
Power Minimisation for Real-time Dataflow
Applications

Andrew Nelson1, Orlando Moreira2, Anca Molnos1, Sander Stuijk3, Ba Thang Nguyen1 and Kees Goossens3
1Delft University of Technology, Delft, The Netherlands

2ST Ericsson, Eindhoven, The Netherlands
3Eindhoven University of Technology, Eindhoven, The Netherlands

a.t.nelson@tudelft.nl, orlando.moreira@stericsson.com, a.m.molnos@tudelft.nl,
s.stuijk@tue.nl, k.g.w.goossens@tue.nl

Abstract—Energy efficient execution of applications is im-
portant for many reasons, e.g. time between battery charges,
device temperature. Voltage and Frequency Scaling (VFS) en-
ables applications to be run at lower frequencies on hardware
resources thereby consuming less power. Real-time applications
have deadlines that must be met otherwise their output is
devalued. Dataflow modelling of real-time applications enables
off-line verification of the application’s temporal requirements.
In this paper we describe a method to reduce the combined static
and dynamic energy consumption using a Dynamic VFS (DVFS)
technique for dataflow modelled real-time applications that may
be mapped onto multiple hardware resources. We achieve this
by using an application’s static slack in order to perform DVFS
while still satisfying the application’s temporal requirements.
We show that by formulating a dataflow modelled application
and its mapping as a convex optimisation problem, with energy
consumption as the objective function, the problem can be solved
with a generic convex optimisation solver, producing an energy-
optimal constant frequency per application task. Our method
allows task frequencies to be constrained such that, e.g. one
frequency per application or per processor may be achieved.

I. INTRODUCTION

In general, reducing the energy consumption of a system
is desirable. Voltage and Frequency Scaling (VFS) is a com-
monly used method to reduce the energy consumption of
electronic systems [1]–[5]. Lowering the voltage decreases the
energy consumption but also lowers the frequency at which the
system can run. Lowering the frequency of processing cores
running real-time applications must therefore be done in the
context of the applications’ temporal requirements.

Modelling a real-time application as a Homogeneous Syn-
chronous Dataflow (HSDF) graph [6], as illustrated in Fig-
ure 1, enables the off-line analytical verification of the ap-
plication’s throughput requirements. Using the Worst Case
Execution Times (WCET) of the application’s set of tasks, it
is subsequently possible to calculate the minimum difference
between the application’s throughput, at a given frequency,
and its throughput requirement. For a functional real-time ap-
plication that meets its throughput constraints, we refer to this
constant difference as static slack. It is the application’s static
slack that we use to perform VFS, or Dynamic VFS (DVFS)
in the case that multiple tasks with different frequencies are
mapped onto the same processor.

Our main contribution is a method to derive energy optimal
task frequencies for Dataflow modelled applications using the

τ1 = 1000
τ2 = 700
τ3 = 700
τ4 = 4000
τ5 = 700
τ6 = 200
τ7 = 3000
τ8 = 1000
τ9 = 2000

v1

v3

v2

v4

v5

v6

v7

v8 v9

Figure 1. Example HSDF graph with timings τv in cycles.

Disciplined Convex Programming technique [7], for which
problems are proven to be solvable in polynomial time.
As an objective function we can either fit (or approximate)
power consumption to frequency data that is either collected
through experimentation, or derived from a model, as long as
the data set is (approximately) convex [8], [9]. The convex
program’s optimisation constraints are derived from the real-
time application’s dataflow model. We contribute a dataflow
modelled task execution scheme that enables task scheduling
and communication timings to be taken into account.

We use a generic disciplined convex program solver called
CVX [10] to derive the optimal task frequencies, which takes
only a matter of seconds for our test applications, on an
off-the-shelf laptop. While still maintaining the real-time ap-
plication’s throughput requirements, we are able to derive
frequencies for energy reduction for various scenarios, e.g.
1) one frequency per task, 2) one frequency per processor, 3)
one frequency for all tasks. This enables a trade off in the
number of static voltage and frequency domains and the need
for DVFS capability against the energy savings.

Our technique’s limitations are that it is limited to using
static-slack for energy reduction, e.g. Slack produced due to
variation in task execution time, also known as dynamic-slack,
is not used. Our method is limited to Dataflow modelled
applications that have tasks that are bound by a WCET. Our
technique is limited to single and multiprocessor Systems-on-
Chip (SoCs) with predictable computation and memory access
times. We do not take into account chip temperature when
calculating the task operating frequencies.

We evaluate the practicality of our technique by apply-



No. produced tokens : No. consumed tokens (per task firing)

src2

Detect

src1 src3 src4

CFEnSync FFEnCE HDemode

src5 src6 src7 SIFS

PDemode

HDecode PDecode BuildHeader CodeHeader ModHeader LatencyHeader

LatencyPayloadAckModeAckCodeMacAnalyseMacCRC

5:1 1:5

5:1 1:5

Figure 2. WLAN 802.11a SDF graph.

ing it to an actual tile-based, Multiprocessor SoC (MPSoC),
hardware platform implementation, that uses per-tile DVFS
hardware, as described in [11]. We apply our technique to
both a synthetic real-time dataflow application example, as
illustrated in Figure 1, and a WLAN 802.11a, real-time,
dataflow application that can be found in [12] and illustrated
in Figure 2. We show that our technique uses the available
static-slack to enable energy conservation through operating
frequency reduction.

The rest of this paper is structured as follows. In the next
section we put our work into the context of previous work
that has been carried out in the direction of energy reduction
of embedded systems through DVFS. We follow this in
Section IV with a detailed explanation of how to formulate the
relevant properties of an HSDF structured application along
with an energy consumption model for convex optimisation.
In Section V we explain how hardware resource constraints
may be taken into account using our technique. We present
experimentation to verify our claims in Section VI and finish
off with concluding statements in Section VII.

II. RELATED WORK

There is already quite a large body of work available
that demonstrates how DVFS techniques may be applied to
reduce energy consumption. While it would not be possible to
reference all published work that use such techniques, due to
space restrictions, we provide a selection of relevant related
work to the topics encountered in this paper. We start by
relating other techniques that use formal optimisation methods
to achieve energy reduction through the use of DVFS. We
further relate work that incorporates a DVFS technique in a
Real-Time Operating System (RTOS). We finish this section
by relating work that uses timed Dataflow analysis to provide
energy reduction through DVFS for real-time applications.

Methods for power optimisation in SOC-based Dataflow
systems are described in [5]. The work applies linear pro-
gramming methods to derive optimal frequencies of hardware
components to reduce energy consumption. The work in [5]
does not put forward a technique that can be used at the
application level. This can be seen as a simpler problem than
the one we tackle due to the inherently parallel nature of
hardware.

The work in [1] has a much larger scope than ours, tackling
task allocation, scheduling and voltage scaling. Focussing
on the VFS part of their work, the frequency levels are
obtained using an Integer Linear Programming (ILP) method,
through traditional branch and bound. While the complexity
of their technique is not stated in their work, ILP methods
may be NP-Hard in complexity. Our method uses Disciplined
Convex Programming which is proven to have a polynomial
complexity [7].

Leakage aware multiprocessor scheduling is described in
[2]. DVFS is applied to applications modelled as directed
acyclic graphs with the nodes mapped onto a multiprocessor. A
technique called schedule and stretch is used to apply DVFS.
This is achieved by first scheduling the tasks, calculating
the amount of slack that remains in the schedule before the
deadline, then frequency scaling the MPSoC until the deadline
is just met thus saving energy. This work in comparison to ours
applies a uniform frequency scaling to the entire MPSoC. In
our work each core has an independent DVFS ability enabling
potentially larger energy savings. Our method is also not
restricted to acyclic application graphs.

In [3] a Real-Time Operating System (RTOS) is presented
based on [13] which uses a “cooperative voltage scaling”
method where the RTOS and the application collaborate to
perform DVFS. Their method uses fixed size slice lengths,
using the tasks WCET to calculate the frequency required to
complete the task in its assigned number of slices. Their work
is only applied to a single core whereas ours is multi-core.
They calculate the frequency of each task within the context
of its own deadline whereas we calculate the frequency in the
context of the entire application and its mapping on multiple
processors.

Task-level dataflow modelling has been investigated before
for the purposes of using DVFS for real-time applications, in
order to reduce energy consumption. In [14], [15] methods
were proposed that used a combination of Hierarchical FSM
modelling with SDF [6] modelling for the purposes of intra-
task VFS. Their method relies on identifying the application’s
execution trace so that the tasks on that trace may be subjected
to VFS. Our method works for dataflow models that may be
converted to HSDF models, such as SDF and cyclo-static SDF
[16] and uses inter-task VFS. We also show that our method
works for multi-processor platforms.

III. BACKGROUND

For our method we require a hardware platform that
provides predictable computation and communication. For this
purpose we use the platform template described in [11]. The
platform template uses a tile based hardware architecture, with
tiles connected using a predictable hardware interconnect, such
as those described in [17]–[19]. The platform implementa-
tion that we use for experimentation follows this template
using the Æthereal Network-on-Chip (NoC) [17] to connect
a configurable number of Xilinx [20] MicroBlaze (µBlaze)
processor based tiles, as illustrated in Figure 3. One of the
µBlaze tiles acts as the host tile, configuring the NoC and
monitoring status information received from the other tiles.



Predictable
NoC

µBlaze
Tile

Tile
µBlaze

µBlaze
Host

µBlaze
Tile

Figure 3. Hardware platform architecture.

VFS

timer
interrupt

clk
clk

System
Clock

Tile
Clock

µBlaze
imem

dmem

Figure 4. MicroBlaze (µBlaze) based processing tile.

The rest of the tiles consist of a µBlaze processing core
connected to a programmable timer that sends an interrupt
after its programmed time delay and a VFS unit, as described
in [11], [21]. The DVFS module provides 17 equidistant power
levels from a 0 MHz clock gate state up to the frequency
provided by the system clock, as illustrated in Figure 4. As
per the scheme described in [11] DMA’s are used to transfer
data between tiles, with at least one DMA per application to
ensure application level predictability.

Predictability is also important on the processor. For our
DVFS technique to be applicable it must be possible to guar-
antee the amount of processing time an application has in a
fixed period. To facilitate this our platform uses the CompOSe
[22] Real-time Operating System (RTOS) with Time Division
Multiplexed (TDM) scheduling to allocate processing time to
an application guaranteeing that the application is scheduled
for a fixed amount of time in the TDM period. We achieve this
as described in [11] using a hardware timer connected to each
processor that is programmed to interrupt the processor after
fixed intervals allowing running applications to be swapped
out by the RTOS in a fixed length time slice, which we refer
to as the OS time slice. Importantly, during the application’s
allotted time no interrupt can arrive apart from that associated
with the TDM scheduler signalling the end of its scheduled
time. The RTOS controls the voltage and frequency of the tile
using the DVFS module. Only the task execution times are
scaled by the RTOS, the tile runs at fmax at all other times.

The relatively slow transitioning between Voltage and Fre-
quency levels has long been an obstacle for DVFS tech-
niques. Work in [23]–[26] demonstrate techniques where this
is no longer the case. Taking the work in [25], [26] as an
example, they demonstrate a fine grained DVFS technique
with switching times in nano seconds. The work in [26]
presents measurements from a physical implementation of
the technique demonstrating that the technique is not just
theoretical. For the work in this paper we do not use these

0

20

40

60

80

100

0 20 40 60 80 100

%
of

en
er

gy
at
f m

a
x

% of frequency range from 0MHz→ fmax

E
Esta
Edyn

Figure 5. Normalised energy consumption against normalised frequency.

techniques, but instead use a coarser grained DVFS module
per-tile. A fine grained DVFS technique would enable our
technique to use even more of an application’s static-slack due
to a smaller frequency rounding error, from the frequencies
produced from our convex optimisation technique.

IV. OPTIMISATION FORMULATION

Our energy reduction technique is aimed at Multiprocessor
platforms that can provide applications with a guaranteed
service rate regardless of influences external to the application,
such as other applications, interrupts, etc. In order for our
DVFS scheme to work there must be hardware support for
DVFS per processor, meaning that the platform must be able
to support multiple clock domains.

Our objective is to produce a frequency per task in order
to reduce the amount of energy consumed while not violating
the application’s temporal requirements. To achieve this we use
the generic convex optimisation [7] solver called CVX [10]. In
order to solve the problem it must first be formulated as an
objective function and a set of constraints. As an objective
function for our technique it is possible to either fit (or
approximate) power consumption to frequency data that is
either collected through experimentation, or derived from a
model, as long as the data set is (approximately) convex [8],
[9]. As such our technique is not limited to any particular
power model.

For the purpose of an illustrative example we approximate
the convex energy per cycle curve produced from the energy
model described in [2]. It takes into account both dynamic
and static energy consumption using constants for a particular
processor that has been processed in a 70nm technology.
The energy consumed by a processor per cycle is the sum
of the static Esta and dynamic Edyn energy consumption
of the processor per cycle, i.e. E = Esta + Edyn. For our
technique we can derive frequencies to minimise static or
dynamic energy, or both. In general the combination of the
two types of energy curve results in a convex curve similar to
that found in [2]. As such we approximate energy per cycle
as:



E =
f2max
f

+ 10f (1)

where f is the processor frequency and fmax is the maximum
frequency at which the processor can run. Equation (1) pro-
duces the energy per cycle graph that is illustrated in Figure 5
(N.B. This energy model is used for demonstrative purposes
throughout this paper. Other models, or experimental data, that
have a convex approximation may be used with our technique).
In order to calculate the energy consumption of an application
it must be known for how many cycles the application will run
at a particular frequency. This is a prerequisite for real-time
applications.

Modelling the application as an HSDF graph [6] enables
conservative analysis of the application to ensure that it meets
its temporal requirements. An HSDF graph is a directed graph
that can be used to represent an application, with edges
representing fifo communication, and vertices, referred to as
actors, representing application tasks, as illustrated in Figure 1.
Data is communicated along the edges in discrete quantities
called tokens. Tasks can start execution as soon as sufficient
tokens are available on their incoming edges. This is referred
to as an actor firing. Upon firing an actor consumes one token
from each of its incoming edges and when it has finished
produces one token on each of its outgoing edges.

For analytical purposes we represent an HSDF graph G
using the tuple (V,E, τ, f, δ). Element V is the finite set
of annotated vertices or actors. Element E is the finite set
of annotated directed edges that connect the vertices. Edges
are represented by the tuple (i, j) ∈ E where i ∈ V is the
actor producing tokens on the edge and j ∈ V is the actor
consuming tokens from the edge. The WCET of an actor v
is given by τ(v), with τ : V → N. We annotate the graph
with the WCET of tasks in terms of cycles. The processor
frequency for the actor v is given by f(v), with f : V → N.
The WCET of an actor v in terms of seconds is therefore given
by τ(v)/f(v). The initial token occupancy of an edge (i, j)
is given by δ(i, j), with δ : E → N.

The objective function can be formulated from (1) as
follows:

minimise

(∑
∀v∈V

τ(v) ·
(
f2max
f(v)

+ 10f(v)

))
(2)

where f(v) are free variables in the optimisation. This is
formatted for CVX accordingly:

minimise(sum(tau*(inv_pos(f)*fmaxˆ2 + 10*f)));

with tau and f being horizontal and vertical vectors respect-
ively. The inv_pos function is provided by CVX to find the
inverse of positive numbers while indicating to the tool that the
result is convex. The convex solver can derive the frequency
or frequencies that produce the lowest energy consumption for
the execution of the application. The derived frequencies must
not cause the application to violate its temporal requirements.

We achieve this by adding optimisation constraints that take
into account the application’s dataflow structure and temporal
requirements.

The throughput of an HSDF graph is the inverse of its
Maximum Cycle Mean (MCM) µ(G). The MCM of a graph
G is calculated from its set of cycles C(G), and is defined as:

µ(G) = max
c∈C(G)

µ(c)

where µ(c) is the cycle mean of the cycle c, defined as:

µ(c) =

∑
v∈V (c) τ(v)/f(v)∑
(i,j)∈E(c) δ(i, j)

V (c) and E(c) are the sets of all actors and edges traversed
by the cycle c respectively.

A necessary and sufficient condition for the feasibility of a
periodic schedule is given in [27]. The constraint is applied
per edge ∀(i, j) ∈ E and is defined as:

s(i)− s(j) ≤ T (G) · δ(i, j)− e(i) (3)

where s(v) is the start time of actor v ∈ V , e(v) is the
execution time of the actor v in seconds and T (G) is the period
of the schedule for application G. Equation (3) implicitly
asserts the condition that there is no auto-concurrency of actor
firings, meaning that multiple firings of an actor cannot occur
at the same time. We extend (3), to take into account that the
execution time of an actor is dependent on the frequency at
which it is executed, as follows:

e(i) =
τ(i)

f(i)

s(i)− s(j) ≤ T (G) · δ(i, j)− τ(i)

f(i)
(4)

In [27] the WCET of tasks are constant as the frequency is
constant (f(i) = fmax), making the constraint suitable for
linear programming methods. Here however, the WCET in
(4) is calculated using τ(i)/f(i), with f(i) a free variable in
the optimisation. Equation (4) is no longer a linear constraint
making it unsuitable for linear programming methods, but it
is suitable for the convex optimisation technique used by the
CVX solver.

Equation (4) constrains the starting time of the consuming
task s(j) so that it can only start after the producing task s(i)
has finished execution. It is formatted for CVX as follows:

s(i)-s(j) <= T(G)*d(e) - tau(i)*inv_pos(f(i));

where e is the edge number of (i, j). It is applied for all edges
in the application graph.



τ(v)
f(v)λ(v)

+φ(v)

writeexecutereadschedule

Figure 6. Dataflow representation of a task v firing on our platform, with
associated timing notation.

V. FORMULATION APPLIED TO AN MPSOC PLATFORM

In the previous section we described our method to derive
a frequency or frequencies to run an application at in order
to reduce the energy consumption for the amount of work
done. Our method, as described in the previous section, only
takes into account the constraints of the application structure
and is therefore rather idealised. In this section we show how
our technique can be applied to an MPSoC platform based on
the platform template from [11] taking into account relevant
factors such as resource constraints and interprocessor com-
munication time. As such, for interprocessor communication
it must be possible to give a guaranteed temporal upper bound
for any transaction, as is done by the Æthereal NoC [17]. We
contribute a task execution scheme that is modelled as a HSDF
graph, as illustrated in Figure 6. This dataflow task execution
model is a one-to-one replacement of the application’s HSDF
graph’s task nodes, enabling the worst case timings of task
scheduling and communication to be taken into account while
allowing the computation to be frequency scaled using our
Disciplined Convex Programming technique.

Our RTOS supports multiple applications simultaneously
that are scheduled using TDM. Once an application is sched-
uled its tasks are scheduled following a static order and
only if it has fulfilled the HSDF firing rules, i.e. if their
data dependencies have been met and there is space in their
outgoing FIFOs. The pre-defined static order schedules can be
constructed using well known SDF scheduling techniques, as
found in [28]. The TDM task arbitration in combination with
the static task execution ordering, and task execution times
that have temporal upper bounds, enable a static upper bound
to be derived for the scheduling time required for each task.
The scheduling upper bound is given by λ(v) with v ∈ V
and is incorporated into edge the constraint described in (4)
as follows:

s(i)− s(j) ≤ T (G) · δ(i, j)− τ(i)

f(i)
− λ(i) (5)

since in an HSDF structured application every task must be
scheduled exactly once per graph iteration. The λ(v) does
not bound the interprocessor communication time of data
between tasks mapped on different processors. We continue
by explaining how this may be taken into account in our
formulation.

Core 1

Core 2

Core 3
Additional static ordering edges
Edges from figure 1

v8v6v5v3v2

v9v7

v1

v4

Figure 7. Additional static ordering edges for the HSDF graph from Figure 1
that is mapped onto three processors.

After the task has been scheduled it reads its data to
be processed from an external to a local memory, if it is
not already located there. The task subsequently executes
operating solely on the local data. Upon completion of the task
execution the data that is produced is written from the local
memory to a remote memory location, if required. We refer
to the tasks read and write step as the task’s communication.

For our DVFS technique we are only concerned with the
execution part of the task execution scheme. This means
that the task’s communication always executes at maximum
frequency. Due to the predictable nature of the interconnect,
the task’s communication has a predictable temporal upper
bound. In a single iteration of the application’s task graph each
task’s communication must happen once. This is incorporated
in the constraint given in (5) as follows:

s(i)− s(j) ≤ T (G) · δ(i, j)− τ(i)

f(i)
− λ(i)− φ(i) (6)

with φ(v) being the WCET in seconds of the communication
of task v ∈ V . Other timings associated with task execution
that have temporal upper bounds, such as VFS transition time,
can be taken into account in a similar fashion as to that which
we have described for the task scheduling and communication.

The application execution is also constrained by the avail-
ability of processing resources. On a single processor only one
task can execute at any time. For an application with a fixed
task mapping onto processing tiles on an MPSoC, and also
with static order execution of tasks on each tile, the additional
timing constraints can be expressed using additional edges
in the dataflow graph. Figure 7 illustrates how this may be
achieved for a 3 core mapping, and static order scheduling
of tasks, from the application graph illustrated in Figure 1.
Similarly Figure 8 illustrates how extra edges may also be
added to the more complex WLAN application SDF graph
from Figure 2, which may be translated into an HSDF graph.
The additional edges in the HSDF graphs are then expressed
using the constraint formulation (6) for each of the new
edges. By setting T (G) equal to the inverse of throughput
constraint of the application, i.e. setting T (G) to be equal
to the maximum valid MCM µ(G) of the application graph
G, valid frequencies can be produced that meet the temporal
constraints assuming the application is scheduled 100% of the
time.

Multiple applications may run on our MPSoC platform, with
the RTOS using TDM scheduling to ensure each application



HDecode MacCRC AckCode AckMode LatencyPayload

BuildHeader CodeHeader ModHeader LatencyHeaderPDecode MacAnalysePDemode

No. produced tokens : No. consumed tokens (per task firing)

src2

Detect

src1 src3 src4

CFEnSync FFEnCE HDemode

src5 src6 src7 SIFS

5:1 1:5

1:55:1Core 1

Core 3

Core 2

Additional static ordering edges Edges from figure 2

Figure 8. Additional static order edges for the WLAN SDF graph from Figure 2 that is mapped onto three processors.

receives a guaranteed fraction of the processor time in the
fixed TDM period. This can be addressed in the optimisation
constraints by scaling the maximum valid MCM of the graph
linearly by the same fraction, meaning that higher frequencies
are required to achieve the desired throughput if the application
only has a fraction of the processor time compared to if it
has all of it. For a TDM schedule with a period of N slots
consisting of a fixed duration of R seconds for the RTOS
to schedule the next application, and a fixed duration of L
seconds for executing tasks. If application G is allotted M of
the N slots then the scaled value of T (G) is calculated as
follows:

T (G) =
µ(G)×M × L
N × (R+ L)

(7)

with µ(G) being the maximum possible MCM of application
graph G while still meeting the application’s temporal require-
ments. For an application scheduled on multiple processors
at a time this is method is valid for an application if the
TDM tables have the same number of slots N , slot length
L, are in phase and the application is assigned the same slots
in each table. The optimisation produces frequencies in the
continuous R domain while the processor can only handle a
limited set of discrete frequency levels. To ensure that the
throughput requirement is not violated we assign the closest
higher frequency level from the reduced set, e.g. for a platform
with Z frequency levels including 0 the discrete frequency
f(v) of a task v ∈ V is calculated as follows:

f(v) =

⌈
fR(v)× (Z − 1)

fmax

⌉
× fmax

Z − 1
(8)

with fR(v) being the timing in the continuous R domain
derived using CVX.

We do not address buffer sizing as part of the optimisation
problem. This is due to the fact that we derive task frequencies
for an application for a given mapping and static order schedul-
ing. The required buffer sizes are dictated by this input and

0

10

20

30

40

50

100 150 200 250 300 350 400 450 500

Fr
eq

ue
nc

y
(M

H
z)

T (G) constraint (µsec)

Figure 9. Application frequency by varying the throughput constraint.

can be calculated using the buffer sizing technique described
in [27].

VI. EXPERIMENTATION

In the previous sections we describe how to formulate real-
time dataflow applications as convex optimisation problems
for a given task mapping on a MPSoC and static ordering of
tasks on each processor. In this section we apply the theory
described in the previous sections using experimentation,
starting with the theory presented in Section IV. We follow
this by showing how taking into account resource constraints
affects the amount of energy reduction in comparison, i.e.
experimentation to see how the theory in Section V affects the
energy reduction when compared to the more ideal situation
in Section IV. We subsequently test our methods by applying
them to the synthetic real-time dataflow application illustrated
in Figure 1 mapped onto an implemented MPSoC that has 3
µBlaze processing tiles with a fmax = 50 MHz, as illustrated
in Figure 3. For the same platform we also evaluate our
technique when used with a Wireless LAN 802.11a real-
time dataflow application, as found in [12] and illustrated in
Figure 2.

Using the HSDF graph of a synthetic application illustrated



100

200

300

400

500 0
2

4
6

8
10

10

20

30

40

50

Tasks v1→
v9

T (G
)

Fr
eq

ue
nc

y
(M

H
z)

Figure 10. Task frequencies by varying the throughput constraint.

in Figure 1 and the energy to frequency curve illustrated in
Figure 5, represented as the minimising objective function (2),
we demonstrate how the application’s throughput constraint
affects the frequencies produced by the convex programming
optimisation. We model the application using (4) for the edge
constraints. The results of varying the throughput constraint
can be seen in Figure 9 for the scenario where all the frequen-
cies are constrained to be the same for the entire application. In
the graph there is no data displayed before 100µsec because it
is infeasible for the application to finish within its throughput
constraint using a maximum frequency of 50 MHz. From this
point as we relax the throughput constraint the frequencies for
energy consumption minimisation monotonically decrease as
is expected using the energy model. The frequency reduction
levels off at 15.811 MHz. This corresponds to the frequency
associated with the minimum energy in the energy model
graph illustrated in Figure 5. Reducing the frequency further
would cost more energy per cycle.

Repeating the same experiment again while removing the
constraint that all task frequencies must be equal enables
the derivation of a frequency level per task, the results of
which are displayed in Figure 10. As the throughput constraint
relaxes the task frequencies reduce such that all paths are
equally critical, i.e. increasing the length of a task anywhere
in the graph would increase the graph’s iteration period. This
is true until the frequencies reach 15.811 MHz where any
further reduction in frequency would actually lead to an energy
consumption increase.

As is described in Section V platform restrictions such as
the application task mapping must be taken into account when
applying our technique to an actual platform implementation.
For the platform illustrated in Figure 3 we map the application
illustrated in Figure 1 onto the platform using the mapping
and static ordering illustrated in Figure 7. Carrying out the
same experiment as before we now use the edge constraints
as described in (6). For this constraint we profile the applic-
ation and the platform to assign worst case timings for the

55
60
65
70
75
80
85
90
95
100

250 300 350 400 450 500

%
of

en
er

gy
at
f m

a
x

T (G) constraint (µsec)

per App.
per Proc.
per Task

Figure 11. Normalised energy per graph iteration against T (G).

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 20 40 60 80 100 120 140 160 180

Ti
m

e
(s

ec
)

Number of Graph Iterations

Throughput Req.
per Task

max Frequency

Figure 12. Synthetic graph iteration finishing times.

communication φ(v) and scheduling λ(v) of each task v.
Using the mapping illustrated in Figure 7 we also constrain

the frequency derivation to one frequency per µBlaze tile. This
produces the energy consumption per graph iteration curve
as illustrated in Figure 11. As the throughput constraint is
relaxed it can be seen that the energy consumption per iteration
decreases due to the lowering of the running frequencies for
all the frequency constraint scenarios. In Figure 11 there is
no difference between the energy consumption per iteration
if the frequencies are derived per task or per processor. This
is due to the mapping illustrated in Figure 7 where there are
no interprocessor data dependencies during the execution of
a single graph iteration, with the exception of v4 but it is the
only task on the processor. Figure 11 illustrates that energy
savings of up to 43% may be achieved for the application for
this particular configuration. The 43% reduction corresponds
with the minimum energy per cycle that is achievable, as may
be seen in Figure 5. As such the maximum achievable energy
reduction that this technique can provide depends on the
availability of static slack, and on the profile of the processor’s
energy consumption at different frequencies.

For experimentation on an actual MPSoC hardware platform
we assign the example application, illustrated in Figure 7,
a TDM allocation such that it receives 23.5% processor
utilisation and a throughput constraint of 714 iterations per
second. Using (7) we calculate that this is equivalent to the



0.66
0.68
0.7
0.72
0.74
0.76
0.78
0.8
0.82

0 10 20 30 40 50 60 70 80 90

Ti
m

e
(s

ec
)

Number of Graph Iterations

Throughput Req.
per Task

max Frequency

Figure 13. WLAN graph iteration finishing times.

synthetic application graph Gs having a throughput require-
ment of T (Gs) = 17500 cycles per iteration with 100% of
the processor resources. We derive the frequencies for this
throughput constraint and use (8) to calculate the discrete
operating frequencies per task, with our platform supporting
17 equidistant frequency levels from 0 to 50 MHz. The timing
results of running the application on an actual implementation
of the platform are shown in Figure 12, where it can be seen
that the application always meets its throughput requirement.
Equation (8) rounds the frequency up to the closest higher
discrete frequency level. In Figure 12 the effects of this can
be seen as the divergence of the throughput constraint line and
the iteration finish line. Without rounding the two lines would
continue in a parallel direction. The line representing the
finishing time of each iteration of the graph running at fmax
diverges much more quickly from the throughput requirement
line. This divergence is the static slack that we use to perform
DVFS and reduce the application’s energy consumption while
still meeting the application’s throughput requirement.

This experiment is similarly carried out for the more com-
plex WLAN application, illustrated in Figure 2, resulting in
the graph in Figure 13, which concurs with the behaviour of
the technique as observed in Figure 12.

VII. CONCLUSION

We demonstrate an off-line DVFS technique for dataflow
modelled applications that may be mapped onto multiple
processing cores of an MPSoC. We show for processors with
DVFS power models that may be convexly approximated,
how static frequencies may be derived per task to achieve
energy reduction. This is achieved through the application
of the existing convex programming optimisation technique
to an optimisation problem formulated from the processors’
DVFS power models, in combination with an application’s
timed dataflow graph, processor mapping and throughput
requirement. We demonstrate that our technique is applicable
to an existing real-time MPSoC platform template.

We show experimentally how our technique may be applied
to a timed Dataflow graph representation of a WLAN real-
time application. Our experimental results confirm that for
an actual platform our technique uses the application’s static

slack to enable the reduction of task frequencies, without
violating the application’s throughput requirement. For our
example DVFS power model that had a 43% energy variation
between the highest and lowest energy consuming frequency
level, we show that this maximum energy saving is achievable
using our technique if permitted by the application’s real-time
requirements.

REFERENCES

[1] L. Benini et al., “Allocation, Scheduling and Voltage Scaling on Energy
Aware MPSoCs,” in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, 2006.

[2] P. de Langen et al., “Leakage-aware multiprocessor scheduling,” Journal
of Signal Processing Systems, vol. 57, 2009.

[3] H. Kawaguchi et al., “µitron-lp: power-conscious real-time OS based
on cooperative voltage scaling for multimedia applications,” IEEE
Transactions on Multimedia, vol. 7, no. 1, 2005.

[4] G. Semeraro et al., “Energy-efficient processor design using multiple
clock domains with dynamic voltage and frequency scaling,” Feb. 2002.

[5] P. Grosse et al., “Methods for power optimization in SOC-based data
flow systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 14, no. 3,
2009.

[6] E. Lee et al., “Synchronous data flow,” Proc. of the IEEE, vol. 75, no. 9,
1987.

[7] S. Boyd et al., Convex Optimization. Cambridge University Press, 2004.
[8] H. G. Eggleston, Convexity. Cambridge University Press, 1958.
[9] R. J. Webster, Convexity. Oxford University Press, 1994.

[10] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21,” http://cvxr.com/cvx.

[11] A. Molnos et al., “A composable, energy-managed, real-time MPSoC
platform,” in OPTIM, May 2010.

[12] O. Moreira et al., “Scheduling multiple independent hard-real-time jobs
on a heterogeneous multiprocessor,” ser. EMSOFT ’07, 2007.

[13] Y. Shin et al., “Cooperative voltage scaling (CVS) between OS and
applications for low-power real-time systems,” in Custom IC’s, 2001,
IEEE Conference on., 2001.

[14] S. Lee et al., “An intra-task dynamic voltage scaling method for SoC
design with hierarchical FSM and synchronous dataflow model,” ser.
ISLPED ’02, 2002.

[15] D. Shin et al., “Optimizing intra-task voltage scheduling using data flow
analysis,” ser. ASP-DAC ’05, 2005.

[16] G. Bilsen et al., “Cyclo-static dataflow,” IEEE Trans. on Sig. Proc.,
vol. 44, no. 2, 1996.

[17] K. Goossens et al., “The Aethereal network on chip after ten years:
Goals, evolution, lessons, and future,” in Proc. Des. Auto. Con., Jun.
2010.

[18] T. Bjerregaard et al., “Implementation of guaranteed services in the
MANGO clockless network-on-chip,” Computers and Digital Tech-
niques, IEE Proceedings -, vol. 153, no. 4, 2006.

[19] M. Millberg et al., “Guaranteed bandwidth using looped containers in
temporally disjoint networks within the nostrum network on chip,” in
DATE 2004, vol. 2, 2004.

[20] Xilinx, website, http://www.xilinx.com.
[21] K. Goossens et al., “Composable dynamic voltage and frequency scaling

and power management for dataflow applications,” in DSD 2010, Sep.
2010.

[22] M. Ekerhult, “CompOSe, design and implementation of a composable
and slack-aware operating system targeting a multi-processor system-
onchip in the signal processing domain,” Master’s thesis, Lund Univer-
sity, 2009.

[23] M. Meijer et al., “On-chip digital power supply control for system-on-
chip applications,” ser. ISLPED ’05, 2005.

[24] W. Kim et al., “System level analysis of fast, per-core DVFS using
on-chip switching regulators,” in HPCA 2008, 2008.

[25] E. Beigne et al., “Dynamic Voltage and Frequency Scaling Architecture
for Units Integration within a GALS NoC,” in NoCS 2008, 2008.

[26] M. Ichihashi et al., “A 65-nm on-chip multi-mode asynchronous local
power supply unit for multi-power domain SoCs achieving fine grain
DVS,” in A-SSCC 2009, 2009.

[27] O. Moreira et al., “Buffer sizing for rate-optimal single-rate data-flow
scheduling revisited,” Computers, IEEE Trans. on, vol. 59, no. 2, 2010.

[28] S. Sriram and S. Bhattacharyya, Embedded Multiprocessors: Scheduling
and Synchronization, Second Edition. CRC Press, 2009.


