

Abstract—Given that modulo 2n±1 are the most popular
moduli in Residue Number Systems (RNS), a large variety
of modulo 2n±1 adder designs have been proposed based
on different number representations. However, in most of
the cases, these encodings do not allow the implementation
of a unified adder for all the moduli of the form 2n-1, 2n,
and 2n+1. In this paper, we address the modular addition
issue by introducing a new encoding, namely, the stored-
unibit RNS. Moreover, we demonstrate how the proposed
representation can be utilized to derive a unified design for
the moduli set {2n-1,2n,2n+1}. Our approach enables a
unified design for the moduli set adders, which opens the
possibility to design reliable RNS processors with low
hardware redundancy. Moreover, the proposed
representation can be utilized in conjunction with any fast
state of the art binary adder without requiring any extra
hardware for end-around-carry addition.

I. INTRODUCTION
Residue Number Systems (RNS) can represent large

numbers with a set of smaller residues according to the
assumed moduli set. Subsequently, arithmetic operations,
e.g., addition and multiplication, can be performed on each
residue independently without any need for carry
propagations between them, which leads to the reduction of
the carry propagation chain [1]. This facilitates the
realization of high-speed and low-power arithmetic units.
Therefore, RNS based arithmetic units could be of potential
interest for embedded processors, such as those found in
mobile devices, for which high speed and low-power
consumption are critical. Furthermore, RNS is extremely
appropriate for addition and multiplication dominated
applications such as digital signal processing [2], Digital
filtering [3], communications [4], and cryptography [5], all
of which are extremely important in computing today. The
main drawback associated to RNS based computation
however relates to the overhead introduced by the input and
output conversions from binary to RNS and vice versa [6].

Generally speaking, the performance of an RNS processor
depends on aspects, like the number and the form of the
selected moduli set and the utilized digit encoding. In this
paper we focus on the design of area effective modulo
adders for the moduli set in form of {2n-1,2n, 2n+1} and
address this issue from the digit encoding point of view. We
note that up to date several representations have been

proposed for deriving efficient architectures for modulo 2n-1
and 2n+1 arithmetic: weighted representation [12],
diminished-1 [13], and signed-lsb representation [14].
Weighted representation use (n+1)-bit operands in modulo
2n+1, thus one bit more than it is required for modulo 2n-1.
In diminished-1 and signed-lsb number systems, each
operand is represented by n weighted positions for modulo
2n+1 to remove the problem of using (n+1)-bit operands in
the weighted representation. However, diminished-1 requires
extra circuits for zero detection and correction. Besides, it is
appropriate just for modulo 2n+1. Therefore, the previously
mentioned encodings cannot be applied to all the three
moduli of the form 2n-1, 2n, 2n+1 and as a consequence they
cannot result in a unified adder design.

In this paper, our goal is to design adders for the moduli
set {2n-1,2n,2n+1} based on a unified structure able to handle
all the moduli in the set. The unified design for the modular
adders allows us to synthesize reconfigurable adders that can
process inputs for different moduli. First we propose a new
number system namely, stored-unibit RNS, that is
appropriate for these moduli. The main characteristics of the
proposed representation are as follows:

a) It removes the zero detection and correction stages
required by the diminished-1 representation, and
solves the problem of (n+1)-bit operands specific
to the weighted representation.

b) It provides an appropriate encoding for all the
three moduli 2n-1, 2n+1, and 2n, which potentially
results in a fault-tolerant circuit.

c) It employs conventional parallel-prefix carry
computation unit (or any fast addition methods)
without any extra stage for End-Around-Carry
(EAC) of modulo 2n±1 additions.

d) It doesn’t require any modifications of the parallel-
prefix adder, as it is the case for the method in
[13]. Therefore, the proposed method is less
complex than other state of the art modulo
2n±1parallel-prefix adders.

We note that stored-unibit encoding, called Stored-Unibit-

Transfer RNS (SUT-RNS), has been suggested as an
effective encoding for redundant RNS [10,11,15]. In this
paper, we demonstrate that by employing stored-unibit
representation in RNS and redundant RNS, we enable fault-
tolerant realization of adders for the moduli set {2n-1, 2n,

A Unified Addition Structure for Moduli Set {2n-1, 2n,2n+1}

Based on a Novel RNS Representation
Somayeh Timarchi1,2, Mahmood Fazlali1,2, and Sorin D.Cotofana2

1Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran
2Department of Computer Engineering, TUDelft, Delft, Netherlands
s_timarchi@sbu.ac.ir;fazlali@cc.sbu.ac.ir;S.D.Cotofana@tudelft.nl

978-1-4244-8935-0/10/$26.00 ©2010 IEEE 247

2n+1} at the expense of low hardware redundancy.
The rest of this paper is organized as follows. We review

modulo 2n±1 representations and their addition algorithms in
Section 2. The proposed representation for modulo addition
is introduced in Section 3. Section 4 describes our new
modulo 2n±1 adders. Comparison and discussion on the
adders are presented in Section 5. Finally, the paper is
summarized in the last section.

II. BACKGROUNDS ON MODULO (2N± 1) ADDERS
Modulo 2n±1 addition is computed by end-around-carry

addition for 2n-1 and inverted end-around-carry addition for
2n+1. However the direct feedback of output carry or
inverted output carry to the input carry of an adder is not
very attractive as it creates a combinational loop with all the
consequences this may have. To remove this problem, some
methods have been proposed like:

1) Carry-Look-Ahead (CLA) adder [12].
2) Parallel-prefix unit along with an extra level for EAC

addition [12].
3) Modified parallel-prefix without any need for the extra

EAC level [8].
The third method (called TPP), depicted in Fig. 1, offers a

logic depth of log2n prefix levels. However it requires
significantly more cells and interconnects area than the two
first methods. Moreover, the TPP method makes use of a
customized parallel-prefix adder that cannot be replaced by
alternative n-bit adders.

In the last years, several representations have been
proposed to design modulo 2n+1 adders. These
representations are based on the following three number
systems:
1) Weighted number system:

Normal unsigned encoding is utilized to represent the
RNS digits. The standard weighted binary representation
uses (n+1) bits for modulo 2n+1 operands. So, it is not a
faithful representation, because there are some numbers that
do not represent valid residues.

The most efficient modulo addition circuits for 2n+1 have
been reported in [7] and [13]. The adders embed a modified
parallel-prefix structure without any need for the extra level
for EAC as introduced in [8]. The structure proposed in [7]
is depicted in Fig. 1.
2) Diminished-1 number system:

In order to accelerate the modulo 2n+1 arithmetic
operations, the diminished-1 representation has been
introduced in [14]. In this number system, the number A is
represented by 1A A′ = − and the value zero is treated
separately, i.e., it requires an additional zero indication bit.
The ordinary addition can be performed with an end-around-
carry parallel-prefix adder with

in outc c= [12]. Efficient
diminished-1 adder has been described in [8]. The adder
follows the parallel-prefix paradigm without any need to the
extra level for EAC. A diminished-1 modulo adder with TPP
structure is depicted in Fig. 2.

Fig. 1. Modulo 28+1 adder based on weighted representation without carry
increment stage (Weighted-TPP) [7].

Fig. 2. Modulo 28+1 adder based on diminished-1 representation without
carry increment stage (diminished-TPP) [8].

3) Signed-lsb number system:

Signed-lsb representation requires n weighted positions,
with two bits in the least significant position (lsp) and n-1
bits in the other positions [9]. The lsb contains a normal bit
in the range {0,1} (posibit) and a negated bit in the range
{-1,0} (negabit), while the other positions contain n-1
posibits. The representation of posibit and negabit is
presented in Table I. Signed-lsb representation can remove
the end-around-carry addition. Therefore the end-around-
carry for modulo 2n+1 addition is stored in the least-
significant bit without any need to propagate it through the
higher positions. Moreover, the same addition scheme can
be applied for modulo 2n-1addition. A TPP adder
implementation of signed-lsb representation has been
presented in [9].

TPP

TPP

248

Table I. Introduction to posibit, negabit and unibit.

Bit
Name

Lower and
upper values

Dot
notation

Symbolic
notation

Lower value
representation

Upper value
representation

Arithmetic
value

Posibit {0,1} x 0 (0) 1 (1) x

Negabit {-1,0} X 0 (-1) 1 (0) X-1

Unibit {-1,1} x’ 0 (-1) 1 (1) 2x’-1

We note that modulo 2n+1 residues fit in the range [0, 2n].

There are two kinds of representations for this range of
integer values: faithful and non-faithful representation. The
standard weighted binary representation with (n+1) bits is
not a faithful one as there are some numbers that do not
represent valid residues. Both diminished-1 and signed-lsb
representations are faithful, because all values in this range
have one representation.

Like diminished-1, Signed-lsb removes the problem of
(n+1)-bit operands of weighted representation for modulo
2n+1. However, diminished-1 representation is just designed
for modulo 2n+1, whereas, signed-lsb representation is also
appropriate for modulo 2n-1 and 2n.

III. PROPOSED STORED-UNIBIT RNS REPRESENTATION
In modulo 2n-1 and 2n+1 addition, an output carry cout (of

weight 2n) can be reentered as cout and –cout in the lsp,
respectively. A solution to avoid the addition or subtraction
of cout is to simply store it in lsp. To this end we use a
specific bit that can store ±1. The bit is called a unibit and it
is in the range {-1,1}. Table II describes the new number
representation. The black circles indicate normal bits
(posibits). The single white circle represents a negated bit
(negabit) and the white square a unibit [16].

Table II: The Stored-unibit RNSencoding for modulo 2n +1.

Range Bit Representation

[−2n-1-1, 2n-1] . . .

As shown in Table II, the encoding consists of a main part

[−2n-1, 2n-1−1] in signed form and a transfer part in the range
{−1,1}. The new proposed representation can encode 2n+2
numbers in the range [−2n-1-1, 2n-1].

We underline the negabits and draw two lines under the
unibits in SUT-RNS bit representation, as indicated in Table
I. A negabit with inverted encoding is encoded by using
logical 1 to denote the arithmetic value 0 and logical 0 to
denote the arithmetic value -1. A unibit is also encoded

using logical 1 to denote the arithmetic value 1 and logical 0
to denote the arithmetic value -1. The arithmetic value of a

negabit and unibit are shown in Table I.
The new proposed representation has the ability of storing

the end-around-carry in lsp without propagating it to the next
positions. In the next section, we demonstrate that this

representation leads to efficient modulo adders.

IV. NEW MODULO (2N± 1) ADDERS
Modulo 2n+1 addition for stored-unibit RNS encoding can
be performed according to Fig. 3. First, in Step 1, the two
input unibits (a’0 and b’0) are accumulated by simple gates
as described in Table III.

1 2 1 0

0

1 2 1 0

0

1 2 1 0

1 2 1 0

1 2 1 0

1 2 1 0

1 2 1 0

1 2 1

1 2 1 0

0

'

'

'

n n

n n

n n

n n

n n

n n

n n n

n n

n n

A a a a
a

B b b b
b

A a a a
B b b b
U u u u

M m m m
C c c c c

y s s s x
Y

s s s s
s

− −

− −

− −

− −

− −

− −

− −

− −

− −

Step 1

Step 2

Step 3

Fig. 3. General method for stored-unibit RNS modulo 2n+1 addition.

Table III: Unibit accumulation in two’s complement format.

a’0 b’0 � (a’0, b’0) Un-1 un-2 … u2 u1 u0

0 0

0 1

1 0

1 1

-2

0

0

2

0 1 …. 1 1 0

1 0 …. 0 0 0

1 0 …. 0 0 0

1 0 …. 0 1 0

Step 2 can be implemented by an n-bit carry-save adder

(CSA). The output negabit Cn is stored as the posibit c0,
which is equal to the inverted Cn. In Step 3 the two n-bit
vectors are accumulated. The only difference between
modulo 2n-1 and 2n+1 addition is the polarity of the
reentering output bits. In modulo 2n-1 addition, the polarity
of the output bit is preserved.

249

The last step of addition in Fig. 3 can be implemented by
an n-bit ripple-carry adder. The proposed modulo 2n-1 and
2n+1 adders are depicted in Fig. 4 and 5, respectively. The
black (white) circles inside the Full-Adder (FA) blocks
denote posibits (negabits), and the square indicates a unibit.
The output sum and carry are determined according to the
input polarities.

Fig. 4. Proposed stored-unibit RNS modulo 2n-1 ripple-carry adder.

The structures depicted in Fig. 4 and 5 are similar, except

the existing of two inverters for the end-around-carries in
modulo 2n+1 adder. As suggested in the figures, the end-
around-carries are absorbed in lsp and don’t propagate to the
higher positions. They produce the output least significant
bits, s0 and s’0. Thus the overall latency of the adder is
(n-2)TFA+2THA+TXOR, which equals to the delay of 2n unit
gates (UG) in unit-gate model [17]; 2UG for FA, 1UG for
HA cells, and 2UG for the final XOR gate (FA in the right
bottom).

Fig. 5. Proposed stored-unibit RNS modulo 2n+1 ripple-carry adder.

The last stage in Fig. 3 can be implemented with a fast

adder to reduce the total latency. The proposed parallel-
prefix modulo adder and its component structures are
depicted in Fig. 6 and Table IV, respectively.

First, the inputs are converted to two vectors by CSA.
Subsequently, a binary addition can be performed via a
prefix network for the carry calculation. Several tree
structures have been proposed in [18], [19], [20], [21] for

prefix carry computation. The adder structures have distinct
implementation area, speed, and fan-out characteristics. For
example, adders with a Ladner-Fischer prefix structure [18]
require less implementation area, but have large fan-out
when compared to adders with a Kogge-Stone prefix
structure [20]. On the other hand, adders with a Kogge-Stone
prefix structure are faster [21]. Ladner-Fischer and Kogge-
Stone prefix structures, according to [21], are the end cases
of minimum implementation area and maximum speed,
respectively, of a large family of addition tree structures,
which all offer the minimum logical depth property.

0s′
1s2s3s4s5s6s7s

00 ab111 abu222 abu777 ABU

0s

0g

Fig. 6. Proposed stored-unibit RNS modulo 2n+1 parallel-prefix adder.

Table IV. Component structures of the proposed design

Block Diagram Design Logic

.

h a b
p a b
g a b

= ⊕
= +
=

s h c= ⊕

As suggested in Fig. 6, the proposed method removes the
problems of (n+1)-bit operands of the weighted
representation and zero detection and correction of
diminished-1 representation. Moreover, the stored-unibit
technique is not a specific adder like the method proposed in
[9] for signed-lsb method, and can employ any parallel-
prefix carry computation unit without any modifications.

250

V. COMPARISONS
To evaluate the proposed modulo adders, we implemented

three previous modulo addition techniques based on the
three different number systems. These techniques were
compared to the proposed modulo adders in this paper, with
respect to the hardware redundancy in RNS. The first
technique is based on the method presented in [7], which
uses the weighted representation. The second one is the
diminished-1 addition technique of [8] and the third one is
signed-lsb technique proposed in [9]. These adders are
referred to as Weighted, Diminished-1, and Signed-lsb. Our
approach is referred to Stored-unibit RNS.

At first, we use the unit-gate model reported in [17]. This
model assumes that each gate, except the exclusive-OR gate,
counts as one elementary gate for both area and delay, and
an exclusive-OR gate counts for two elementary gates.

According to this model, the latencies of the Diminished-
1, Weighted, Signed-lsb, and Stored-unibit RNS adders are
presented in Table V. The overall delay of stored-unibit
RNS is 22 log 5n + unit gates: two UG for CSA, one UG
for the square operator in Fig. 6, 22 log n for the parallel-
prefix computations and finally, and 2 UG for the final
diamonds.

One can observe in the Table that the stored-unibit RNS
has the least delay when conventional parallel-prefix carry
computation is utilized.

When the designs are based on the modified parallel-
prefix scheme (TPP), the stored-unibit RNS adder
outperforms the one in [7] and has the same delay as [8] and
[9].

Moreover, as indicated in the last column of the Table,
only signed-lsb and stored-unibit representations result in
unified designs for the three moduli of {2n-1, 2n, 2n+1}, thus

provide support for reliable RNS processors. The unified
design leads to the possibility of providing reliability with
low hardware redundancy by using reconfigurable adders
that can process inputs for different moduli. As described in
[9], such a reconfigurable modular adder enables fault-
tolerant designs with much lower hardware redundancy than
the full replication. One way to do this is to implement four
such adders for the three moduli set and then configure them
to perform the three different modular additions {2n-1,2n,
2n+1}, with one of them kept as a spare. If a fault occurred
in one of the available adders, the spare can be configured
accordingly and employed instead of the faulty adder.

To evaluate the speed, area and power dissipation of the
considered architectures we implemented them in CMOS
technology. The structural VHDL descriptions of the
modulo 28+1 adders have been first generated. After
verifying the correctness of each description, we synthesized
them for 130nm CMOS technology with the Synopsys
Design Vision tool. A typical corner (1.2V, 25�°C) was
considered. The results of total power, delay, and area for
each adder are included in Table VI. Delay, area, and power
results are given in ns, µm2, and mW, respectively.

The results indicate that area, delay and power of Stored-
Unibit RNS and Signed-LSB are comparable with Weighted
and Diminished-1. However they both provide reliability
support. We note that the stored-unibit approach offers
several advantages as it make use of the same prefix
computation unit as in the non-modulo adder, without
requiring any circuits for treating zero operands or carry
increment stage as indicated in Fig. 6. Moreover, we can
apply any fast adder to the proposed design. Therefore, the
proposed adder has a simpler implementation than other
existing modulo 2n+1 adders and requires a simple design
and modification procedure.

Table V. Delay of modulo 2n+1 parallel-prefix adders in UG.

Modulo Addition Method Conventional Parallel-Prefix Modified Parallel-Prefix (TPP) Reliability

Weighted [7] 9log2 2 +n 6log2 2 +n No

Diminished-1 [8] 7log2 2 +n 5log2 2 +n No

Signed-LSB [9] 22 log 7n + 22 log 5n + Yes

Stored-Unibit RNS (NEW) 5log2 2 +n 5log2 2 +n Yes

Table VI: Synthesized Comparison Results for modulo 28+1 parallel-prefix adders.

Modulo Addition Method Area (µm2) Average Power (mW) Delay (ns)

Weighted [7] 2320 2.67 0.57
Diminished-1 [8] 2371 2.42 0.51
Signed-LSB [9] 2034 2.29 0.57
Stored-Unibit RNS (NEW) 2287 2.54 0.61

251

VI. CONCLUSIONS
In this paper we proposed a new redundant number

representation namely, the Stored-Unibit RNS, which can be
efficiently utilized for the moduli set {2n-1, 2n, 2n+1}. It
presents an encoding that is suitable for all modulo 2n-1,
2n+1 and 2n which enables the construction of a unified
design for the three moduli adders. In this way one can
construct fault-tolerant RNS processors at the expense of
low hardware redundancy.

Our proposal makes use of an n-bit binary adder in
combination with a small amount of additional logic.
Another advantage of the new representation is that it simply
employs conventional parallel-prefix carry computation unit
(or any fast addition methods) without any extra stage for
end-around-carry of modulo 2n±1 additions. Moreover, the
proposed method is less complex than other state of the art
modulo 2n±1 parallel-prefix adders.

REFERENCES
[1] Garner H., “The residue number system”, IRE Trans. Electronic

Computer, vol. EC-8, 140-147, Jun.1959.
[2] Kouretas, I.; Paliouras, V., "High-radix residue arithmetic bases for

low-power DSP systems," 16th International Conference on Digital
Signal Processing, 5-7 Jul. 2009, pp.1- 6.

[3] Conway R. and Nelson, J., “Improved RNS FIR filter architectures”,
IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 51, no. 1,
pp. 26-28, Jan. 2004.

[4] Madhukumar, A.S. and Chin, F., “Enhanced architecture for residue
number system-based CDMA for high-rate data transmission,” IEEE
Trans. Wireless Communications, vol. 3, no. 5, pp. 1363-1368, Sep.
2004.

[5] Bajard, J., and Imbert, L., “A full RNS implementation of RSA,”
IEEE Trans. on Computers, vol. 53, no. 6, pp. 769-774, Jun. 2004.

[6] Sabbagh, A., Navi,K., Dadkhah, Ch., Kavehei, O., and Timarchi, S.,
"Efficient reverse converter designs for the new 4-moduli sets {2n–1,
2n, 2n+1, 22n+1–1} and {2n–1, 2n+1, 22n, 22n+1} based on new CRTs",
IEEE Trans. Circuit and Systems I, vol.57, no.4, Apr. 2010.

[7] Efstathiou, C., Vergos H.T. and Nikolos D., “Fast parallel-prefix 2n+1
adder”, IEEE Trans. Computers, vol. 53, no. 9, Sep. 2004

[8] Vergos, H.T., et al., “Diminished-one modulo 2n+1 adder design,”
IEEETrans. Computers, vol. 51, pp. 1389-1399, 2002.

[9] Jaberipur, G., Parhami, B., “Unified Approach to the Design of
Modulo-(2n±1) Adders Based on Signed-LSB Representation of
Residues”, 19th IEEE International Symposium on Computer
Arithmetic, 2009.

[10] Timarchi S., and Navi, K., “Efficient class of redundant residue
number system”, IEEE International Symposium on Intelligent Signal
Processing (WISP), Madrid, Spain, pp. 475-480, 3-5 October 2007.

[11] Timarchi, S., and Navi, K., "Arithmetic circuits of redundant SUT-
RNS", IEEE Trans. Instrumentation and Measurement, vol.58, no.9,
Sep. 2009, pp.2959-2968.

[12] Zimmermann, R., “Efficient VLSI implementation of modulo (2n±1)
addition and multiplication,” Proc. of the 14th IEEE Symposium on
Computer Arithmetic (ARITH-14), pp. 158-167, Apr. 1999.

[13] Patel, R.A., Benaissa, M., Boussakta, S., Powell, N., “Power-delay-
area efficient modulo 2n+1 adder architecture for RNS,” IEEE
Electronic Letter, vol. 41, Issue 5, pp. 231–232, 3 Mar. 2005.

[14] Leibowitz L.M., “A simplified binary arithmetic for the fermat
numbertransform,” IEEE Trans. Acoustics, Speech, Signal Processing,
vol. 24, pp. 356-359, 1976.

[15] Timarchi, S., Fazlali, M., ‘An Efficient Power-Area-Delay Modulo 2n-
1 Multiplier’, to appear in the 15th CSI international Symposium on
Computer Architecture and Digital Systems (CADS), 2010.

[16] Jaberipur, G., Parhami, B., and Ghodsi, M., “Weighted two-valued
digit-set encodings: unifying efficient hardware representation

schemes for redundant number systems,” IEEE Trans. Circuits and
Systems I, vol. 52, no. 7, pp. 1348-1357, Jul. 2005.

[17] Tyagi, A.; "A reduced-area scheme for carry-select adders", IEEE
Trans. Computers, 42 , pp. 1163 – 1170, 1993.

[18] R.E. Ladner and M.J. Fischer, “Parallel Prefix Computation,” J. ACM,
vol. 27, no. 4, pp. 831-838, Oct. 1980.

[19] R.P. Brent and H.T. Kung, “A Regular Layout for Parallel Adders,”
IEEE Trans. Computers, vol. 31, no. 3, pp. 260-264, Mar. 1982.

[20] P.M. Kogge and H.S. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations,” IEEE Trans.
Computers, vol. 22, no. 8, pp. 783-791, Aug. 1973.

[21] S. Knowles, “A Family of Adders,” Proc. 15th IEEE Symp. Computer
Arithmetic, pp. 277-281, Apr. 2001.

252

