
  

  

Abstract—Given that modulo 2n±1 are the most popular 
moduli in Residue Number Systems (RNS), a large variety 
of modulo 2n±1 adder designs have been proposed based 
on different number representations. However, in most of 
the cases, these encodings do not allow the implementation 
of a unified adder for all the moduli of the form 2n-1, 2n, 
and 2n+1. In this paper, we address the modular addition 
issue by introducing a new encoding, namely, the stored-
unibit RNS. Moreover, we demonstrate how the proposed 
representation can be utilized to derive a unified design for 
the moduli set {2n-1,2n,2n+1}. Our approach enables a 
unified design for the moduli set adders, which opens the 
possibility to design reliable RNS processors with low 
hardware redundancy. Moreover, the proposed 
representation can be utilized in conjunction with any fast 
state of the art binary adder without requiring any extra 
hardware for end-around-carry addition. 

I. INTRODUCTION 
Residue Number Systems (RNS) can represent large 

numbers with a set of smaller residues according to the 
assumed moduli set. Subsequently, arithmetic operations, 
e.g., addition and multiplication, can be performed on each 
residue independently without any need for carry 
propagations between them, which leads to the reduction of 
the carry propagation chain [1]. This facilitates the 
realization of high-speed and low-power arithmetic units. 
Therefore, RNS based arithmetic units could be of potential 
interest for embedded processors, such as those found in 
mobile devices, for which high speed and low-power 
consumption are critical. Furthermore, RNS is extremely 
appropriate for addition and multiplication dominated 
applications such as digital signal processing [2], Digital 
filtering [3], communications [4], and cryptography [5], all 
of which are extremely important in computing today. The 
main drawback associated to RNS based computation 
however relates to the overhead introduced by the input and 
output conversions from binary to RNS and vice versa [6]. 

Generally speaking, the performance of an RNS processor 
depends on aspects, like the number and the form of the 
selected moduli set and the utilized digit encoding. In this 
paper we focus on the design of area effective modulo 
adders for the moduli set in form of {2n-1,2n, 2n+1} and 
address this issue from the digit encoding point of view. We 
note that up to date several representations have been 

proposed for deriving efficient architectures for modulo 2n-1 
and 2n+1 arithmetic: weighted representation [12], 
diminished-1 [13], and signed-lsb representation [14]. 
Weighted representation use (n+1)-bit operands in modulo 
2n+1, thus one bit more than it is required for modulo 2n-1. 
In diminished-1 and signed-lsb number systems, each 
operand is represented by n weighted positions for modulo 
2n+1 to remove the problem of using (n+1)-bit operands in 
the weighted representation. However, diminished-1 requires 
extra circuits for zero detection and correction. Besides, it is 
appropriate just for modulo 2n+1. Therefore, the previously 
mentioned encodings cannot be applied to all the three 
moduli of the form 2n-1, 2n, 2n+1 and as a consequence they 
cannot result in a unified adder design. 

In this paper, our goal is to design adders for the moduli 
set {2n-1,2n,2n+1} based on a unified structure able to handle 
all the moduli in the set. The unified design for the modular 
adders allows us to synthesize reconfigurable adders that can 
process inputs for different moduli. First we propose a new 
number system namely, stored-unibit RNS, that is 
appropriate for these moduli. The main characteristics of the 
proposed representation are as follows: 

a) It removes the zero detection and correction stages 
required by the diminished-1 representation, and 
solves the problem of (n+1)-bit operands specific 
to the weighted representation. 

b) It provides an appropriate encoding for all the 
three moduli 2n-1, 2n+1, and 2n, which potentially 
results in a fault-tolerant circuit. 

c) It employs conventional parallel-prefix carry 
computation unit (or any fast addition methods) 
without any extra stage for End-Around-Carry 
(EAC) of modulo 2n±1 additions. 

d) It doesn’t require any modifications of the parallel-
prefix adder, as it is the case for the method in 
[13]. Therefore, the proposed method is less 
complex than other state of the art modulo 
2n±1parallel-prefix adders. 

 
We note that stored-unibit encoding, called Stored-Unibit-

Transfer RNS (SUT-RNS), has been suggested as an 
effective encoding for redundant RNS [10,11,15]. In this 
paper, we demonstrate that by employing stored-unibit 
representation in RNS and redundant RNS, we enable fault-
tolerant realization of adders for the moduli set {2n-1, 2n, 
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2n+1} at the expense of low hardware redundancy. 
The rest of this paper is organized as follows. We review 

modulo 2n±1 representations and their addition algorithms in 
Section 2. The proposed representation for modulo addition 
is introduced in Section 3. Section 4 describes our new 
modulo 2n±1 adders. Comparison and discussion on the 
adders are presented in Section 5. Finally, the paper is 
summarized in the last section. 

II. BACKGROUNDS ON MODULO (2N± 1) ADDERS 
Modulo 2n±1 addition is computed by end-around-carry 

addition for 2n-1 and inverted end-around-carry addition for 
2n+1. However the direct feedback of output carry or 
inverted output carry to the input carry of an adder is not 
very attractive as it creates a combinational loop with all the 
consequences this may have. To remove this problem, some 
methods have been proposed like: 

1) Carry-Look-Ahead (CLA) adder [12]. 
2) Parallel-prefix unit along with an extra level for EAC 

addition [12]. 
3) Modified parallel-prefix without any need for the extra 

EAC level [8]. 
The third method (called TPP), depicted in Fig. 1, offers a 

logic depth of log2n prefix levels. However it requires 
significantly more cells and interconnects area than the two 
first methods. Moreover, the TPP method makes use of a 
customized parallel-prefix adder that cannot be replaced by 
alternative n-bit adders.  

In the last years, several representations have been 
proposed to design modulo 2n+1 adders. These 
representations are based on the following three number 
systems: 
1) Weighted number system: 

Normal unsigned encoding is utilized to represent the 
RNS digits. The standard weighted binary representation 
uses (n+1) bits for modulo 2n+1 operands. So, it is not a 
faithful representation, because there are some numbers that 
do not represent valid residues.  

The most efficient modulo addition circuits for 2n+1 have 
been reported in [7] and [13]. The adders embed a modified 
parallel-prefix structure without any need for the extra level 
for EAC as introduced in [8]. The structure proposed in [7] 
is depicted in Fig. 1. 
2) Diminished-1 number system: 

In order to accelerate the modulo 2n+1 arithmetic 
operations, the diminished-1 representation has been 
introduced in [14]. In this number system, the number A is 
represented by 1A A′ = −  and the value zero is treated 
separately, i.e., it requires an additional zero indication bit. 
The ordinary addition can be performed with an end-around-
carry parallel-prefix adder with 

in outc c=  [12]. Efficient 
diminished-1 adder has been described in [8]. The adder 
follows the parallel-prefix paradigm without any need to the 
extra level for EAC. A diminished-1 modulo adder with TPP 
structure is depicted in Fig. 2. 

 
Fig. 1. Modulo 28+1 adder based on weighted representation without carry 
increment stage (Weighted-TPP) [7]. 

 

 
Fig. 2. Modulo 28+1 adder based on diminished-1 representation without 
carry increment stage (diminished-TPP) [8]. 

 
3) Signed-lsb number system: 

Signed-lsb representation requires n weighted positions, 
with two bits in the least significant position (lsp) and n-1 
bits in the other positions [9]. The lsb contains a normal bit 
in the range {0,1} (posibit) and a negated bit in the range    
{-1,0} (negabit), while the other positions contain n-1 
posibits. The representation of posibit and negabit is 
presented in Table I. Signed-lsb representation can remove 
the end-around-carry addition. Therefore the end-around-
carry for modulo 2n+1 addition is stored in the least-
significant bit without any need to propagate it through the 
higher positions. Moreover, the same addition scheme can 
be applied for modulo 2n-1addition. A TPP adder 
implementation of signed-lsb representation has been 
presented in [9]. 

 
 

TPP 

 
 

TPP 
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Table I. Introduction to posibit, negabit and unibit. 

Bit 
Name 

Lower and 
upper values 

Dot 
notation 

Symbolic 
notation 

Lower value 
representation 

Upper value 
representation 

Arithmetic 
value 

Posibit {0,1}  x 0  (0) 1  (1) x 

Negabit {-1,0}  X 0  (-1) 1  (0) X-1 

Unibit {-1,1}  x’ 0 (-1) 1 (1) 2x’-1 

 
We note that modulo 2n+1 residues fit in the range [0, 2n]. 

There are two kinds of representations for this range of 
integer values: faithful and non-faithful representation. The 
standard weighted binary representation with (n+1) bits is 
not a faithful one as there are some numbers that do not 
represent valid residues. Both diminished-1 and signed-lsb 
representations are faithful, because all values in this range 
have one representation. 

Like diminished-1, Signed-lsb removes the problem of 
(n+1)-bit operands of weighted representation for modulo 
2n+1. However, diminished-1 representation is just designed 
for modulo 2n+1, whereas, signed-lsb representation is also 
appropriate for modulo 2n-1 and 2n. 

III. PROPOSED STORED-UNIBIT RNS REPRESENTATION 
In modulo 2n-1 and 2n+1 addition, an output carry cout (of 

weight 2n) can be reentered as cout and –cout in the lsp, 
respectively. A solution to avoid the addition or subtraction 
of cout is to simply store it in lsp. To this end we use a 
specific bit that can store ±1. The bit is called a unibit and it 
is in the range {-1,1}. Table II describes the new number 
representation. The black circles indicate normal bits 
(posibits). The single white circle represents a negated bit 
(negabit) and the white square a unibit [16]. 

 

Table II: The Stored-unibit RNSencoding for modulo 2n +1. 

Range Bit Representation 

[−2n-1-1, 2n-1]  . . .  
 

  
As shown in Table II, the encoding consists of a main part 

[−2n-1, 2n-1−1] in signed form and a transfer part in the range 
{−1,1}. The new proposed representation can encode 2n+2 
numbers in the range [−2n-1-1, 2n-1]. 

We underline the negabits and draw two lines under the 
unibits in SUT-RNS bit representation, as indicated in Table 
I. A negabit with inverted encoding is encoded by using 
logical 1 to denote the arithmetic value 0 and logical 0 to 
denote the arithmetic value -1. A unibit is also encoded 

using logical 1 to denote the arithmetic value 1 and logical 0
to denote the arithmetic value -1. The arithmetic value of a 

negabit and unibit are shown in Table I. 
The new proposed representation has the ability of storing 

the end-around-carry in lsp without propagating it to the next 
positions. In the next section, we demonstrate that this 

representation leads to efficient modulo adders. 

IV. NEW MODULO (2N± 1) ADDERS 
Modulo 2n+1 addition for stored-unibit RNS encoding can 
be performed according to Fig. 3. First, in Step 1, the two 
input unibits (a’0 and b’0) are accumulated by simple gates 
as described in Table III.  
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Fig. 3. General method for stored-unibit RNS modulo 2n+1 addition.  
 

Table III: Unibit accumulation in two’s complement format. 

a’0    b’0 � (a’0, b’0) Un-1   un-2   …   u2    u1    u0 

0 0  

0 1  

1 0  

1 1  

-2 
 

0 
 

0 
 

2 

0       1     ….    1      1     0 
 

1       0     ….    0      0     0 
 

1       0     ….    0      0     0 
 

1       0     ….    0      1     0 

 
Step 2 can be implemented by an n-bit carry-save adder 

(CSA). The output negabit Cn is stored as the posibit c0, 
which is equal to the inverted Cn. In Step 3 the two n-bit 
vectors are accumulated. The only difference between 
modulo 2n-1 and 2n+1 addition is the polarity of the 
reentering output bits. In modulo 2n-1 addition, the polarity 
of the output bit is preserved. 
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The last step of addition in Fig. 3 can be implemented by 
an n-bit ripple-carry adder. The proposed modulo 2n-1 and 
2n+1 adders are depicted in Fig. 4 and 5, respectively. The 
black (white) circles inside the Full-Adder (FA) blocks 
denote posibits (negabits), and the square indicates a unibit. 
The output sum and carry are determined according to the 
input polarities. 
 

 
Fig. 4. Proposed stored-unibit RNS modulo 2n-1 ripple-carry adder.  

 
The structures depicted in Fig. 4 and 5 are similar, except 

the existing of two inverters for the end-around-carries in 
modulo 2n+1 adder. As suggested in the figures, the end-
around-carries are absorbed in lsp and don’t propagate to the 
higher positions. They produce the output least significant 
bits, s0 and s’0. Thus the overall latency of the adder is       
(n-2)TFA+2THA+TXOR, which equals to the delay of 2n unit 
gates (UG) in unit-gate model [17]; 2UG for FA, 1UG for 
HA cells, and 2UG for the final XOR gate (FA in the right 
bottom). 
 

Fig. 5. Proposed stored-unibit RNS modulo 2n+1 ripple-carry adder.  
 
The last stage in Fig. 3 can be implemented with a fast 

adder to reduce the total latency. The proposed parallel-
prefix modulo adder and its component structures are 
depicted in Fig. 6 and Table IV, respectively. 

First, the inputs are converted to two vectors by CSA. 
Subsequently, a binary addition can be performed via a 
prefix network for the carry calculation. Several tree 
structures have been proposed in [18], [19], [20], [21] for 

prefix carry computation. The adder structures have distinct 
implementation area, speed, and fan-out characteristics. For 
example, adders with a Ladner-Fischer prefix structure [18] 
require less implementation area, but have large fan-out 
when compared to adders with a Kogge-Stone prefix 
structure [20]. On the other hand, adders with a Kogge-Stone 
prefix structure are faster [21]. Ladner-Fischer and Kogge-
Stone prefix structures, according to [21], are the end cases 
of minimum implementation area and maximum speed, 
respectively, of a large family of addition tree structures, 
which all offer the minimum logical depth property. 

 

0s′
1s2s3s4s5s6s7s

00 ab111 abu222 abu777 ABU

0s
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Fig. 6. Proposed stored-unibit RNS modulo 2n+1 parallel-prefix adder.   

 
Table IV. Component structures of the proposed design 

Block Diagram Design Logic 

 

.

h a b
p a b
g a b

= ⊕
= +
=

 

 

s h c= ⊕  

 

As suggested in Fig. 6, the proposed method removes the 
problems of (n+1)-bit operands of the weighted 
representation and zero detection and correction of 
diminished-1 representation. Moreover, the stored-unibit 
technique is not a specific adder like the method proposed in 
[9] for signed-lsb method, and can employ any parallel-
prefix carry computation unit without any modifications. 
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V. COMPARISONS 
To evaluate the proposed modulo adders, we implemented 

three previous modulo addition techniques based on the 
three different number systems. These techniques were 
compared to the proposed modulo adders in this paper, with 
respect to the hardware redundancy in RNS. The first 
technique is based on the method presented in [7], which 
uses the weighted representation. The second one is the 
diminished-1 addition technique of [8] and the third one is 
signed-lsb technique proposed in [9]. These adders are 
referred to as Weighted, Diminished-1, and Signed-lsb. Our 
approach is referred to Stored-unibit RNS. 

At first, we use the unit-gate model reported in [17]. This 
model assumes that each gate, except the exclusive-OR gate, 
counts as one elementary gate for both area and delay, and 
an exclusive-OR gate counts for two elementary gates.  

According to this model, the latencies of the Diminished-
1, Weighted, Signed-lsb, and Stored-unibit RNS adders are 
presented in Table V. The overall delay of stored-unibit 
RNS is 22 log 5n +  unit gates: two UG for CSA, one UG 
for the square operator in Fig. 6, 22 log n  for the parallel-
prefix computations and finally, and 2 UG for the final 
diamonds. 

One can observe in the Table that the stored-unibit RNS 
has the least delay when conventional parallel-prefix carry 
computation is utilized. 

When the designs are based on the modified parallel-
prefix scheme (TPP), the stored-unibit RNS adder 
outperforms the one in [7] and has the same delay as [8] and 
[9].  

Moreover, as indicated in the last column of the Table, 
only signed-lsb and stored-unibit representations result in 
unified designs for the three moduli of {2n-1, 2n, 2n+1}, thus 

provide support for reliable RNS processors. The unified 
design leads to the possibility of providing reliability with 
low hardware redundancy by using reconfigurable adders 
that can process inputs for different moduli. As described in 
[9], such a reconfigurable modular adder enables fault-
tolerant designs with much lower hardware redundancy than 
the full replication. One way to do this is to implement four 
such adders for the three moduli set and then configure them 
to perform the three different modular additions {2n-1,2n, 
2n+1}, with one of them kept as a spare. If a fault occurred 
in one of the available adders, the spare can be configured 
accordingly and employed instead of the faulty adder. 

To evaluate the speed, area and power dissipation of the 
considered architectures we implemented them in CMOS 
technology. The structural VHDL descriptions of the 
modulo 28+1 adders have been first generated. After 
verifying the correctness of each description, we synthesized 
them for 130nm CMOS technology with the Synopsys 
Design Vision tool. A typical corner (1.2V, 25�°C) was 
considered. The results of total power, delay, and area for 
each adder are included in Table VI. Delay, area, and power 
results are given in ns, µm2, and mW, respectively. 

The results indicate that area, delay and power of Stored-
Unibit RNS and Signed-LSB are comparable with Weighted 
and Diminished-1. However they both provide reliability 
support. We note that the stored-unibit approach offers 
several advantages as it make use of the same prefix 
computation unit as in the non-modulo adder, without 
requiring any circuits for treating zero operands or carry 
increment stage as indicated in Fig. 6. Moreover, we can 
apply any fast adder to the proposed design. Therefore, the 
proposed adder has a simpler implementation than other 
existing modulo 2n+1 adders and requires a simple design 
and modification procedure.  

 

Table V. Delay of modulo 2n+1 parallel-prefix adders in UG. 

Modulo Addition Method Conventional Parallel-Prefix Modified Parallel-Prefix (TPP) Reliability 

Weighted [7] 9log2 2 +n  6log2 2 +n  No 

Diminished-1 [8] 7log2 2 +n  5log2 2 +n  No 

Signed-LSB [9] 22 log 7n +  22 log 5n +  Yes 

Stored-Unibit RNS (NEW) 5log2 2 +n  5log2 2 +n  Yes 
 
 

Table VI: Synthesized Comparison Results for modulo 28+1 parallel-prefix adders. 

Modulo Addition Method Area (µm2) Average Power (mW) Delay (ns) 

Weighted [7] 2320 2.67 0.57 
Diminished-1 [8] 2371 2.42 0.51 
Signed-LSB [9] 2034 2.29 0.57 
Stored-Unibit RNS (NEW) 2287 2.54 0.61 
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VI. CONCLUSIONS 
In this paper we proposed a new redundant number 

representation namely, the Stored-Unibit RNS, which can be 
efficiently utilized for the moduli set {2n-1, 2n, 2n+1}. It 
presents an encoding that is suitable for all modulo 2n-1, 
2n+1 and 2n which enables the construction of a unified 
design for the three moduli adders. In this way one can 
construct fault-tolerant RNS processors at the expense of 
low hardware redundancy. 

Our proposal makes use of an n-bit binary adder in 
combination with a small amount of additional logic. 
Another advantage of the new representation is that it simply 
employs conventional parallel-prefix carry computation unit 
(or any fast addition methods) without any extra stage for 
end-around-carry of modulo 2n±1 additions. Moreover, the 
proposed method is less complex than other state of the art 
modulo 2n±1 parallel-prefix adders. 
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