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THE SARC ARCHITECTURE IS COMPOSED OF MULTIPLE PROCESSOR TYPES AND A SET OF

USER-MANAGED DIRECT MEMORY ACCESS (DMA) ENGINES THAT LET THE RUNTIME

SCHEDULER OVERLAP DATA TRANSFER AND COMPUTATION. THE RUNTIME SYSTEM

AUTOMATICALLY ALLOCATES TASKS ON THE HETEROGENEOUS CORES AND SCHEDULES

THE DATA TRANSFERS THROUGH THE DMA ENGINES. SARC’S PROGRAMMING MODEL

SUPPORTS VARIOUS HIGHLY PARALLEL APPLICATIONS, WITH MATCHING SUPPORT FROM

SPECIALIZED ACCELERATOR PROCESSORS.

......On-chip parallel computation
shows great promise for scaling raw process-
ing performance within a given power bud-
get. However, chip multiprocessors (CMPs)
often struggle with programmability and scal-
ability issues such as cache coherency and off-
chip memory bandwidth and latency.

Programming a multiprocessor system
not only requires the programmer to discover
parallelism in the application, it also requires
mapping threads to processors, distributing
data to optimize locality, scheduling data
transfers to hide latencies, and so on. These
programmability issues translate to a diffi-
culty in generating sufficient computational
work to keep all on-chip processing units
busy. This issue is attributable to the use of
inadequate parallel programming abstrac-
tions and the lack of runtime support to
manage and exploit parallelism.

The SARC architecture is based on a het-
erogeneous set of processors managed at run-
time in a master-worker mode. Runtime
management software detects and exploits
task-level parallelism across multiple workers,
similarly to how an out-of-order superscalar
processor dynamically detects instruction-
level parallelism (ILP) to exploit multiple
functional units. SARC’s runtime ability to
schedule data transfers ahead of time allows

applications to tolerate long memory laten-
cies. We thus focus the design on providing
sufficient bandwidth to feed data to all work-
ers. Performance evaluations using a set of
applications from the multimedia, bioinfor-
matics, and scientific domains (see the
‘‘Target Applications’’ sidebar for a descrip-
tion of these applications) demonstrate the
SARC architecture’s potential for a broad
range of parallel computing scenarios, and
its performance scalability to hundreds of
on-chip processors.

Programming model
The SARC architecture targets a new class

of task-based data-flow programming models
that includes StarSs,1 Cilk,2 RapidMind,3

Sequoia,4 and OpenMP 3.0.5 These pro-
gramming models let programmers write
efficient parallel programs by identifying can-
didate functions to be off-loaded to worker
processors. StarSs also allows annotating the
task input and output operands, thereby en-
abling the runtime system to reason about
intertask data dependencies when scheduling
tasks and data transfers.

StarSs, the programming model used in this
article, consists of a source-to-source compiler
and a supporting runtime library. The compiler
translates C code, with annotations of the task’s
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inputs and outputs, into a common C code
with calls to the supporting runtime library.
We chose a software runtime manager to
avoid tying the architecture to a particular pro-
gramming model and its runtime system.

In StarSs, the runtime system manages
both data and task scheduling, which do
not require explicit programmer interven-
tion. This is similar in spirit to out-of-
order processors that automatically detect
data dependencies among multiple instruc-
tions, build the dynamic data-flow graph,
and dispatch instructions to multiple func-
tional units. However, in this case, the
data-flow graph is not bounded by the in-
struction window, the granularity of instruc-
tions is much larger, and it does not require
in-order commit to support precise exceptions.

An asymmetric chip multiprocessor
Figure 1 shows a logical view of the

SARC architecture. It is an asymmetric
CMP that includes a few high-performance
master processors and clusters of worker
processors that are customized to a target ap-
plication domain. For example, the SARC
instance for the H.264 advanced video
codec features different accelerator processors
for the context-adaptive binary arithmetic

coding (CABAC) (entropy decoding) and
the macroblock decoding (inverse discrete
cosine transform [IDCT], motion compen-
sation, deblocking filter, and so on).

Master processors
Master processors execute the master

threads. They are responsible for starting up
the application at the program’s main() subrou-
tine. From there, the application can spawn
multiple parallel threads that will be allocated
to other master processors. Because these pro-
cessors’ main functionality is to sequentially
spawn tasks for the workers to execute, their
single-threaded performance is critical to the
system as a whole. They therefore have a
high-performance out-of-order design.

Because they run the only threads whose
data-access patterns are not known to the
runtime system (the master thread inputs
and outputs are not annotated), the masters
only access memory through the cache hier-
archy. All masters have coherent level-one
(L1) instruction and data caches that rely
on the replacement policy and the coherency
protocol to exploit locality.

Worker processors
Workers off-load task execution from the

masters. In addition to the regular cache
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Figure 1. Schematic of the SARC architecture. The number of masters, workers, level-2 (L2)
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hierarchy provided to the masters, workers
feature a local scratchpad memory. The
scratchpads are mapped into the application’s
logical address space, and are accessed through
regular load/store instructions. This means
that memory accesses from a worker must
go through the translation look-aside buffer
(TLB) in their memory controller to be
steered toward their scratchpad, a remote
scratchpad on another worker, or through
the cache hierarchy to the off-chip memory.

To avoid the latency penalty involved
in sequential TLB and scratchpad/cache
accesses, workers first check a logically
indexed and tagged write-through L0 cache.
In addition, the L0 cache behaves like a vec-
tor cache, and allows unaligned vector load/
store operations.6 An unaligned L0 access
can potentially cause two cache misses: one
for each half line. Both L0 misses will be

resolved by two properly aligned L1 accesses.
Because L1 and L2 caches will only service L0
misses, they do not need to support such un-
aligned accesses, thus improving their efficiency.

To avoid coherency problems between the
distributed scratchpad memories and the
cache hierarchy, the L1 caches in both mas-
ters and workers can only capture addresses
in the DRAM physical range. That is, the
memory addresses mapped to any of the
scratchpad memories are not cacheable.

In addition, each worker features a DMA
controller that allows the runtime to overlap
data transfer and computation. The DMA
controller can copy data from the local mem-
ory to off-chip memory or to a remote local
memory (and vice versa). Details on the im-
plementation virtualization, transfer between
scratchpads, and the DMA interface are
available elsewhere.7
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Target Applications

Our evaluations used four widely used applications representative

of different domains: the H.264/advanced video coding (AVC) decoder

from the multimedia domain, the FASTA Smith-Waterman protein se-

quence alignment from the bioinformatics domain, and the dense ma-

trix multiply kernel and Cholesky decomposition from the scientific

domain.

H.264/AVC decoder
We developed two parallel versions of the FFmpeg H.264 decoder.

Both versions are based on macroblock-level parallelism, which is

more scalable than other parallelization approaches such as slice-level

or frame-level parallelism.1

The first version, referred to as the 2D-wave, is based on the work of

Van der Tol et al.,2 and exploits intraframe macroblock-level parallelism.

Each macroblock depends on the reference area in the reference frames

and neighboring macroblocks. This leads to a diagonal wave of parallel-

ism progressing through the frame.

The second version, referred to as the 3D-wave, exploits both

intraframe and interframe macroblock-level parallelism. The 3D-

wave is based on the observation that interframe dependencies

have a limited spatial range because motion vectors are typically

small. It is therefore possible to start decoding the next frame as

soon as the reference macroblock has been decoded, even if the

decoding of the current frame is not finished. This strategy increases

the amount of available parallelism significantly beyond what the

2D-wave provides, without increasing the decode latency of individ-

ual frames.3

Smith-Waterman
The protein sequence alignment problem has multiple levels of

parallelism. Most frequently exploited is the embarrassingly parallel

situation in which a collection of query sequences must be aligned to

a database of candidate sequences.4 In the SARC project, we devel-

oped a parallelization strategy to address the problem of aligning only

one query sequence to a single candidate based on the FASTA Smith-

Waterman code.5 The most time-consuming part of the algorithm

computes the sum of the diagonals in a dynamically generated ma-

trix, which leads to a 2D wavefront parallelism similar to the one

for the H.264 decoder.

The amount of parallelism depends on the size of the compared

sequences. A pair of sequences of 4 M and 30 K symbols provides suf-

ficient parallelism to keep 256 processors busy processing blocks of 16 K

elements. Longer sequences, such as full genomes, provide sufficient

parallelism for even more cores.

Matrix multiply
Matrix multiplication is a well-known parallel problem that has

been heavily optimized for many architectures. We start from a

blocked algorithm and spawn each block multiplication as a task.

Each block of row x column multiplications builds a dependency

chain, but there are many independent dependency chains to exploit

parallelism. We chose matrix multiply because it is a well-known

problem that lets us analyze our architecture under predictable

circumstances. It also puts the highest pressure on the memory

architecture.

....................................................................
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Shared L2 cache
All off-chip memory traffic goes through a

distributed (or banked) shared L2 cache that
captures both misses from the L1 caches and
DMA transfers to and from off-chip mem-
ory. The L2 cache’s distributed structure
eliminates the need to maintain coherency
across L2 blocks, because a datum is mapped
to a particular bank based on its physical ad-
dress. In addition, the cache structure enables
the use of fine-grained interleaving to increase
cache bandwidth on consecutive address ac-
cess. Because the architecture relies on
DMAs to transfer data to and from workers,
the L2 cache typically encounters coordinated
accesses to multiple cache lines. Fine-grained
interleaving lets the cache serve multiple parts
of a single DMA request in parallel, and
increases the effective bandwidth experienced
by the request.

The cache’s distributed nature leads to a
nonuniform cache access time. However, as
we show later, the architecture handles long
(and variable) latencies without impacting
performance. Thanks to the runtime manage-
ment of data transfers, applications for the
SARC architecture can exploit the distributed
cache’s size and bandwidth benefits without
suffering any of the latency penalties.

Because the local memory addresses are not
cached on the L1, the L2 cache only needs to
maintain coherency with the L1 caches. Such
a coherency engine is simplified because:

� the shared L2 cache is inclusive of all
L1 caches, thus directory state is kept
in L2, and is only needed per L2 line;
and

� the directory only keeps per-cluster
presence bits (not per-L1 bits), and
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Cholesky decomposition
The Cholesky decomposition, or Cholesky triangle, is a decomposition of

a symmetric, positive-definite matrix into the product of a lower triangular

matrix and its conjugate transpose. As Figure A shows, the blocked version

of the Cholesky decomposition results in an irregular intertask dependency

pattern. However, coding such a dependency pattern in the SARC program-

ming model is fairly simple because the runtime library dynamically builds

the dependency graph, so it dynamically detects and exploits the parallel-

ism. The available parallelism in Cholesky depends on the graph’s maxi-

mum width, and diminishes as the algorithm progresses. As we show

in the main article, this limits the application’s scalability.
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invalidations are broadcast inside each
concerned cluster.

Memory interface controllers
The on-chip memory interface controllers

(MICs) connect the chip to the off-chip
DRAM modules. Each MIC supports several
DRAM channels. Internally, each MIC main-
tains a per-channel request queue, and uses a
simple first-in, first-out (FIFO) scheduler to
issue requests to the DRAMs. Therefore,
requests to a given channel are handled in
order, but they can execute out of order with
respect to requests sent to another channel.

Given that the MIC will interleave requests
from many worker processors, the DRAM
bank page buffer will likely not be reused for
two consecutive requests. For this reason we
use a closed-page DRAM policy.8

Similar to the shared cache design, the
global address space is interleaved across the
different MICs in a fine-grained manner.
Given the bulk nature of memory accesses
caused by the common use of DMA trans-
fers, such a fine-grained interleaving provides
better memory bandwidth because it parallel-
izes a typical DMA transfer both across
MICs and across channels inside each MIC.

Network on chip
A scalable architecture such as SARC

must be capable of connecting hundreds of
on-chip components. We used the hierarchi-
cal K-bus organization for our simulations.

A K-bus is a collection of buses. When a
node wants to transmit something through
the network, it requests permission from
the K-bus arbitrator. If there is no previous
request for communication with the same
destination port, the node is dynamically
assigned one of the buses. For example, a
4-bus can accept up to four simultaneous
data transfers in a given cycle, as long as no
two have the same destination port.

As Figure 1 shows, we organized SARC
workers in clusters of eight processors. Each
cluster uses a 2-bus for its intracluster net-
work. The cluster has a single (full-duplex)
port connecting it to the global interconnect.
In a 256-worker SARC configuration, the
global NoC connects 32 clusters, 16 masters,
32 cache blocks, and two memory control-
lers: a total of 82 nodes, not counting the

I/O controllers. For the purpose of this arti-
cle, we used a 16-bus for the global NoC.

SARC accelerators
The SARC worker processors are based

on different designs, depending on the target
application domain.

Media accelerator
The SARC media accelerator (SARC-

MA) is an application-specific instruction
set processor (ASIP) based on the Cell syner-
gistic processor element (SPE). Our goal
with this design was to show that adding a
few (at most a dozen) application-specific
instructions can achieve significant (more
than a factor of 2) performance improve-
ments. We chose the Cell SPE as the baseline
because it is already optimized for computa-
tion-intensive applications but not specifi-
cally for H.264 video decoding.

To select the application-specific instruc-
tions, we thoroughly analyzed the H.264
macroblock-decoding kernels. We then
added 14 instructions, some of which can
process different data types, to the Cell
SPE’s instruction set architecture (ISA).

One deficiency of the SPE is that it does
not support scalar operations. Therefore, we
did not add a full scalar ISA but rather a few
scalar instructions that had proved to be
most useful, such as load-scalar (into the pre-
ferred slot) and add-scalar-to-vector-element.
Another deficiency of the Cell SPE is that it
does not support clipping operations that
saturate an operation’s result. The SARC-
MA supports clip, saturate-and-pack, and
add-saturate-and-pack.

Often, a simple fixed-point operation is
immediately followed by another simple
fixed-point operation that depends on the
first operation’s result, causing a significant
number of stall cycles. We can eliminate
these stall cycles by collapsing these operations
into a single operation, thereby allowing inde-
pendent operations to continue in the pipe-
line. The SARC-MA therefore supports
several collapsed operations, such as add-and-
shift, multiply-truncate, and multiply-add.

Another supported instruction is the
swap-odd-even instructions, which swaps
the odd-numbered elements of the first vec-
tor operand with the even-numbered
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elements of the second vector operand. This
instruction accelerates matrix transposition.

Finally, the SARC-MA supports an intra-
vector instruction that performs an 8-point
1D IDCT.

The instruction latencies have been esti-
mated conservatively and have been based
on the latencies of similar SPE instructions.
Figure 2a shows the speedups and instruction
count reductions achieved by the SARC-MA
compared to the SPE for the considered
H.264 kernels. These results show that we
can obtain significant performance improve-
ments by supporting a handful of application-
specific instructions. These improvements
directly translate to area cost savings. The full
details are available elsewhere.9

Bioinformatics accelerator
The SARC bioinformatics accelerator

(SARC-BA) is also an ASIP based on
the Cell SPE. After inspecting the most
time-consuming kernel of ClustalW and
Smith-Waterman, we identified three new
instructions that together significantly im-
prove performance.

Computing the maximum between two or
more operands is a fundamental operation
often used in sequence-alignment kernels.
Consequently, we added the Max instruction
to the SPE’s ISA to replace an operation that
would otherwise need two SPE instructions.
The analyzed kernel uses the Smith-Waterman
recurrent formula that subtracts the penalties
from the upper and left scores in the dynamic
programming matrix.10 Then, it computes the
maximum value with saturation at zero. We
also added two instructions to speed up this
processing: Max3z computes the maximum
of three input vectors and 0, and Submx com-
putes max {a � b, c }.

Figure 2b depicts the speedups and in-
struction count reductions for the forward_
pass function, the most time consuming ker-
nel of ClustalW. For Max and Max3z, the
speedup is larger than the reduction in exe-
cuted instructions. The reason is that these
two instructions replace a sequence of instruc-
tions that create dependencies. Collapsing
them into a single instruction saves many de-
pendency stall cycles, further contributing to
the total speedup. Overall, the new instruc-
tions improve performance by 17 percent.

Scientific vector accelerator
The polymorphic register file plays a cen-

tral role in the SARC scientific vector accel-
erator (SARC-SVA). Given a physical
register file, the SARC-SVA lets us define
1D and 2D logical vector registers of different
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sizes and shapes. Figure 3 illustrates its orga-
nization, assuming that the physical register
file contains 128 � 128 elements. When
defining a logical vector register, we need to
specify its base address, horizontal length,
and vertical length. The register file organiza-
tion (RFOrg) special-purpose registers (SPRs)
store the logical registers’ parameters.

The SARC-SVA microarchitecture sup-
ports both 1D and 2D register operations
simultaneously using the same instructions.
Conditional execution is implicitly supported
by defining a bit mask register for each logical
register. By adding three extra bits to each
RFOrg entry, we can also specify the data
type (32/64-bit floating point or 8/16/32/
64-bit integer) stored in the logic register,
therefore avoiding the need to duplicate the
instructions for each supported data type.

The Cell SPE implementation of the
dense matrix multiplication is already highly
optimized. IBM reports 98 percent efficiency
for the hand-scheduled assembly implemen-
tation.11 In addition, we need only 48
instructions compared to IBM code’s 1,700.
This will reduce the number of instructions
dynamically executed by at least 35 times.

Because this number does not change with
the number of lanes, we are more interested
in our code’s efficiency. Figure 4 shows the
performance results compared to an ideal
(100 percent efficient) Cell SPE.

Figure 4 also shows that we can obtain
similar efficiency at the synergistic processor
unit (SPU) when using four vector lanes
(95 percent). For 16 vector lanes, we estimate
the efficiency at 84 percent. The reason for
this behavior is that we did not use any block-
ing technique to overlap the local store loads
and stores with computation. Therefore, the
time required to perform memory transfers
starts dominating the execution time when
we use more vector lanes.

Performance analysis
To evaluate the SARC architecture, we

developed a trace-driven simulator called
TaskSim. It provides cycle-accurate simula-
tion of the entire SARC architecture, includ-
ing the NoC, DMAs, caches, MICs, and
DRAMs.

TaskSim is highly scalable because workers
need not be simulated at the instruction level.
Because task computation itself does not affect
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any component other than the worker (and
vice versa), tasks can be abstracted as atomic
CPU bursts. TaskSim thus simply accounts
for task computation time as if the worker
executes a single instruction whose runtime
is read from the trace file. TaskSim can there-
fore accurately model workers by only simu-
lating their DMA transfers and task
synchronizations, which are simulated along-
side all other architectural components at
the cycle level. This technique allows TaskSim
to scale and accurately model the SARC archi-
tecture with hundreds of workers.

To guarantee that changing the number
of simulated processors does not break appli-
cation semantics, traces also include intertask
dependency information. This information
lets TaskSim group all tasks dispatched
by the master in a single task list and dynam-
ically schedule them to the simulated worker
processors. The dependency information
must verify the scheduling correctness, so
that no task is scheduled before all its prede-
cessors have finished, although the schedul-
ing order might differ from that of the
original trace because of the increased num-
ber of worker processors. Table 1 lists the
baseline architectural settings used through-
out this article.

The H.264 traces we used for this article
correspond to the 2D-wave and 3D-wave
processing of 100 frames of the pedestrian
area video at full high-definition, 25 frames
per second (fps) from HD-VideoBench12

(see the ‘‘Target Applications’’ sidebar).
The SARC H.264 instance uses one master
processor and four CABAC processors. The
number of processors in the scalability charts
refers to the number of SARC-MA worker
instances. The 2D-wave version can be seen
as a specific case of the 3D-wave with only
one frame in flight. The 3D-wave version
supports a maximum of eight frames in
flight.

We obtained the Smith-Waterman traces
from a Cell implementation of the FASTA
search algorithm. The SARC software in-
stance uses one master processor and several
SARC-BA worker instances.

We obtained the matrix multiply traces
from a Cell implementation using the opti-
mized 64 � 64 block multiplication kernel
included in the Cell SDK. The SARC

scientific instance uses one master processor,
one helper processor, and several SARC-SVA
worker instances.

Table 2 summarizes some important char-
acteristics of the SARC target applications.

We obtained the execution time of indi-
vidual tasks in the corresponding SARC
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Table 1. Baseline SARC simulation parameters.

Parameter Value

Clock frequency 3.2 GHz

Memory controllers 4 � 2 DDR3 channels

Channel bandwidth 12.8 Gbytes per second (GBps)

(DDR3-1600)

Memory latency Real DDR3-1600

Memory interface controllers

(MICs) policy

Closed-page, in-order processing

Shared L2 cache 128 Mbytes (32 blocks æ 4 Mbytes),

4-way associative

L2 cache latency 40 cycles

Local store 256 Kbytes, 6 cycles

L0 cache 32 Kbytes, 3 cycles

Interconnection links 8 bytes/cycle (25.6 GBps)

Intracluster network on chip (NoC) 2-bus (51.2 GBps)

Global NoC 16-bus (409.6 GBps)
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accelerators using a separate cycle-accurate
CPU model that extends the Cell SPE with
either the media or bio instructions and
functional units, or implements the multi-
dimensional vector scientific accelerator. To
isolate the impact of worker specialization
from the impact of parallel scalability, all
results presented correspond to the perfor-
mance speedup relative to the SARC config-
urations with only one baseline Cell SPE
worker.

The use of local memories for workers in
the SARC architecture isolates task execu-
tion, so tasks only interact with the worker’s
local memory and do not generate external
memory traffic. None of the target SARC
applications uses the L1 caches on the worker
processors, because annotating the task
inputs and outputs lets the runtime system
automatically move all the data in and out
of the local stores.

Parallel scalability
Figure 5 shows how performance

improves as we increase the number of work-
ers. The simulation parameters are those
detailed in Table 1.

Our results show perfect linear scalability
for matrix multiply, our massively parallel
benchmark. This shows that the applica-
tion’s parallelism has no architectural limita-
tion. More importantly, it shows that the
block multiply tasks do not incur significant
memory stalls, as would be the case in any
cache-based architecture.

The results for H.264, Cholesky, and
Smith-Waterman show a different behavior.
They scale linearly up to a point (16 workers
for H.264-2D and 80 workers for H.264-3D,
96 for Cholesky and Smith-Waterman), and
then only obtain diminishing returns. This
limitations are not due to architecture bottle-
necks; no resources are being overcommitted.

In Smith-Waterman, the sequential part
starts to dominate the total duration. What
was only 1 percent in the serial version
accounts for 70 percent with 256 workers.
In Cholesky, the number of parallel tasks
diminishes as the algorithm progresses.
H.264-2D simply lacks parallelism; the
2D-wave implementation has sufficient mac-
roblocks for 60 workers in full High Defini-
tion (HD). The number of frames in flight
(in this case, the value is limited to 8) limits
the parallelism in H.264-3D. Increasing the
number of frames in flight will increase par-
allelism but result in a bigger memory foot-
print and higher memory bandwidth.

Impact of memory latency
Throughout this article, we have stressed

that the SARC memory hierarchy is designed
for high bandwidth, sometimes at the ex-
pense of latency. Such a design policy is
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Figure 5. Parallel scalability of the SARC architecture. The graph shows the

performance of the applications as the number of workers is increased.

Table 2. Characteristics of the SARC applications.

Application No. of tasks

Task duration

(microseconds)

Bandwidth

per task

(GBps)

Problem size

(Mbytes)

H.264 816,000 17.4 0.65 299

Smith-Waterman 3,670,016 50.3 0.65 20.7

Matrix multiply 262,144 25.8 1.42 192

Cholesky 357,760 28.0 1.68 512
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based on the SARC runtime management
system’s ability to automatically schedule
data transfers in parallel with the previous
task’s computation, achieving a double-
buffering effect.

Figure 6a shows the performance degra-
dation of our target applications as we in-
crease the memory latency. (From this
point on, all figures show the performance
relative to the configuration with 256 work-
ers.) For this experiment, we replaced the
shared L2 and DDR memory system for
an ideal conflict-free memory with a config-
urable latency ranging from 1 cycle to 16 K
cycles. Note that the average DDR3 latency
is between 150 and 250 cycles. On top of
the raw memory latency is the added cost
of traversing the SARC hierarchical NoC.

Our results show that performance for
matrix multiply, Cholesky, and Smith-
Waterman does not degrade until memory
latency reaches 1 K cycles or higher. DMA
transfers are 16 Kbytes in size, which requires
2,000 cycles at 8 bytes per cycle. An addi-
tional 1 K-cycle latency only increases total
transfer time by 33 percent. Furthermore,
double buffering helps to effectively hide
latencies. Not only are higher latencies than
the regular DDR3 DRAM tolerated, but
the cache latency itself is completely irrele-
vant, because it will always be faster than
the off-chip memory.

H.264’s latency tolerance is much lower
because it cannot fully benefit from the
double-buffering runtime optimization.
Not all the DMA transfers in the macroblock
processing can be scheduled in advance,
because the reference macroblock is not
known until halfway through the decoding
process. That is, the latency for accessing
the reference block immediately translates
to an increased macroblock decoding time.
However, performance only degrades by 15
and 11 percent for a memory latency of
512 cycles for the 2D-wave and 3D-wave
versions, respectively. The 3D-wave is more
latency tolerant because transfers and com-
putation from different frames can overlap.

These results support our claims about
the SARC architecture’s latency tolerance.
Such tolerance is not due to the architecture
itself (even if bulk data transfers are domi-
nated by bandwidth), but it would not be
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possible if the architecture does not let the
DMA controllers overlap the transfers with
computation.

Impact of memory bandwidth
Given our finding that performance is

only limited by memory bandwidth, and
not latency, we must provide sufficient band-
width to the worker processors. For example,
matrix multiply tasks take 25.8 microsec-
onds, and require transferring up to 64
Kbytes of data in and out of the local mem-
ory (depending on data reuse). This trans-
lates to an average bandwidth requirement
of 1.42 Gbytes per second per worker, and
an estimated 363 GBps for all 256 workers.

Clearly, the limited pin count prevents us
from providing such bandwidth from
off-chip DRAM. We consider eight off-
chip DRAM channels to be a realistic design
point, based on current pin restrictions.
(The IBM Power6 already features two on-
chip memory controllers and eight DRAM
channels.) These would provide only 102.4
GBps using eight DDR3-1600 DIMMS.
The distributed L2 cache must provide the
rest of the bandwidth.

Figure 6b shows the performance degra-
dation of the 256-worker SARC configura-
tion as we reduce the L2 bandwidth from
32 L2 banks (819.2 GBps) to only one
12.8 GBps bank. Our results for matrix mul-
tiply, Cholesky, and H.264-3D show that
they are the most bandwidth-demanding
applications, as Table 2 suggests. Perfor-
mance degrades about 10 percent for 204.8
GBps, and then drops dramatically for
102.4 GBps or lower bandwidth. H.264-
2D and Smith-Waterman require much
less memory bandwidth, and do not show
significant performance degradation unless
fewer than two L2 banks are used (51.2
GBps, half the off-chip bandwidth).
H.264-3D scales more than H.264-2D at
the cost of more memory bandwidth: going
from 819.2 GBps to 102.4 GBps results in
a 36 percent performance loss.

These results are a clear motivation for
the fine-grained interleaving strategy we use
in our multibank L2 cache. Although it
leads to nonuniform latencies, it increases
bandwidth, and our runtime system can
hide the extra latency. As our results show,

bandwidth is the critical factor limiting the
SARC architecture’s performance. We still
need to check the cache’s size requirements
to capture the working set and avoid resort-
ing to the limited off-chip pins.

Impact of L2 cache size
Because we cannot provide sufficient off-

chip bandwidth to support the large number
of worker processors, most of the working set
must be captured on-chip and serviced from
the shared L2 cache. Distributing the cache
across 32 blocks, each having multiple
banks providing 25.6 GBps, gives sufficient
concurrency to sustain the required 819.2
GBps bandwidth.

Figure 6c shows how performance
degrades as we reduce the L2 cache size
from the baseline 128 Mbytes (32 blocks
of 4 Mbytes each) to 32 Kbytes (32 blocks
of 1 Kbyte each). The cache latency is fixed
at 40 cycles, independent of the block size,
but previous results have shown that perfor-
mance does not depend on the latency.
The off-chip bandwidth is limited to eight
DRAM channels, or 102.4 GBps.

Our results show that Smith-Waterman’s
performance does not degrade as we reduce
the cache size. This is to be expected, because
previous results have shown that the off-chip
102.4 GBps are enough, even if all accesses
miss in the cache.

Performance analysis for H.264-2D shows
some performance degradation for cache sizes
smaller than 1 Mbyte. The 1-Mbyte L2 size
is sufficient to capture one reference frame,
and so serves the latency-sensitive DMA trans-
fer from cache instead of off-chip DRAM.

H.264-3D has a smaller performance
degradation. This is due to the prefetch effect
that results from processing multiple frames
in flight. This effect appears because most
of the motion vectors point to the colocated
macroblock—that is, the macroblock in the
reference frame that has the same coordinates
as the current macroblock.

Finally, matrix multiply and Cholesky show
a stronger dependency on cache size, as they are
the most bandwidth-demanding applications.
For matrix multiply, performance degrades sig-
nificantly unless we can fit a whole row of ma-
trix A and the full matrix B in the cache. This
size depends on the workload and adds up to
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64 Mbytes in our test case. Larger matrices
would require more cache.

The Cholesky working set used for our
experiments is too large to fit in cache (512
Mbytes), so we observe how larger caches
can better capture the temporal locality of
the irregular task dependency graph.

Our baseline configuration with 128
Mbytes only provides 512 Kbytes per worker.
That is only twice the amount of local store
available to them, and is a common size
ratio in current multicore implementations.
Given that 128 Mbytes would seem reason-
able for a 256-worker chip, we conclude that
the distributed on-chip L2 cache can effec-
tively filter the off-chip memory bandwidth.

Impact of specialization
Figure 7a shows the SARC architecture’s

scalability, this time using the SARC do-
main-specific accelerators instead of the base-
line worker processor.

Our results show worse parallel scalability
than what was presented in Figure 5 for the
baseline worker processor. Some applications
scale to only half the number of processors as
before. When using the faster SARC acceler-
ators, the improved compute performance
translates to increased bandwidth require-
ments from what is described in Table 2. Es-
sentially, the 819.2 GBps of bandwidth
provided by the L2 cache, and the 102.4
GBps of off-chip memory are not enough
for such fast workers.

This is most visible for the most
bandwidth-demanding benchmark, matrix
multiply, for which the nonaccelerated archi-
tecture achieves almost perfect speedup for
256 workers (see Figure 8), whereas the accel-
erated architecture achieves only about 128.

We see the same effect for Cholesky, al-
though to a lesser extent because it is less
bandwidth demanding. Because the Smith-
Waterman accelerator is only 17 percent
faster than the base processor and because
it is not very bandwidth demanding, the
accelerated architecture provides a speedup
of about 17 percent irrespective of the num-
ber of workers. H.264-2D has low band-
width requirements, and also does not
suffer any scalability impact due to the faster
SARC-MA worker. For H.264-3D, the
given bandwidth is enough to sustain the

accelerated cores’ scalability, but there is a
11 percent reduction in speedup compared
to the nonaccelerated cores.

Figure 7b shows the combined impact of
scalability and accelerators. This figure com-
pares the performance speedup for the acceler-
ated workers with the baseline Cell SPE worker.
The bandwidth limitations encountered by
faster workers prevent the SARC architecture
from achieving speedups over 256 (for 256
workers). However, a comparison of the results
to those in Figure 5 shows that SARC can
achieve the same performance of the baseline
architecture using fewer workers, translating
to lower area and power requirements for a
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given performance target. H.264 also shows the
impact of the improved worker, reaching a
combined speedup of 32 and 128 times, for
the 2D and 3D, that we could not achieve
with the baseline workers.

T he SARC architecture offers scalability
with the number of workers and

combines well with an heterogeneous set
of domain-specific accelerators to achieve
the desired performance level at a lower cost
and power. We believe that the SARC
architecture offers an excellent framework
for continued research and development of
scalable heterogeneous accelerator-based ar-
chitectures and programming models.

Our experience developing this architec-
ture shows that features such as data transfer
engines (DMA in our case), heterogeneous
processors (be it single ISA, or multi-ISA),
distributed storage, and variable access laten-
cies will be required for efficient designs.
Equally important is that such features can
be orchestrated by a smart runtime manage-
ment layer, hiding the complexity to the pro-
grammer, and making this kind of design
commercially viable. M I CR O

Acknowledgments
We thank the rest of the team that devel-

oped the TaskSim simulator: Alejandro Rico,
Carlos Villavieja, Augusto Vega, Toni Ques-
ada, Milan Pavlovic, and Yoav Etsion. We
also thank Pieter Bellens for his help obtaining
the application traces. This research was sup-
ported by the SARC project (FP6-FET-
27648), and the Consolider contract
TIN2007-60625 from the Ministry of Science
and Innovation of Spain. Felipe Cabarcas was
also supported by the Program AlBan, the Eu-
ropean Union Program of High Level Scholar-
ships for Latin America (scholarship No.
E05D058240CO). Finally, we recognize Man-
olis Katevenis for his participation in the defini-
tion of the SARC architecture, and Stamatis
Vassiliadis and Mateo Valero, who made the
SARC project happen in the first place.

....................................................................
References

1. R.M. Badia et al., ‘‘Impact of the Memory

Hierarchy on Shared Memory Architectures

in Multicore Programming Models,’’ Proc.

17th Euromicro Int’l Conf. Parallel, Distrib-

uted and Network-based Processing, IEEE

CS Press, 2009, pp. 437-445.

2. R.D. Blumofe et al., ‘‘Cilk: An Efficient Mul-

tithreaded Runtime System,’’ Proc. 5th

ACM SIGPLAN Symp. Principles and Prac-

tice of Parallel Programming (PPoPP 95),

ACM Press, 1995, pp. 207-216.

3. M.D. McCool et al., ‘‘Performance Evaluation

of GPUs Using the RapidMind Development

Platform,’’ Proc. Conf. Supercomputing (SC

06), ACM Press, 2006, p. 181.

4. K. Fatahalian et al., ‘‘Sequoia: Programming the

MemoryHierarchy,’’ Proc. Conf. Supercomput-

ing (SC 06), ACM Press, 2006, article 83.

5. A. Duran et al., ‘‘Extending the OpenMP

Tasking Model to Allow Dependent

Tasks,’’ Proc. Int’l Conf. OpenMP in a New

Era of Parallelism (IWOMP 08), LNCS,

Springer, 2008, pp. 111-122.

6. F. Quintana et al., ‘‘Adding a Vector Unit to a

Superscalar Processor,’’ Proc. Int’l Conf.

Supercomputing (SC 99), ACM Press,

1999, pp. 1-10.

7. M.G.H. Katevenis et al., ‘‘Explicit Communi-

cation and Synchronization in SARC,’’ IEEE

Micro, vol. 30, no. 5, 2010, pp. xx-xx.

8. B. Jacob, S.W. Ng, and D.T. Wang, Memory

Systems: Cache, DRAM, Disk, Morgan

Kaufmann, 2008.

9. C.H. Meenderinck and B.H.H. Juurlink,

‘‘Specialization of the Cell SPE for Media

Applications,’’ Proc. Int’l Conf. Application-

Specific Systems, Architectures, and Pro-

cessors, IEEE CS Press 2009, pp. 46-52.

10. T.F. Smith and M.S. Waterman, ‘‘Identifica-

tion of Common Molecular Subsequences,’’

J. Molecular Biology, vol. 147, no. 1, Mar.

1981, pp. 195-197.

11. T. Chen et al., ‘‘Cell Broadband Engine

Architecture and Its First Implementation: A

Performance View,’’ IBM J. Research and De-

velopment, vol. 51, no. 5, 2007, pp. 559-572.

12. M. Alvarez et al., ‘‘HD-VideoBench. A

Benchmark for Evaluating High Definition

Digital Video Applications,’’ Proc. IEEE

Workload Characterization Symp., IEEE CS

Press, 2007, pp. 120-125.

Alex Ramirez is an associate professor in the
Computer Architecture Department at the
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