes such as this
would increase performance at all, let alone bridge the small performance gap left.

Despite this sub-optimality, performance is still significantly higher than before. Fur-
thermore, as the number of sequences in Swiss-Prot grows, so will the number of blocks
needed and, in turn, the number of threads able to perform work. Section 5.1.5 discusses
this further.

4.5 Summary of optimization steps taken

This section presents a recap of the project’s development history, all the optimizations
discussed in this chapter thus far, and the speedups obtained. They are presented in
the order in which they were implemented, which is not always the same as the order in
which they have been shown in this chapter.

Table 4.1 shows the steps taken in optimizing performance for the synthetic test
database described in Section 4.3. The query sequence used was Swiss-Prot sequence
P10649 which is 218 residues long. Table 4.2 illustrates the effects of the database
optimizations discussed in Section 4.4, when searching the October 2010 release of Swiss-
Prot with the same query sequence.

Note that due to shifting bottlenecks, the relative performance improvements could
have been very different had this implementation order been different. As such, only
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global conclusions, such as the importance of coalesced memory accesses and equal work
per block can be drawn from these numbers. These performance figures were collected by
running the alignment tool in NVIDIA’s Compute Visual Profiler profiling application.

Description of optimization step Execution GCUPS Performance
time (s) compared to

previous (%)

Naive implementation, subst. mat. in shared mem 34.12 0.54 -
Temporary values interleaved 3.443 5.35 991
Database: database sequences interleaved 3.120 5.90 110
Database: 8-character database sub-blocks 2.802 6.57 111
Database: sequence data on 256-byte boundary 2.802 6.57 100
Process 4 db characters at a time 1.471 12.52 191
Load 4 query characters at a time 1.453 12.67 101
Score and Ix temporary values in one access 1.380 13.35 105
Gap penalties in constant memory 1.301 14.16 106
Texture for substitution matrix 1.012 18.20 129
Process 8 db characters at a time 0.909 20.26 111
Access two temporary values at a time 0.873 21.10 104
Query profile with transposed loops 0.780 23.61 112

Table 4.1: Optimization steps for synthetic test database.

Description of optimization step Execution GCUPS Performance
time (s) compared to

previous (%)

Optimized for synthetic database 2.84 12.23 -
Sequence groups of same length 2.84 12.23 100
Sequence blocks of same length 1.87 21.35 175

Table 4.2: Optimization steps for Swiss-Prot.

4.6 Web interface

The web interface was implemented as a series of PHP scripts. The search interface is
shown in Figure 4.12; the results of a query are shown in Figure 4.13. For information
on the installation and usage of the web interface, please see Appendix B.

As the GPU-based search tool is command line based, creating a web interface for
it simply involved executing it with parameters that match the user’s settings and then
interpreting the results. The command line is generated using the input from the form
shown in Figure 4.12; this form allows the user to upload a query sequence and offers a
choice of databases and substitution matrices found on the computer running the script.
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Figure 4.12: Web interface index page.

The result interpretation is done using regular expressions to isolate the lines contain-
ing descriptions and scores, and further expressions to split these into a table containing
a Swiss-Prot link by sequence identifier and a score. If needed, the user can opt to have
full alignments shown. In this case, the search tool is set to export its top scoring se-
quences to a new FASTA format database, on which then FASTA’s CPU-based ssearch

tool is run. The results are processed in a fashion similar to those of the GPU tool.
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Figure 4.13: Web interface results page
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Results and discussion 5
In this chapter the performance of the GPU Smith-Waterman implementation is evalu-
ated. Section 5.1 details the practical and theoretical performance of the implementation,
while Section 5.2 presents a comparison with other Smith-Waterman search offerings and
looks at the relative costs incurred.

5.1 Performance of the implementation

5.1.1 Practical benchmarks

The completed implementation, with the optimizations discussed in Section 4.3, was
benchmarked to determine its real-word performance. This was done by searching the
Swiss-Prot database for various query sequences, which come from Swiss-Prot them-
selves. The set-up used was as follows:

System Intel Core 2 Quad Q6600 (2.4 GHz) with 4GB of RAM and an NVIDIA Geforce
GTX 275 graphics card with 896 MB of memory. This graphics card had clock
speeds of 633, 1134 and 1404 MHz for its core, memory and shaders respectively.
The operating system used was Microsoft Windows 7 Professional 64 bit; the video
drivers used were version 257.21. The CUDA toolkit used was version 3.1.

Database The database used was Swiss-Prot release October 2010.

Query sequences Swiss-Prot query sequences were chosen to match the sequences used
by the other implementations discussed in Section 5.2.1. 14 sequences were chosen
that vary in length from 144 to 5478 amino acids.

Program settings Substitution matrix: BLOSUM62. Gap penalty: -10. Gap extend
penalty: -2. These parameters do not influence the execution time.

Measuring method The run-time of the application was timed using the C clock()

instruction; the accuracy of this approach was verified using the CUDA profiling
application. Loading the database and copying it to the GPU was not included
in the measured time. This was done as in some cases the database load time is
much larger than the actual alignment time, complicating the measurement of the
performance for various query sequence lengths. Furthermore, it would be trivial
to extend the application in such a way that the database only needs to be loaded
once, after which various query sequences can be searched for with no overhead.

Both the execution time and performance in GCUPS were measured. The results of
the benchmarks are shown in Table 5.1. This information is shown in graphical form
in Figure 5.1. The performance hovers just above 21 GCUPS. Figure 5.2 again shows
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the run time, but with the sequence length (horizontal) axis linearized. As can be seen,
execution time increases linearly with sequence length, which is why the performance in
GCUPS is almost constant.

Sequence Length Execution time (s) Performance (GCUPS)

P02232 144 1.24 21.35
P05013 189 1.65 21.06
P14942 222 1.93 21.15
P07327 375 3.24 21.28
P01008 464 3.99 21.38
P03435 567 4.89 21.32
P27895 1000 8.60 21.38
P07756 1500 12.91 21.36
P04775 2005 17.27 21.35
P19096 2504 21.54 21.37
P28167 3005 25.88 21.35
P0C6B8 3564 30.67 21.37
P20930 4061 34.97 21.35

Q9UKN1 5478 47.15 21.36

Table 5.1: Swiss-Prot performance.
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Figure 5.1: Swiss-Prot performance.



5.1. PERFORMANCE OF THE IMPLEMENTATION 73

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ti
m

e
 [

se
co

n
d

s]
 

Sequence length 

Time
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5.1.2 Comparison with less optimized versions

To show the performance impact of a few selected optimizations, the performance of the
final implementation was compared with that of earlier versions. The execution time
and performance of the final and compared versions is shown in Figure 5.3. The test
system, sequences and database were the same as before. The first compared version
lacks the database conversion optimized with equal length sequence blocks, as discussed
in Section 4.4.2. The other used version lacks the database access optimizations described
in Section 4.3.1: database sequences are read one character at a time. Compared to the
final version, this results in eight times as many database sequence reads and eight times
as many temporary data accesses. In short, global memory is a bottleneck again.

The database block optimization shows the around 75% performance improvement
described in Section 4.4.2. Furthermore, it can be seen that global memory accesses are
a major hindrance if not taken care of.
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Figure 5.3: Performance of final and less optimized version of the GPU implementation.

5.1.3 Performance when used with SSearch

As described in Section 4.1.2, the SSearch tool can be used in conjunction with the
GPU implementation to produce full alignments. The GPU implementation is used to
search the database, after which the top scoring sequences are exported to a new FASTA
format database. This is then searched using SSearch, which generates the alignments.
Of course, doing this only makes sense if running the GPU search tool followed by
running SSearch on the exported top scoring sequences is faster than directly running
SSearch on Swiss-Prot. Figure 5.4 shows the execution time when:
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• Using SSearch to search Swiss-Prot, using the same settings as the GPU imple-
mentation. The SSE2 accelerated, multi-threaded version of SSearch was used,
running on the same system as the GPU implementation. It should be noted that
SSearch rounds its execution time figures down to whole seconds.

• Using the GPU implementation to search Swiss-Prot. As SSearch includes the
database load time in its execution time figures, the database load time of the
GPU implementation, around 1.6 seconds, is included as well. Otherwise these
numbers are identical to those in Table 5.1.

• The total time consumed when searching using the GPU implementation followed
by using SSearch to produce full alignments.

As can be seen, the GPU implementation is consistently faster than SSearch, while the
time consumed to produce alignments is negligible.
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Figure 5.4: Performance comparison with SSearch.

5.1.4 Theoretical limits and bottlenecks

Although the optimizations discussed in Section 4.3 eliminated various real-world per-
formance bottlenecks, it is interesting to take a look at how close the implementation
comes to the GPU’s theoretical maximum performance.

Database First of all, as discussed in Section 4.4, for an optimal synthetically created
database the search performance goes up to 24 GCUPS compared to the current
21 GCUPS for the Swiss-Prot database, due to resource utilization and overhead
factors.
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Memory bandwidth The maximum theoretical memory bandwidth for a GPU is cal-
culated using Equation 5.1 [70]:

Bandwidth = (mem speed ∗ 106 ∗ (bus width/8) ∗ 2)/109 [GB/s] (5.1)

For GTX 275 this is (1134∗106∗(448/8)∗2)/109 ≈ 127 GB/s. During benchmarking
with the test database about 50 GB/s of bandwidth was used in practice. This
can be interpreted in two ways: the maximum possible bandwidth is not utilized;
however, on the other hand, due to proper coalescing no more data is transferred
than strictly required. In any case, memory bandwidth is not a bottleneck anymore.

Not just pure bandwidth determines performance due to memory factors: latency
is an issue too. Many small sequential transfers will be slower than a single larger
one. To further investigate the practical effect of memory accesses on performance,
the saving and loading of temporary values (the most frequent memory accesses)
were commented out. This resulted in a performance of 25.5 GCUPS, only a
slight increase. It can be concluded that memory accesses are not a limiting factor
anymore.

Arithmetic throughput With memory not being a limiting factor, arithmetic perfor-
mance is a likely candidate. To test this, the actual Smith-Waterman formula was
commented out of the kernel code. This resulted in a performance of 50 GCUPS
with the synthetic test database; clearly arithmetic throughput imposes a limit
on the practical performance. To further cement this, for the original code the
CUDA profiler reported an instruction throughput of 1, which means that instruc-
tions are issued at the maximum possible speed. Unfortunately, it seems unlikely
instruction throughput can be further optimized: the Smith-Waterman formula
consists mostly of maximum operations and additions, which both already map to
single instructions. Only low-level optimizations such as minimizing the amount
of assembly-code level instructions and register transactions seem helpful.

5.1.5 Scalability and future prospects

5.1.5.1 Database growth

As touched upon in Section 4.4, as the Swiss-Prot database grows, so will the amount
of sequence blocks and, as such, threads that have work to do. This will increase future
performance effectively for free, just as a result of less threads being idle. However,
two caveats apply. First of all, if the number of sequence groups grows to more than the
number of GPU threads launched, some processing elements will have to perform multiple
alignments, resulting in unequal work between processors and, as such, a performance
penalty. However, this issue can be curtailed by increasing the size of each database
block by concatenating more sequences to each group, lowering the amount of blocks
needed. The second issue is the opposite, and this arises if the longest sequence in
the database were to grow: all blocks would grow larger, resulting in less blocks to
spread work across. However, this happening is unlikely: as shown in Figure 4.10, long
sequences are rare and, in fact, the current longest sequence is significantly longer than
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the second-longest one; it is not in danger of being overtaken. In support of all this,
a performance increase of 3% was found after updating from the August to October
release of Swiss-Prot, which contains 1668 more sequences and resulted in one additional
sequence block being created.

5.1.5.2 Future GPUs

The GPU accelerated Smith-Waterman implementation was optimized for GT200-series
GPUs as this is what was available for the project. Although the project will run just
fine on newer GPUs such as the Geforce 400 series, performance will not be optimal.
These newer GPUs offer many more processing elements, which might require the work-
load distribution to be re-evaluated. They also run two half-warps at a time, and offer a
cache hierarchy. This means that memory layouts might need to be changed, or that for
example texture memory is not the best option to store a query profile anymore. Further-
more, some instructions perform differently: for example a 24-bit integer multiplication
is slower, not faster, than 32-bit one on these GPUs due to architectural reasons. In
short, as both CUDA and the GPUs it runs on undergo rapid changes, it is difficult
to guarantee future performance, other than the fact that with proper tailoring of the
target application, each GPU generation should be inherently faster than the previous.

5.2 Comparison with other implementations

5.2.1 Benchmarks

Swiss-Prot performance was compared to the following other solutions:

BLAST The heuristic method discussed in Section 2.2.2 running on a 2.4 GHz Intel
Core 2 Quad processor. Performance figures taken from [78].

CUDASW++ The original CUDASW++ implementation, released in 2009. Com-
piled for Windows. Running on the same system, with the same settings, as our
implementation. CUDASW++ is described in [62].

CUDASW++ 2.0 The fastest GPU implementation so far, released early 2010. Again
compiled for Windows and running on the same system as before. It was run in
SIMT mode as its SIMD mode resulted in out of memory errors. CUDASW++
2.0 is described in [63].

SWPS3 An optimized vectorized CPU implementation, faster than the SSE2 imple-
mentation of FASTA SSearch; only calculates alignment scores. Running on a
Q6600. Performance figures taken from [78].

Unfortunately, FPGA performance figures fit for comparison could not be found;
papers on FPGA approaches were either old, aligned DNA and not proteins, or did not
offer detailed performance figures. The performance of the benchmarked solutions is
shown in Figure 5.5. Averaged over all query sequences, our implementation is 68%
faster than BLAST, 12.5% faster than CUDASW++ and 107% faster than SWPS3.
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Figure 5.5: Swiss-Prot performance comparison.

Our implementation performs better than BLAST, meaning an optimal dynamic
programming based sequence alignment algorithm can be run in less time than a heuristic
approach: more accurate results in less time. Comparing to CUDASW++ 2.0, note that
our implementation is a simpler design that uses just one search kernel, not two (see
Section 3.4), resulting in easier to maintain source code. Furthermore, CUDASW++
2.0 does not offer a user interface, the ability to use any substitution matrix (only four
built in ones), or the ability to produce full alignments. Both CUDASW++ 2.0 and our
implementation are sensitive to the structure of the database used: our implementation
bases its work distribution on the longest sequence in the database, while CUDASW++
2.0 uses a hand-picked point at which it switches from one kernel to the other. Finally,
it should also be noted that CUDASW++ 2.0 supports the use of multiple GPUs for a
speed increase, while our implementation does not. On a Geforce GTX 295, which is
essentially two GTX 260 cards in one package, CUDASW++ 2.0 attained a performance
of between 24 and 29 GCUPS.

5.2.2 Performance versus cost and power

In practice, raw speed might not be the most interesting metric by which to evaluate
the performance of various bioinformatics search engines. The cost of a solution, both
in purchase and upkeep, might be more important.

Comparing the purchase price of CPU and GPU hardware is not simple. There are
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many different models of both, and their prices fluctuate based on what their manufac-
turers’ competitors are doing. However, experience teaches us that the prices for both
are often reasonably close, with medium-end CPUs and GPUs costing around 200 euros
and the high end starting at 300 euros. Figures 5.6 and 5.7 show the pricing history of
the GTX 275 video card and Q6600 CPU used in the benchmarks; these price figures
were aggregated from dozens of online computer parts shops. As can be seen, in 2009
the prices of both hovered around the 200 euro mark: in this case, looking at the perfor-
mance benchmarks, the GPU offers almost double the performance per euro. However,
any system requires a CPU. It might make more sense to consider the cost of purchasing
a GPU along with, not instead of, a CPU, making the GPU option less attractive. On
the other hand, multiple GPUs can be used in a system (software support notwithstand-
ing), offsetting the cost of the rest of the components, such as the CPU. Furthermore, if
one is only interested in GPU accelerated applications, a simple, cheap CPU will suffice.

Figure 5.6: Intel Core 2 Quad Q6600 price history.

Source: [27].

Once hardware has been purchased, it still incurs a cost in the form of power usage.
Again comparing the Q6600 and GTX 275, the CPU has a maximum power consumption
of 100 W [15]. The GPU, on the other hand, consumes 219 W at most [12]. Although
it is not guaranteed that this maximum power usage will be reached when performing
sequence alignments, fact remains that the GPU is much more power hungry.

Finally, the ease with which a product can be updated to fix bugs or add additional
features bears mention. Generally speaking, this will be easier for CPU than for GPU
and FPGA solutions: CPU code is much easier to debug and inspect. This became all
the more apparent during the implementation of our GPU solution: no debug text can
be printed on the screen and errors such as out-of-bounds array accesses would lead to
a hanging kernel, sometimes resulting in a corrupted screen or system hang, with no
clue as to the actual problem. CPU programs can be interrupted at any time and have
advanced debuggers available.
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Figure 5.7: NVIDIA Geforce GTX 275 price history.

Source: [27].



Conclusions and
recommendations 6
A fully-featured GPU-accelerated protein database search tool was implemented. It can
search the Swiss-Prot database using user-provided score and substitution matrix set-
tings. Although only alignment scores are returned, not full alignments, the top scoring
sequences can be exported to be processed by a tool that returns these. Furthermore, a
graphical web interface is offered to simplify usage of the tool.

6.1 Performance

Our implementation’s performance, at around 21 GCUPS, was higher than that of the
other CPU and GPU solutions compared: 107% faster than SWPS3 and 12.5% faster
than CUDASW++ 2.0, making it the fastest GPU implementation in literature. For
our implementation, this performance was capped by the GPU’s arithmetic throughput,
since memory bottlenecks had been taken care of during development. As the GPU was
being throughput limited and the synthetic database designed to fully utilize the GPU
resulted in a performance only 14% higher than when searching Swiss-Prot, it is doubtful
that other schemes of parallelizing the alignments will result in a significant speed boost.

Besides performance, purchase price and power consumption were also discussed.
It was concluded that, though the myriad available CPUs and GPUs complicate com-
parison, it is possible to purchase a better-performing GPU for the same amount of
money one would pay for a CPU otherwise. However, the GPU used in the benchmarks
did consume twice as much power as the CPU it was compared to, which makes their
performance per Watt about equal.

CPUs are more flexible than GPUs and are of course simply required in a PC. As
such purchase price and usage cost of a GPU might have to be added to those of a CPU,
not compared to it. On the other hand, if one is only interested in GPU-accelerated
tasks a simple, cheap, CPU suffices.

Finally, developing software for GPUs is more complex and time consuming than
doing the same for CPU code, while at the same time the lower amount of GPU memory
and having to communicate over a bus lead to flexibility limitations.

In conclusion, it is not easy to recommend GPU-based sequence alignment over CPU
implementations without some side-notes. Although faster, their additional purchase
and upkeep costs, in both power consumption and development support, make GPUs
less attractive than they might have been otherwise. But if one must have better protein
search performance than a CPU offers, while not wanting to spring for dedicated FPGA-
based hardware, then GPUs might be an attractive option.
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6.2 Optimizing the implementation

The main issue in extracting performance from the GPU was found to be memory bottle-
necks, as the GPU’s global memory is relatively slow and requires certain access schemes
to be used properly. Performance was improved by taking steps such as laying out
temporary data in memory in an optimal fashion, keeping more data in registers, and
converting the database to an interlaced format more fitting for GPU use. Furthermore,
the best memory area for each type of data was investigated and unnecessary usage of
slow global memory was avoided. Memory accesses were decreased many times over the
initial implementation, for example 128 times in the case of temporary data reads/writes.
With all memory bottlenecks removed, an up to 40 times performance gain was achieved.

To close the performance gap between the test database used during development,
which had all sequences of the same length, and the actual Swiss-Prot database, changes
were made to the database conversion process. It was found that by concatenating
database sequences in such as way that each GPU thread has a roughly equal amount of
work to do, Swiss-Prot performance improved by 75%, bringing it close to the optimal
case.

6.3 Recommendations for further research

With both our implementation and CUDASW++ 2.0 reaching a maximum performance
of around 20 GCUPS on similar hardware, and keeping in mind the conclusions drawn, it
is unlikely that more performance can be extracted from the GPUs used. Of course, faster
chips keep coming out, which might offer interesting new avenues. At the same time,
CPU performance is not static either, with CPUs gaining more and more processing cores
for performance leaps in parallel applications. In any case, the differences between GPU
generations are significant, and the tools used to develop for them are still in full flux too.
As such, it bears regularly re-evaluating the performance of GPU solutions compared
to their CPU counterparts. As differences between GPU generations are rather large,
such as changes to the threading model or the introduction of different cache hierarchies,
this will require careful optimization of these GPU solutions to guarantee maximum
performance.
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Example: sequence alignment
using SwissProt, EMBL and
NCBI BLAST A
To put the myriad databases, search engines and tools into perspective, the following
example shows some of the steps a bioinformatics researcher might take in his research.
First, to show the relation between UniProt and the INSDC databases, a protein be-
longing to a mouse is looked up in UniProt. Then, one of the nucleotide sequences that
codes for this protein is then retrieved from EMBL-Bank. Next, to show the duplication
of data between the INSDC databases and the usage of the BLAST alignment tool, part
of the mouse nucleotide sequence is searched for using NCBI’s version of the BLAST
tool; the original sequence is among the matches.
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90 APPENDIX A. EXAMPLE: SEQUENCE ALIGNMENT USING SWISSPROT,
EMBL AND NCBI BLAST

Figure A.1: Taking a look at an UniProt entry for a mouse protein.

Note the detailed annotations; this is a Swiss-Prot sequence.
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Figure A.2: The sequences the UniProt entry references.

These sequences code for the protein in question. Note the option of looking them up
in any of the INSDC databases. Next we will look up the nucleotide sequence with
accession number ‘AF538952’.
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EMBL AND NCBI BLAST

Figure A.3: Nucleotide sequence AF538952 in EMBL-bank.

Note the protein translation for the sequence and the presence of the raw nucleotide
sequence data.
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Figure A.4: Using NCBI’s BLAST alignment tool to look the first portion of the
AF538952 sequence.

These are the first three lines of the sequence from the previous picture; using BLAST,
the idea is to find similar sequences.
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EMBL AND NCBI BLAST

Figure A.5: The results of the BLAST search.

Note AF538952 and similar entries; BLAST did its job and managed to find, amongst
others, the sequence we took the snippet from.



Implementation user’s guide B
B.1 Introduction

GASW (short for GPU Accelerated Smith-Waterman) is a complete graphics process-
ing unit based implementation of the Smith-Waterman sequence alignment algorithm.
GASW can be used to search FASTA format protein databases such as Swiss-Prot with
a recorded performance of up to around 21 GCUPS on NVIDIA GTX275.

Features:

• CUDA-based implementation of the Smith-Waterman sequence alignment algo-
rithm for proteins, optimized for NVIDIA GT200-class GPUs.

• Aligns FASTA-format sequences with FASTA-format databases such as Swiss-Prot.

• Only returns alignment scores, not the actual alignments. However, top scoring
sequences can be exported for alignment by tools that do offer this feature; see
Section B.3.2.

• Supports FASTA-format substitution matrices and user configurable affine gap
penalties.

• Lenient limits on database and query sequence lengths, see Section B.4.

• Comes with an easy to use web interface that allows the tool to be used remotely
and with a graphical user interface, see Section B.5.

Requirements:

• GASW is a 32-bit Microsoft Windows application; it works fine on 64 bit operating
systems. It should easily compile for Unix based operating systems as it contains
no platform-dependent code; however this has not been tested.

• An NVIDIA CUDA-compatible GPU with the Shader Model 1.3 feature set is
required. Effectively this means GT200-based GPUs and newer. GASW should
work on GT400-series GPUs, but has not been optimized for these.

B.2 Program usage

This section explains the usage of the command-line database conversion and sequence
alignment tools. Furthermore, it shows how to use a third party application to generate
the actual alignments.
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B.3 Converting databases to GPUDB format

Before a database can be searched using GASW, it must be converted to its own GPUDB
format using the dbconv command-line program. This has to be done just once for each
database. The conversion process involves separating the sequences and their descrip-
tions and optimizing the sequence layout for GPU access. Dbconv’s usage is simple: its
only parameter is the input database file, from which it produces out.gpudb (sequences)
and out.gpudb.descs (descriptions) files. These files can be renamed; however both files
for one database must have the same name and must reside in the same directory. Note
that GASW comes with a small pre-converted test database named prot test.gpudb,
the result of converting the similarly included prot test.lseg file.

B.3.0.1 Example: converting Swiss-Prot to GPUDB format

The following example shows how to convert a Swiss-Prot database to GPUDB format
and how to rename it so it can be differentiated from possible other databases.

D:\ gasw>dbconv . . \ . . \ un ip r o t sp r o t . f a s t a
Conversion parameters : b lock s i z e 16 , sub block s i z e 8 , a l ignment 256 .
Loading . . .
. . \ . . \ un ip r o t sp r o t . f a s t a : 183273162 symbols in 519348 sequence ( s ) in database .
Converting . . .
Writing out . gpudb
336 b locks
513975 sequences used to f i l l gaps
448 bytes o f al ignment padding i n s e r t e d .
1822358 bytes o f padding i n s e r t e d .
1 .033235 new vs o r i g i n a l s i z e r a t i o .
Writing out . gpudb . desc s
Done .

D:\ gasw>ren out .∗ sw i s sp ro t .∗

D:\ gasw>d i r
. . .
31−08−2010 16 :28 191 .464 .944 sw i s sp ro t . gpudb
31−08−2010 16 :28 56 .809 .785 sw i s sp ro t . gpudb . desc s
. . .

B.3.1 GASW usage

Once a database has been converted to GPUDB format, the gpu command line program
can be used to perform the actual search. Its usage is similar to that of FASTA’s ssearch
program:

gpu [ opt ions ] <sequence> <database>

Where sequence is a FASTA-format single-sequence file, and database is a GPUDB-
format database. Additionally, the program supports the following command-line op-
tions:
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Switch Required Description Default

-s yes Substitution matrix file: FASTA-format substitution matrix
-f no Gap penalty -10
-g no Gap extend penalty -2
-b no Number of result scores to show/export 20
-o no Output file for result scores (see Section B.3.2)

As noted a substitution matrix is required; GASW comes with the blosum62.mat

Blosum62 matrix. The FASTA suite of programs offers various additional matrices in
its data subdirectory. Once run, gpu will output a list of descriptions and scores for the
top scoring sequences. The following example illustrates this.
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B.3.1.1 Example: searching the test database

The following example shows how to search the prot test database for the mgstm1.aa

sequence. Both come with the program, as does the blosum62 substitution matrix used.

D:\ gasw>gpu −s blosum62 .mat mgstm1 . aa p r o t t e s t . gpudb
Sequence : mgstm1 . aa
Database : p r o t t e s t . gpudb
Subs t i t u t i on matrix : blosum62 .mat
Gap penal ty : −10
Gap extend pena l ty : −2
Number o f s c o r e s to show : 20
Output database f i l e f o r top s c o r i ng sequences : ( nu l l )

mgstm1 . aa : input sequence l ength i s 218 .
Loading database . . .
p r o t t e s t . gpudb : 2245 symbols in 23 sequence ( s ) in 1 block ( s ) in database .

Launching ke rne l .
Using 120 b locks o f 64 threads : 7680 threads f o r 23 sequences in 1 b locks .
Proce s s ing 1 b locks per h a l f warp .
Running . . .
Done . Seconds : 0 .020000 , GCUPS: 0 .024470

Sor t ing r e s u l t s . . .
Resu l t s :

0 . GT8. 7 | 266 | t r a n s l . o f pa875 . con , 19 to 675 @P:2 SCORE: 1171
1 . XURTG | 266 | g lu ta th i one t r a n s f e r a s e (EC 2 . 5 . 1 . 1 8 SCORE: 150
2 . HMIVV | 2581 | Hemagglutinin precur so r − I n f l u enza SCORE: 38
3 . OKBO2C | 296 | Prote in k inase (EC 2 . 7 . 1 . 3 7 ) , cAMP− SCORE: 34
4 . HAHU| 1114 | Hemoglobin alpha chain − Human, chimp SCORE: 30
5 . RKMDS | 677 | Ribulose−bisphosphate carboxy la se (E SCORE: 27
6 . TPHUCS | 1322 | Troponin C, s k e l e t a l muscle − Huma SCORE: 26
7 . K1HUAG | 1091 | Ig kappa chain V−I r eg i on (Ag) − SCORE: 25
8 . CCHU | 1 | Cytochrome c − Human @P:25−85 SCORE: 25
9 . K3HU | 1099 | Ig kappa chain C reg i on − Human SCORE: 24

10 . N2KF1U | 1021 | Long neurotox in 1 − Many−banded kr SCORE: 20
11 . FEPE | 25 | Ferredoxin − Peptos t reptococcus asacch SCORE: 19
12 . PADDING | PADDING | PADDING SCORE: 0
13 . PADDING | PADDING | PADDING SCORE: 0
14 . PADDING | PADDING | PADDING SCORE: 0
15 . PADDING | PADDING | PADDING SCORE: 0
16 . PADDING | PADDING | PADDING SCORE: 0
17 . PADDING | PADDING | PADDING SCORE: 0
18 . PADDING | PADDING | PADDING SCORE: 0
19 . PADDING | PADDING | PADDING SCORE: 0

The output shows the settings used; the time consumed by the alignment; and the top
scoring sequences and their scores. The PADDING sequences are a result of the database
conversion process; the original database contained just 12 sequences.

B.3.2 Performing alignment of top scoring sequences using SSearch

As described, GASW only calculates alignment scores and does not perform the actual
sequence alignments. However, the top scoring database sequences can be exported to
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a new database file which can then be searched by a program that does perform full
alignments. An example of such a program is ssearch, which comes with the FASTA
suite of programs. As the full alignments will only be performed for a relatively tiny
amount of sequences, the overheard incurred by this somewhat redundant approach is
negligible. If the command line used in the previous example is modified with the -o

option, as such:

D:\ gasw>gpu −s blosum62 .mat −o out . l i b mgstm1 . aa p r o t t e s t . gpudb

The same output will be shown, however the listed sequences will be exported to the
file out.lib. The number of sequences exported can be set using the -b option. The
generated file can then be searched using ssearch. Care must be taken to provide the
same options:

s s e a r ch35 s s e2 −s blosum62 .mat mgstm1 . aa out . l i b
. . .
The best s c o r e s are : s−w b i t s E(12)
GT8. 7 | 266 | t r a n s l . o f pa875 . con , 19 to 675 @P:2 ( 218) 1171 542 .7 2 . 4 e−158
XURTG | 266 | g lu ta th i one t r a n s f e r a s e (EC 2 . 5 . 1 . 1 8 ( 222)
150 71 .8 1 . 4 e−016
HAHU| 1114 | Hemoglobin alpha chain − Human, chimp ( 141) 30 17 .2 2 .2
HMIVV | 2581 | Hemagglutinin precur so r − I n f l u enza ( 567) 38 18 .8 2 .9
OKBO2C | 296 | Prote in k inase (EC 2 . 7 . 1 . 3 7 ) , cAMP− ( 350) 34 17 .7 3 .7
RKMDS | 677 | Ribulose−bisphosphate carboxy la se (E ( 140) 27 15 .8 5
CCHU | 1 | Cytochrome c − Human @P:25−85 ( 105) 25 15 .3 5 . 2
K1HUAG | 1091 | Ig kappa chain V−I r eg i on (Ag) − ( 109) 25 15 .3 5 .5
K3HU | 1099 | Ig kappa chain C reg i on − Human ( 106) 24 14 .8 6 .5
TPHUCS | 1322 | Troponin C, s k e l e t a l muscle − Huma ( 159) 26 15 .2 7 .4
FEPE | 25 | Ferredoxin − Peptos t reptococcus asacch ( 54) 19 13 .5 7 .5
N2KF1U | 1021 | Long neurotox in 1 − Many−banded kr ( 74) 20 13 .5 8 .9
More s c o r e s ? [ 0 ]
Display a l ignments a l s o ? (y/n) [ n ] y

Note how the same sequences and scores are shown. As the prompt for alignments was
answered positively, the actual alignments are displayed:

. . .
10 20 30 40 50 60

GT8. 7 MPMILGYWNVRGLTHPIRMLLEYTDSSYDEKRYTMGDAPDFDRSQWLNEKFKLGLDFPNL
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

GT8. 7 MPMILGYWNVRGLTHPIRMLLEYTDSSYDEKRYTMGDAPDFDRSQWLNEKFKLGLDFPNL
10 20 30 40 50 60

. . .

Note that the web interface (Section B.5) automates the task of running ssearch on
GASW output, saving command-line work and showing the alignments in a more attrac-
tive web page format.

B.4 Program limitations

Although care has been taken to be as lenient and flexible as possible, GASW is unfortu-
nately subject to some limitations. Some are inherent to its design, some are unavoidable
and some are the result of external factors. First and foremost, as it was written using
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the NVIDIA CUDA programming interface, it is only compatible with certain GPUs as
described in Section B.1. Furthermore, it only returns alignment scores, not the actual
alignments of sequences. This problem can be circumvented by feeding the top scoring
sequences into a program that does perform full alignments as discussed in Section B.3.2.
Additionally, due to limited development resources, GASW only supports single-GPU
operation.

Finally, Microsoft Windows Vista and later implement a timeout detection and
recovery mechanism to recover from GPU hangs. By default, this mechanism re-
sets the primary (desktop) GPU after two seconds are spent on a single task. As
GASW only supports a single GPU, the primary one will always be used, which
makes this timeout mechanism somewhat problematic. When using GASW to per-
form longer alignments, the GPU will be reset and the program aborted after two
seconds. Fortunately, the timeout detection and recovery mechanism can be al-
tered. By modifying the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\

GraphicsDrivers\TdrDelay registry entry using regedit, the timeout value can be set.
GASW comes with a registry file timeout.reg; running this file will set the timeout to
255 seconds, which should be enough for most work.
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B.4.0.1 Sequence limitations

The following limits are imposed on sequence (database) lengths. Note that in some
cases, multiple limits apply; which one of these is the final limiting factor will depend
on the particular sequences and GPU used.

Description Limited by Limit

Length of query sequence GPU memory size A temporary data matrix
of size num threads1 ∗ 4 ∗
query length bytes is stored
in global memory.

Length of query sequence GPU memory size A query profile of size 23 ∗
query length bytes is stored
in global memory.

Length of query sequence Score of alignment The maximum score sup-
ported is 65535.

Number of database sequences GPU memory size A score array of size
2 ∗ num database sequences
bytes is stored in global
memory.

Number of database sequences 32-bit integer size Disregarding memory limits,
at most 4294967296 sequences
are supported.

Total database size GPU memory size Amount of global GPU mem-
ory left after storing other
data.

Total database size GPU memory size Disregarding other memory
limits, a database size of at
most 4 gigabytes is supported.

Longest sequence in database Score of alignment The maximum score sup-
ported is 65535.

Table B.1: Sequence limitations

[1] num threads is the amount of GPU multiprocessors times 256, for example 30 ∗
256 = 7680 for GTX275.

B.5 Web interface

To cut back on repetitive command-line work, especially when interested in full align-
ments, and to be able to show results in a more attractive manner, GUSW comes with
a web interface. This interface offers all the options of the command-line program with
the additions of being able to look up sequences in Swiss-Prot and the ability to invoke
GUSW remotely: users can run queries from any computer, even if it does not have a
powerful GPU.
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B.5.1 Setting up the web interface

The web interface is a simple set of PHP scripts. It has been tested with the Apache
2.2.11 web server but should be compatible with any server that will run PHP scripts.
Note that the web interface is not compatible with Apache running as a Windows service:
services do not have access to display adapters, which prevents CUDA from being used.

Installing the web interface is a matter of copying the files from the interface

directory of the GASW distribution to somewhere in the server’s web directory. The
next step is to edit config.php and set some parameters:

• GPU LOCATION should be set to the location of GASW’s gpu.exe file. Example:
C:/GASW/gpu.exe.

• SSEARCH LOCATION should be set to the location of the FASTA ssearch.exe pro-
gram or one of its variants. Example: C:/FASTA/bin/ssearch35.exe.

• DB LOCATION should be set to the location where the web interface should look for
GASW GPUDB database files. Of course, gpu.exe should be able to access this
location. Example: C:/GASW/db

• MATRIX LOCATION should be set to the location where the web interface should look
for substitution matrices. It is convenient to set this to the data directory of a
FASTA installation. Example: C:/FASTA/data.

B.5.2 Using the web interface

Once the web interface has been properly installed, it can be accessed using any web
browser. The interface index page is shown in Figure B.1. The interface offers the
following options:

• Query sequence: the query sequence to be used in the alignment, must be a file
in FASTA format. The file can be anywhere on the user’s system; it will be
temporarily uploaded to the server hosting the web interface during the alignment.

• Database: allows the database for the alignment to be chosen. Shows a list of all
databases present in the server’s DB LOCATION path.

• Substitution matrix: allows the substitution matrix for the alignment to be chosen.
Shows a list of all matrices present in the server’s MATRIX LOCATION path.

• Gap penalty / gap extend penalty: Smith-Waterman alignment parameters.

• Number of scores to show: The number of top scoring sequences that will be shown.

• Scores only / Full alignments. When ‘Full alignments’ is selected, the top scoring
sequences will be run through SSearch and the actual alignments shown.

Once the query has been submitted and run, the result page shown in Figure B.2
will be shown. The table shows the top scoring sequences and their alignment scores.
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Figure B.1: GASW web interface index page.

The sequence identifiers are links that will show the Swiss-Prot page for the sequence
as shown in Figure B.3. If the full alignment option was used, each table entry has
an additional ‘alignment’ link that will show the SSearch output for the sequence, see
Figure B.4.

B.6 Building GASW from source

GASW was originally developed using the NVIDIA CUDA toolkit version 3.1; the 32-bit
version to be specific. As this version of the toolkit supports Microsoft Visual Studio
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Figure B.2: GASW web interface results page

2008 at the latest, that version was used in the creation of GASW. GASW consists of a
few subprojects:

• dbconv, the database converter that converts databases from FASTA to GASW’s
GPUDB format.

• gpu, the actual GPU accelerated Smith-Waterman implementation.

• dbgen, a small program to generate random FASTA databases for testing purposes.

Building dbconv and dbgen should be straightforward. To build gpu the CUDA toolkit
must have been installed and Visual Studio must be able to find its include and library
files. The gpu project uses the cuda.vsprops property sheet that has been added to the
project to resolve these: the C/C++ → general → Additional Include Directories option
has been set to $(CUDA_INC_PATH) while the Linker→ Input→ Additional Dependencies
option has been set to $(CUDA_LIB_PATH)\cudart.lib. These settings should work for
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Figure B.3: The Swiss-Prot page for the top sequence.

any CUDA installation as long as the installer has set the proper environment variables.
However, it is important to be aware of how the project finds these files in the event of
compile errors.

The actual CUDA file in the gpu project, main.cu, must be compiled using a CUDA
build rule. The CUDA 3.1 build rule comes with the source code (cuda.rules). If
necessary, build rules can be added by right-clicking the gpu project in the solution
explorer and selecting the Custom Build Rules... option. If all is well, opening the
properties for main.cu should show the window in Figure B.5.

As GASW is optimized for GT200-class cards, the file should be built for SM 13
architectures. Furthermore, the default 32 register limit is too low for optimal perfor-
mance; 64 (or less) registers should be used with the included code compiling to use 63.
When more than 64 registers are used speed will suffer due to insufficient occupancy.
However, it is best to set the register limit to some higher value: this way code that com-
piles to more than 64 registers can be modified instead of having the compiler silently
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Figure B.4: The alignment for the top sequence.

spill registers to slow local memory.
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Figure B.5: CUDA build rules property sheet.
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CD-ROM C
The attached CD-ROM contains:

• A compiled version of GASW, the GPU accelerated protein database search tool
discussed in this thesis. It includes data files needed to run test searches: a simple
test database in FASTA and GPUDB format, a query sequence in FASTA format,
and the BLOSUM62 substitution matrix. All can be found in the gasw directory.

• The source code for GASW, in the source directory.

• The synthetic benchmark database used during development and the October 2010
Swiss-Prot database. Both can be found in FASTA and GPUDB format in the
extra db directory.

• The GASW user’s guide (Appendix B) in PDF format.

• This thesis in PDF format.
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