High-Performance Cluster-Fault Tolerance Scheme
for Hybrid Nanoelectronic Memories

Nor Zaidi Haron'? Said Hamdioui!
(1) Computer Engineering Laboratory, Delft University of Technology, The Netherlands
(2) Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia
{N.Z.B.Haron, S.Hamdioui}@tudelft.nl*, zaidi@utem.edu.my?

Abstract—Error correction codes (ECCs) are common industrial practices for tolerating intermittent and transient
faults in semiconductor memories. They have been also proposed for emerging hybrid nanoelectronic memories.
However, this solution comes at higher cost in terms of performance penalty and area overhead. This paper proposes
a high performance cluster-fault correction scheme for hybrid nanoelectronic memories. The scheme, referred to as
Double Three-Residue Code (D3R), is based on combining the advantages of N-tuple Modular Redundancy (NMR)
and Redundant Residue Number System (RRNS). Experimental results show that D3R decodes 10 to 28 times faster
as compared to RRNS variants and Reed-Solomon (RS) while achieving similar cluster-fault correction capability.

Keywords-hybrid nanoelectronic memories; fault tolerance; N-tuple modular redundancy; redundant residue number
system

I. INTRODUCTION

Hybrid technology, which combines CMOS and non-CMOS, is seen as a near-term alternative to existing CMOS technol-
ogy. One of the earliest and the simplest products of this technology are hybrid nanoelectronic memories (hereafter referred
to as hybrid memories). These memories are structured by integrating non-CMOS nanodevices memory cells array on top
of scaled CMOS peripheral circuits. Various research teams, both from academia [1]-[6] and industries [7]-[9], have been
extensively building up their hybrid memory prototypes. Such memories are anticipated to offer huge data storage capacity
(up to 1Tbit per cm?) at lower power consumption. However, these benefits do not come for free. Imprecise top-down
fabrication techniques cause latent defects in scaled CMOS circuits, whereas immature bottom-up fabrication techniques
introduce latent defects in the non-CMOS circuits. These latent defects, when activated by non-environmental disturbances,
might induce intermittent faults. Moreover, the lower voltage at which these devices operate is subject to transient faults (e.g.,
sensitivity to soft errors and radiations). Therefore, before hybrid memories can be massively produced and commercialized,
these critical issues must be resolved. Besides improving material and process development, circuit design technique that
can tolerate the issues is a solution to this problem.

Fault-tolerant design techniques applied for hybrid memories have been addressed by many authors [1], [11]-[17]; schemes
like error correction codes (ECCs), sparing and reconfiguration have been investigated. Among these schemes, ECCs are the
most frequent used due to their dynamic operation, i.e., this scheme operates based on two modes, either (i) detection or (ii)
detection followed by correction. In case the read data is error-free, ECCs only perform detection. On the other hand, in case
detection has discovered errors in the read data the scheme needs to perform correction. Compared to detection, correction
requires more computation power that cause greater performance penalty. Examples of ECCs proposed for hybrid memories
are Hamming [1], [12], [13], Bose-Chaudhuri-Hocquenghem (BCH) [10], [11], Low-Density Parity-Check (LDPC) [14],
[15] and Redundant Residue Number System (RRNS) code [16], [17]. However, the major drawback of such solutions is
the associated high cost either in performance penalty and/or area overhead.

This paper presents a high-performance fault tolerance scheme able to tolerate intermittent and transient cluster faults
in hybrid memories. Two established fault tolerance schemes are combined, namely N-tuple Modular Redundancy (NMR)
and RRNS code, creating the combined fault tolerance scheme referred to as Double Three-Residue (D3R) code. A three-
residue RRNS codeword encoded from an input data is replicated once to have another copy of codeword. These two copies
of codeword are compared simultaneously during decoding. Experimental results exhibit that D3R provides better time
performance besides competitive correction capability and area overhead (which measured in user capacity) as compared to
the related ECCs investigated in [16], [17].

The rest of the paper is organized as follows. Section II reviews the basic theory of fault tolerance including RRNS code
and N-tuple Modular Redundancy. Section III describes the structure as well as the encoding and decoding procedures of
the proposed Double Three-Residue scheme (D3R). Section IV presents experimental results and a comparison to the related
scheme. Section V concludes the paper.

II. OVERVIEW OF FAULT TOLERANCE

Fault tolerance is the capability of a system to continue operating accordingly in the event of the failure of some of its
components. This capability is attained by introducing redundancy to its components. Redundancy implies replication and an
effective fault tolerance depends on the usefulness of the redundant elements. Redundancy can be implemented through the
use of hardware, information or time as depicted in Fig. 1. Two sub-schemes belong to hardware redundancy, namely N-tuple
Modular Redundancy (NMR) and interwoven logic (IL). Two sub-schemes belong to time redundancy, namely Recomputing
With Delay Logic (REDL) and Recomputing With Shifted Operand (RESO). A sub-scheme belongs to information redundancy,
namely Error Correction Codes (ECCs). ECCs address two types of fault distributions: cluster and random. Cluster faults are
suitable to be mitigated using either Redundant Residue Number System (RRNS) or Reed-Solomon (RS) codes [18]-[21].
Random faults are appropriate to be tolerated using either Hamming, Bose-Chaudhuri-Hocquenghem (BCH) or Low-Density
Parity-Check (LDPC) [18].

Fault Tolerance Schemes

|
| | |

Hardware Time Information
Redundancy Redundancy Redundancy
“NMR ", IL REDL RESO ECCs
(|
| Cluster Random
| | |
RRNS! RS Hamming BCH LDPC

Figure 1. Classification of fault tolerance schemes and ECCs.

As mentioned earlier, two different fault tolerance schemes are combined in this work. These schemes, as highlighted by
dotted lines in Fig. 1, are combined to achieve a high-performance cluster-fault tolerance scheme for hybrid memories. The
next two subsections discuss the fundamental concept of these two fault tolerance schemes.

A. N-tuple Modular Redundancy

N-tuple Modular Redundancy (NMR) is N copies of identical circuit execute in parallel for which their correct output is
defined by a comparator or voting circuit. Duplicated Modular Redundancy (DMR) consists of two identical circuits operate
the same function simultaneously as shown in Fig. 2(a). The output from the original circuits and its duplicate are then
compared using XOR gates. Any disagreement resulted from the comparison indicates faults have occurred in the circuits.

Circuit
Circuit 1,

(@) XOR (> (b) Circuit —» Voter >
Circuit f
Circuit

Figure 2. NMR variations (a) DMR (b) TMR.

L+

Triple Modular Redundancy (TMR) consists of three identical circuits operate the same function simultaneously as
illustrated in Fig. 2(b). In contrast to the simple XOR gates in DMR, TMR uses majority voting circuit to determine
the correct outputs of the circuits. TMR can mask faults occurred in one of the triplicated circuit if another two replicas are
fault-free.

The advantages of NMR are as follows:

e it executes in parallel allowing high performance operation.

o it masks fault in one of the copies (with sufficient replication).
o it realizes simple hardware implementation.

B. Redundant Residue Number System Code

Redundant Residue Number System (RRNS) code is devised from Residue Number System (RNS), which have been
extensively investigated and applied for communication and high-speed arithmetic applications [19]-[21]. RRNS code
comprises of two sets of symbol-oriented encoded data called residues x;, where 1<i<n and n is positive integer, as
shown in Fig. 3. The first set is called as non-redundant residues that represent dataword (input data), whereas the second
set is called as redundant residues that represent checkword (for fault detection and correction). The non-redundant residues
consist of & residues, whereas the redundant residues consist of (n—k) residues; k and n are positive integer. This code
has fault detection capability defined as u=n—k and fault correction capability equated as t=7%. E.g., one residue and two
residues must be appended as the checkword to detect and correct single residue, respectively.

Dataword Checkword

e ° ° ° ° °

X,

n

RRNS(, k) ’ X,

X ‘xkﬂ

non—redundant residues redundant residues

Figure 3. RRNS code structure.

Each residue in RRNS code is generated (encoded) by performing modulo operation of an input data X to a set of moduli
m;, 1.e., xi:\X\mi where 1<i<n. The bit length of each residue is defined as b;=[log2(m;)] bits; thus, an RRNS code has
the bit length equal to) |7 ;b;. RRNS decoding performs detection followed by correction, if faults are detected in the read
data. Detection validates a read RRNS codewords, whereas correction recovers the detected erroneous RRNS codewords
and produce the correct output data. Error-free read data is read out of the memory without requires any correction if it is
within the legitimate range. Otherwise, an iterative operation is executed to correct the erroneous read data for a maximum
of C{’:t!(n”iit)! times. During this phase, ¢ number of residues are discarded in each iteration and the calculation of (n—t)
number of residues (and their corresponding parameters) is performed to recover a data within the legitimate range. Any
data falls within the legitimate range is regarded as the valid data and is read out of the memory. However, if no data is
corrected (i.e., all data are beyond the legitimate range) after the maximum iteration, an uncorrectable signal will be flagged
to indicate that the decoder cannot correct the erroneous data.

The advantages of RRNS code are as follows [19]-[21]:

o it possesses cluster faults correction capability.
o it can be generated based on the low-cost moduli, which render to small area overhead and fast operation.
o its encoder and decoder sub-units consist of modular circuitries that operate in parallel; thus, speeds up the performance.

III. PROPOSED D3R CODE

This section describes the structure, the encoding and the decoding process of the proposed D3R scheme. As afore-
mentioned this scheme combines the concept and advantages of NMR and RRNS schemes; hence, it realizes a synergistic
high-performance error correction scheme.

A. D3R Code Structure

As illustrated in Fig. 4, a Double Three-Residue (D3R) code consists of an RRNS codeword (C=DW+CW) and its
duplicate (C’=DW’+CW"). The D3R code is encoded based on the moduli set {2% — 1, 251 — 1, 25+1} where d is the
width of the memory word. Three moduli set is used to ensure the detection of a single faulty residue, i.e., u=n—k=3-2=1.
Moreover, the moduli set is in the form of Jow-cost moduli, which facilitate in improving the performance [20]. The first
two moduli are employed to generate two-residue dataword DW and its duplicate DW’, while the third modulus is used
to produce the checkword CW and its duplicate CTW’. Table I gives the moduli sets for 16, 32 and 64-bit memory word
for this code. The bit length of dataword and checkword of D3R code is bpsr=2x([logs(m1)]|+[logs(m2)]|+][logs(ms)])
where my, mo and mg are the moduli used.

b D3R

DW |CW|| DW' |CWT|

« C—> <« (C—>

A

Figure 4. D3R code structure.

Table 1
MODULI SET FOR D3R CODE.

Memory Word Moduli
Width, d mi [mo [ms3
16 255 511 512
32 65535 131071 131072
64 4294967295 | 8589934591 | 8589934592

' 1
' 1
[1
' 1
! 1
' 1
i DW CW o DW' cw' :
! 4 |
' i] I
! Xp: X2 | X3 X X's | X' |
i | ! ' '
' 1 !
! |
: b+ b :
Tttt 28 2
1 1
:] ‘ ‘ BUFFER sel— :
1 b b' L~ :
1
1
E b b, + by !
' | CONVERTER | | CONVERTER' | '
1 | [MODULO, |[MODULO, || MODULO, = = |
1 —+ g .
A F] !
| D3R Encoder | COMPARATOR | |
| |
1 1
1 1

T4 CMOS-based | D3R Decoder Td

) \ \
Datain Dataout Valid

Figure 5. Block diagram of D3R encoder and decoder in a hybrid memory.

B. D3R Code Encoding

The bottom left part of Fig. 5 depicts the block diagram of a D3R encoder constructed of three modulo circuits. These
three modulo circuits receive a d-bit input word and generate the corresponding residues simultaneously. MODULQO; and
MODULOs generate two residues 7 and xo, respectively, which then form DW=x;, z5. Their duplicates, i.e, 2} and
2y form DW'=x, x}. At the same time, MODULQO5 generates a single-residue checkword CW=xz3 (and its duplicate
CW'= z%). Thereafter, D3R codewords (C'=x1,x9,25 and C'=x!,x},2%) are stored in the memory array. By using the
equation in Section III-A, the bit length of D3R codeword can be determined. E.g. for 64-bit memory word, each residue
has bit length b;=32 bits, bo=33 bits and b3=33 bits. Thus, a 64-bit memory word encoded into D3R code has bit length
bp3sr=196 bits.

C. D3R Code Decoding

The bottom right part of Fig. 5 illustrates the block diagram of D3R decoder. The decoder consists of two main circuits:
converter and comparator. The first circuit is formed by two RNS-to-binary converters, denoted as CONVERTER and
CONVERTER’, which operate in parallel. CONVERTER converts C'=xz1,x2,x3 into a binary word B, while CONVERTER’
converts C'=x,25,2% into a binary word B’. The binary words B and B’ are fit into a comparator; they are compared to
the legitimate range LR=2%—1 to determines the validity of the read codeword. If no fault occurred, then B=B’ will be
within the legitimate range. If the fault affected one of the codewords, then either B or B’ will be out of the legitimate
range. The Sel signal in the figure selects the swapping iteration, which is one of the important steps in the decoding process
as will discussed next.

Table 1T
RESIDUE SET FOR EACH ITERATION OF D3R CORRECTION PHASE.

Iteration Residues
C \ C
! ! !
1 T, T2, T3 | T1, Ty, Ty
! ! !
2 X1, IQ’ 3 xl: xo, 'T3
! a !
3 T1, T2, Th | XY, TH, T3

As mentioned in Section II-B, RRNS decoding discards ¢t number of residues during the correction phase (where the
remaining (n—t) residues are used to compare with the legitimate range). This operation repeats for a maximum of
Ct”:#it)! times; thus, it impacts the performance of the decoder. However, this is not the case for D3R where it does not
discarci any residues during correction phase but swaps between the two datawords. The maximum number of swapping is
equal to the number of symbols in a codeword, i.e., n. It works as follows:

Step 1: Convert C=x1,x9,25 and C’'=x,24,2% into binary data B, and Bj, each;

Step 2: Compare B and B’ to a predefined legitimate range LR=2%—1;

Step 3: If (B=B’)<LR or B<LR, read out B. If B'<LR, read out B’. Break, else go to Step 4;

Step 4: Check if the maximum number of swapping has been reached. If “yes” go to Step 6, else go to Step 5;
Step 5: Swap one of the residue between C' and C’. Go to Step 1;

Step 6: Ignore the output data and invoke the uncorrectable control signal.

Table II exhibits the residue sets after the swapping process for each iteration. E.g., the first residues between C' and C’
are swapped during the first iteration in such a way that x; is part of C’ and x| is part of C. A similar step is performed
to the second and third residues in the subsequent iterations. The order to select the residue to be swapped is random, i.e.,
no fixed rule is set.

Step 1 performs a conversion of D3R code into binary numbers. This conversion can be accomplished using either Mixed
Radix Conversion (MRC) or Chinese Remainder Theorem (CRT) [20]. In this work, MRC is used as it deals with smaller
integer; hence, it speeding up simulation work. MRC is based on the following equation [20].

n n—1
X:{Ijl-i-Z’l}iHmj (M
=2 =1

where x; is the first residue, m; are the moduli and v; are mixed radix digits calculated as
v; = |(((a:z —01) X G17) eees - U(i_l)) X G(i=1)i 2)

where z;=[X]|,, and g(;_.); are the multiplicative inverses of m;_, with respect to m; defined as M=) 9 (i—) s =15
2<i<n and 1<u<n-—1.

IV. EXPERIMENTAL EVALUATION AND ANALYSIS

This section presents the experimental evaluation and analysis of the proposed and existing considered ECCs. Four
attributes are compared among the schemes, namely error correction performance, decoding time performance, codeword
length and hardware overhead.

A. Simulation Setup

The encoder and decoder of the considered ECCs (D3R, RS and RRNS variants [16]), memories as well as the fault
injection were described using MATLAB script. C-RRNS code is based on moduli set {2°—1,2P 2P41, ay,az, ..., a6}
where p=6, 11, and 22 for 16, 32, and 64-bit memory word, respectively, whereas a1 to ag are arbitrary integers that satisfy
RRNS rules (see Section II-B). To protect the three-residue dataword, the error correction capability of C-RRNS is set to
t:m?;k):gg—?’:?a. 6M-RRNS code is based on moduli set {27, 2P+1,2P~1-1,2P=21, 2P=3_1 2P~4+1} where p=8, 16, 32
for 16, 32, and 64-bit memory word, respectively [16]. To protect the two-residue dataword, its error correction capability

; _(n—k)_6-2__
is set to t—T—T—z-

45

(a) 100%

—~
=5
=

40
354
995
304

254

99 |
204

. 15]
98.5 RS 7 10
—&— D3R
. . . . 0+ T T — .|
D3R

98
0 2 4 6 8 10 C-RRNS 6M-RRNS RS
Fault rate (%)

Number of Iterations

Correctable memory words (%)

(%))

ECCs

Figure 6. Performance of (a) error correction capability (b) decoding iterations.

For RS code, Galois Field of degree eight denoted as GF(2®) is used where each symbol consists of an 8-bit data. An
appropriate number of symbols is set to have similar correction capability to that of D3R and RRNS variants. E.g., a 16-bit
input word is encoded into six symbol (two symbols for dataword and four symbols for checkword) to realize t=2.

Varied-length of cluster faults were randomly injected to the memory depending on fault rate. The cluster faults can
impact either single, two, three or four residues/symbols that form the codeword. Various fault rates from 1% to 10% were
applied during the experiments.

B. Error Correction Performance

Figure 6(a) gives the error correction performance represented by the percentage of correctable memory words for 64-bit
word memory for all considered ECCs. Regardless of the fault rates, C-RRNS provides the best correction performance
among the considered ECCs followed by D3R, 6M-RRNS and RS. However, the difference between C-RRNS and D3R is
negligible, e.g., at 10% fault rate it is only 0.2%. Moreover, the larger the memory word, the smaller the difference; e.g.,
for 256-bit word memory (not in the figure) the difference is less than 0.1%.

Based on the set parameters, the comparison of error correction performance among the ECCs is given as follows:

o D3R - it ensures up to three erroneous residues are correctable if faults corrupt one dataword copy C while another
copy C’ is fault-free or vice-versa. This is also applied to any combination of corrupted residues shown in Table II.
However, if a residue and its copy, let say 7 and 2 are corrupted, D3R cannot correct them even though the other
four residues are fault-free. In general, D3R can correct up to t+1:"77k+1 residues.

o C-RRNS - it always ensures up to three erroneous residues are correctable regardless of which residues in the codeword
are corrupted. Moreover, its varied-length residues are longer than that of the other three ECCs; hence, they assist in
providing the highest error correction capability. In general, C-RRNS can correct up to t:%’k residues.

o O6M-RRNS - it always ensures up to two erroneous residues are correctable regardless of which residues in the codeword
are corrupted. Furthermore, the extra likelihood decoding step helps in recovering some fault cases [16]. In general,
6M-RRNS can correct up to t:"T_k residues.

o RS - it always ensures up to two symbols are correctable regardless of which symbols in the codeword are corrupted.
Nevertherless, its fixed-length symbols are shorter than that of the other three ECCs; thus, they result in the lowest
error correction performance. In general, RS can correct up to t:”T’k symbols.

Therefore, D3R is able to provide similar or better fault correction performance than the conventional ECCs like RRNS
and RS. More interestingly, for the considered example, D3R is able to correct one residue more than theoretical error
correction capability of RRNS for certain cases.

C. Decoding Time Performance

Based on the set parameters, the comparison of the decoding performance among the considered ECCs is given as follows

(see Fig. 6(b)):
o D3R - to protect its two-residue dataword, D3R requires n=6 that are swapped during the detection phase (see Table
IT); therefore, the maximum iteration is 3 iterations. The iteration stops when the fault has been detected and the correct

—~
©
=
=
N
~
=5
=
N

09
¢ 08
2
g 0.7
< 06 —%— 6M-RRNS
a —o— D3R
5
o 16 32 64
4 Data Length
5 (c) 25
= v
a //
.
B —— 6M-RRNS
18 —o— D3R
£
=
07 L L L L L L 05
16 32 64 128 256 512 1024 2048 16 32 64
Data Length Data Length

Figure 7. ECCs’ (a) codeword length (b) area overhead (c) time overhead.

value is determined; so, on average D3R requires 1.5 iterations to produce the correct output data. In general, D3R
iterates for a maximum of 5 times.

o C-RRNS - to protect its three-residue dataword, C-RRNS requires n=9 residues; hence, the maximum of iteration of
this code is C§ _973)’_84 iterations. As in D3R, C-RRNS stops when it has recovered the correct output data; thus,
on average this code requires 42 iterations. In general, C-RRNS iterates for a maximum of C}' times.

e 6M-RRNS - to protect its two-residue dataword, 6M-RRNS requires n=6 residues; thus, the maximum of iteration
of this code is C§= m =15 iterations. Moreover, this code must going through all iterations and an additional
decoding likelihood step [16]. In general, C-RRNS iterates for a maximum of C;'+1 times.

e RS - to protect its two-symbol dataword, RS needs n=6 residues; therefore, the maximum of iteration of this code is
CS= W—IS iterations. In general, C-RRNS iterates for a maximum of C}’ times.

Hence for the considered example, the proposed D3R decodes on the average 1425 ~28, & TE 6 ~10 and —_10 times faster
than C-RRNS, 6M-RRNS and RS, respectively. It is worth to note that the higher the cons1dered error correcuon capability,

the higher the performance improvement of D3R as compared to the other schemes.

D. Codeword Length

Figure 7(a) shows the normalized differences in codeword length of the considered ECCs for memory word size up to
2048 bits. For this analysis, D3R is used as a reference, i.c., it is set to 1. E.g., for a memory word of 16 bits, the codeword
length of 6M-RRNS and RS is 22% and 8% shorter than that of D3R, respectively; while that of C-RRNS is about 18%
longer than that of D3R. It is interesting to note that for realistic word size for hybrid memories (typically > 256 bits),
the codeword length of D3R is almost the same as that of the other three ECCs. In addition, D3R outperforms RS as the
memory size becomes larger. RS requires bigger degree of Galois Field to ensure the legitimate range, i.e, GF(2?) for 512
bits, GF(2'%) for 1024 bits and GF(2'!) for 2048 bits. For RRNS variants and D3R (in fact it belongs to RRNS variants),
larger moduli are required that satisfy the rules.

E. Hardware Overhead

Figure 7(b) gives the normalized total area overhead of the encoder and decoder for D3R and 6M-RRNS ECCs; again,
D3R is set as the reference (i.e., 1) for this comparison. It shows that the difference of the area overhead between the two
ECCs becomes insignificant as the data length increases. E.g. for 16-bit data, the encoder and decoder of 6M-RRNS is
45% smaller than D3R but for 64-bit data the difference is about 3%. D3R requires larger encoder and decoder because
the parameters (e.g., moduli, multiplicative inverses) used are based on bigger integer (thus larger circuits) than that of
6M-RRNS. Figure 7(c) illustrates the normalized total time overhead of the encoder and decoder for D3R and 6M-RRNS.
It shows that the encoder and decoder of D3R are faster than that of 6M-RRNS regardless of the data length. Moreover,
their difference grows as the data length becomes greater. This synthesis results prove the decoding performance analysis
given in Section IV-C.

Note that the area and time overhead for C-RRNS and RS are not considered here because the moduli for the former is
based on arbitrary integers that require complex hardware, whereas the latter has different decoding scheme and hardware
from D3R. Their hardware implementation will be considered as a future work.

V. CONCLUSION

This paper has presented a high-performance fault tolerance scheme targeting intermittent and transient cluster faults in
hybrid memories. The fault tolerant scheme, referred to as Double Three-Residue (D3R) code, combines two established
schemes namely (i) N-tuple Modular Redundancy and (ii) Redundant Residue Number System (RRNS) code. The advantages
of parallel execution of NMR and cluster fault correction of RRNS code are exploited in realizing the D3R scheme.
Experimental results and analysis show that D3R is 10 to 28 times faster that of RRNS variants and Reed Solomon while
achieving competitive error correction capability. Hardware implementation of the encoder and decoder indicates that D3R
incurs comparable area and better performance to that of one RRNS variant.

Currently, an on-line test scheme is being explored as another fault tolerance scheme to improve the reliability of hybrid
memories. An assessment on the fault coverage and associated cost will be analyzed.

(1]
(2]

REFERENCES

D. B. Strukov and K. K. Likharev, “Prospects for Terabit-Scale Nanoelectronic Memories”, Journal Nanoscience and Nanotechnology,
vol. 16, 2005, pp. 137-148.

K. K. Likharev, “Hybrid CMOS/Nanoelectronic Circuits: Opportunities and Challenges”, Journal of Nanoelectronics and Optoelec-
tronics, vol. 3, 2008, pp. 203-230.

A. DeHon, “Nonphotolithographic Nanoscale Memory Density Prospects”, IEEE Transactions on Nanotechnology, vol. 4, no. 2,
2005, pp. 215-228.

M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price and J. M. Tour, “Molecular Random Access Memory Cell”, Applied Physics
Letters, vol. 78, no. 23, 2001, pp. 3735-3737.

R. J. Luyken and F. Hofmann, “Concept for Hybrid CMOS-Molecular Non-Volatile Memories”, Journal Nanoscience and
Nanotechnology, vol. 14, 2003, pp. 273-276.

C. Ktgeler, M. Meier, R. Rosezin, S. Gilles and R. Waser, “High Density 3D Memory Architecture Based on the Resistive Switching
Effect”, Journal Solid-State Electronics, vol. 53, no. 12, 2009, pp. 1287-1292.

Zettacore™, ZettaCore™ memory, http://www.zettacore.com/

California Molecular Electronics Corporation, (CALMEC®), Molecular Electronic Technology®. http://www.calmec.com/

K. Bullis, “Ultradense Molecular Memory: Researchers Develop a Large-Scale Array of Nanoscale Memory Circuits”, MIT
Technology Review, available online at http://www.technologyreview.com/Nanotech/18100/

D. B. Strukov and K. K. Likharev, “Defect-Tolerant Architectures for Nanoelectronics Crossbar Memories”, Journal Nanoscience
and Nanotechnology, vol. 7, 2007, pp. 151-167.

F. Sun and T. Zhang, “Defect and Transient Fault-Tolerant System Design for Hybrid CMOS/Nanodevice Digital Memories”, IEEE
Transactions on Nanotechnology, vol. 6, no. 3, 2007, pp. 341-351.

S. Biswas, T. S. Metodi, F. T. Chong and R. Kastner, “A Pageable, Defect-Tolerant Nanoscale Memory System”, Proc. IEEE
International Symposium on Nanoscale Architecture, 2007, pp. 85-92.

C. M. Jeftery and R. J. O. Figueiredo, “Hierarchical Fault Tolerance for Nanoscale Memories”, IEEE Transactions on Nanotechnology,
vol. 5, no. 4, 2006, pp. 407-414.

H. Naeimi and A. DeHon, “Fault Secure Encoder and Decoder for NanoMemory Applications”, IEEE Transactions on Very Large
Scale Integration Systems, vol. 17, no. 4, 2009, pp. 473—486.

S. Ghosh and P. D. Lincoln, “Dynamic Low-Density Parity Check Codes for Fault-tolerant Nanoscale Memory”, available online at
http://www.csl.sri.com/users/shalini/ldpc.pdf

N. Z. Haron and S. Hamdioui, “Residue-based Code for Reliable Hybrid Memories”, Proc. IEEE/ACM International Symposium on
Nanoscale Architectures, 2009, pp. 27-32.

N. Z. Haron and S. Hamdioui, “Using RRNS Codes for Cluster Faults Tolerance in Hybrid Memories”, Proc. of IEEE International
Symposium on Defect and Fault Tolerance of VLSI Systems, 2009, pp. 85-93.

S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, 2nd ed. Upper Saddle River, NJ: Prentice-Hall,
2004.

L. Yang and L. Hanzo, “Coding Theory and Performance of Redundant Residue Number System Codes”, available online at
http://www-mobile.ecs.soton.ac.uk/

N. Szabo and R. Tanaka, Residue Arithmetic and its Application to Computer Technology, MC-Graw-Hill, New York, 1967.

F. Barsi and P. Maestrini, “Error Correcting Properties of Redundant Residue Number Systems”, IEEE Transactions of Computers,
vol. C-22, no. 3, pp. 307-315, 1973.

