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Abstract— The extremely limited resource budget available
to medical implants makes it imperative that they are designed
in the most optimal way possible. The limited resources include
- but are not limited to - battery life, expected responsiveness
of the system and chip area. We have already detailed the
design of a design-space exploration (DSE) tool specifically
geared towards finding the Pareto-optimal design front. In this
paper, we choose processor configurations from the Pareto-
optimal processor set found by the DSE using real implants
as case studies. We find that even under the extremely biased
constraints that we use, our processor(s) perform better than
many of the real implants. This provides strong hints towards
designing an implant processor that is generic enough to cover
most, if not all, implant applications.

I. INTRODUCTION

The market for biomedical-implants is slowly but surely

expanding with a rising number of applications. While,

at first restricted to the field of pacemakers [2], implants

have now diversified and cover nearly all bodily systems,

from musculoskeletal, to circulatory, to neural [3]. Moreover,

recent trends in global healthcare [4] are pushing towards

“smarter” implants with increased capabilities. An extended

study performed on more than 60 different implantable

systems backs this claim [1]. For the 12-year study pe-

riod 1994 – 2005, Fig. 1a reveals an increasing number

of implants charged with non-trivial processing duties and

featuring in-system memory blocks. Every year, about 12%

more implants perform some complex processing task(s) in

vivo while 17% more implants are designed with sizeable

memories on them.

However, such provisioning comes at a cost. As Fig. 1b

reveals, even though operational voltages are dropping in

agreement with shrinking process-technology trends, implant

power consumption exhibits an aggregate increase of 15%1.

A third, related trend has also been observed: It has

been common practice so far to custom-design the hardware

for each implant application, often completely from scratch

(see Fig. 1c). Although this was easier for the simpler de-

vices, designing a processing-capable core for every implant

application is not practical due to large development and

deployment costs. Therefore, the use of commercial, off-

the-shelf (COTS) components is also gradually increasing

(seen in the same figure). However, such designs are ad-hoc,

1For the observed dip in the middle years 1998 – 2001 a biasing artifact
is responsible in the sampled data; see [1] for a detailed explanation.

and are not consistently designed with the restricted resource

limitations of implants – as exemplified for power in Fig. 1b.

They also involve long design and testing times and therefore

have higher costs.

Therefore, it is becoming apparent that “smart”, pre-

designed and pretested components are needed, which are

specifically geared towards medical implants. Such compo-

nents must cover a large application range in order to be

economical as well as reliable and safe. This is the express

goal of the SiMS project [5]. Our final goal is to design a

(so-called SiMS) generic, low-power implant processor or

processor family, for covering a large part of the implant

domain.

In this paper, we present the results of an automated,

design-space-exploration (DSE) effort performed to identify

such SiMS processor candidates. We also select a number

of representative, real implant applications in the literature

and explore the possibility of covering them with a few of

the identified processors. Concisely, the contributions of this

work are:

• To propose a new, realistic, worst-case workload mix

for future implant processors;

• Along with the previously generated DSE toolset and

the new workload mix, to provide a complete frame-

work enabling the implant designer to make informed

decisions about resource allocation for future implant

design;

• To propose Pareto-optimal, alternative microarchitec-

tural configurations for the SiMS processor;

• To make a proof-of-concept, first attempt at fitting a

single (or a few) of the identified configurations to real

implant applications.

It should be noted that this study focuses on the mi-

croarchitectural aspects of the SiMS processor, thus no

Instruction-Set-Architecture (ISA) analysis is present.

The paper is organized as follows: section II gives an

overview of related works in the field. Section III gives an

overview of the experimental tools, and the synthesis of the

implant workload, used for this work. In section IV a concise

presentation of the implant study cases is given. Section V

presents in detail the findings of this work. Finally, overall

conclusions and future work are listed in section VI.
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(a) More implants require processing capabilities
and memories.
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(b) Implants exhibit decreasing voltage but increas-
ing power needs.
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(c) Use of commercial components is increasing at
the expense of full-custom design.

Fig. 1. Implant trends over the survey period 1994 – 2005 [1].

II. RELATED WORK

In the past, a few attempts have been made to design

implants with a certain degree of modularity in order to make

them capable of adapting to different application scenarios.

Fernald et al. [6], [7] propose a modular microprocessor

architecture which accepts various peripheral modules such

as sensors, actuators and transceivers. Application flexibility

is underpinned by a dual ring-bus interconnect linking an

arbitrary number of modules to the processing core which

is a fully featured 16-bit µP (PERC), based on Hector [8].

Command and data packets, traveling across each bus, have

predefined, consistent structures and plugged modules are

built to interface to them.

Contrary to the additive nature of the above design, Smith

et al. [9], [10] have addressed the problem of flexibility

from a subtractive angle. An implantable stimulator device

with provisions for a large set of peripherals was designed.

Given a specific application, unutilized components of the

initial, baseline design can be removed, resulting in a reduced

system, tailored to the application needs and with lower

power/area requirements than those of the base design.

Valdastri et al. [11] present a versatile implantable plat-

form that provides multi-channel telemetry of measured

biosignals. Its versatility resides in its ability to support

different types of sensors and to allow for easy reprogram-

ming so as to fulfill different application requirements. To

demonstrate the correctness of the concept, a specific case

study is implemented for gastric-pressure monitoring which

is a PCB-mounted assembly, supporting up to 3 sensor

channels. This implant can transmit digitally modulated data

to an external receiver over a wireless link with robust error

control.

Furthermore, Salmons et al. [12] perform a design

and comparative study between an ASIC-based and a

microcontroller-based microstimulator device for restoring

functionality to paralyzed muscles. Analysis has shown that,

if carefully designed with low-power modes and checked for

software bugs, the latter version is beneficial to the ASIC

with respect to development and testing costs.

The work presented here is original in that it attempts to

develop a truly generic and low-power processor architecture

while at the same time providing the performance needed

by current and future applications in the field. A systematic,

structured approach to the problem, supported by the recent,

rapid advances in microelectronics technology [13], finally

make such a venture realistic.

III. EXPERIMENTAL SETUP

Our work so far has been focused on investigating the

design space of implant processors in order to propose one

(or a few) processor architectural configurations able to

support a diverse range of implant applications. This task

is difficult to tackle as we have repeatedly encountered the

following problems:

• Implant applications (and their requirements) are very

diverse, mirroring the wide range of potential pathoses

in the human body. To make matters worse, biomedical

implants are a relatively new field, traditionally domi-

nated by a handful of companies which are extremely

protective of their product designs. With literature being

limited, consensus in the “application domain” cannot

be easily established;

• No systematic approach exists for designing proces-

sors specifically tailored towards implant applications.

Further, there are no established operational parameters

either. Thus, a number of educated assumptions are nec-

essary for introducing boundaries to the design problem;

• Verified tools for modeling the desired processors and

exploring the design space are not readily available.

The ones used are best-effort ones which introduce

accuracy errors and deviations between simulated and

actual results. These deviations are not linear and, thus,

cannot be easily predicted in advance.

Except, perhaps, for the first item in this list, the above

problems are well-known and have already been encountered

in other application fields. If we are to attempt a first take

on a (few) processor(s) capable of serving a number of

implant applications, we need to fill the missing information

with some further estimations. However, we will have to

ensure that these estimations are drawn such that the resulting

implant-processor architectures are guaranteed to cover the

targeted applications under worst-case conditions. In effect,

we will intentionally overprovision our processor(s) by a

certain margin. For this study to become possible, a number

of components are required. In the following subsections,

we briefly introduce these components along with their

capabilities and limitations.
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TABLE I

ARCHITECTURAL DETAILS OF (MODIFIED) XTREM.

Feature Value Feature Value

ISA 32-bit ARMv5TE-compatible Ret. Address Stack VAR*size
Pipeline depth / width 7/8-stage, super-pipelined / 32-bit I/D TLB (separ.) VAR size / VAR size
RF size 16 registers Write Buf. / Fill Buf. VAR size / VAR size
Issue policy / Instr. Window in-order, single-instruction Mem. bus width 1B (1 mem. port)
I/D Cache L1 (separ.) VAR size/assoc. (1-cc hit / 170-cc miss lat.) INT/FP ALUs 1/1
BTB VAR size, fully-assoc. / direct-mapped Clock frequency 2 MHz
Branch Predictor VAR (4-cc mispred. lat.) Implem. Technology 0.18 µm @ 1.5 Volt

* Values denoted with ‘VAR’ indicate adjustable parameters by the GA. For complete parameter ranges refer to [14]
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Fig. 2. Overview of ImpEDE exploration framework.

A. Exploration framework

In order to perform automated exploration, we have em-

ployed ImpEDE – a previously proposed multiobjective,

DSE framework for investigating Pareto-optimal, implant-

processor alternatives [14]. An overview of the framework

is shown in Fig. 2. Optimization (minimization) objectives

within the framework are: maximum execution time (in sec),

total area utilization (in mm2) and total average power

consumption (in mW ). At the core of the framework is a

genetic algorithm (GA) that traverses the design space by

encoding each processor configuration as a chromosome.

These chromosomes are evolved using a process mimicking

natural evolution, in order to yield a Pareto-optimal set of

processor configurations in terms of the three optimization

objectives. For detailed working of the genetic algorithm,

please refer to [14]. Trading off execution times and quality

of results, all full runs of the GA were allowed to evolve for

200 generations with a population size of 20 chromosomes

per generation.

A genetic algorithm needs comparison metrics in terms of

the objectives in order to evolve the objectives in question.

Within the framework, performance (i.e. execution time)

and power metrics are provided by utilizing XTREM, a

cycle-accurate, performance and power XScale-processor

simulator [15]. XTREM allows monitoring of 14 different

subsystems, the most pertinent to our study being: Branch-

Target Buffer (BTB), Instruction Cache (I$), Data Cache

(D$), Internal Memory Bus (MEM) and Memory Manager

(MM). While we have kept some XTREM parameters fixed

in order to model implant processors more accurately, we

have purposefully left some others variable for the GA to

explore their optimal settings, as summarized in Table I.

More advanced microarchitectural structures such as caches

and branch predictors have not been disabled in XTREM as

they have been shown [16], [17] to be relevant within the

biomedical-implant context.

While XTREM has been very useful in our studies so far,

it is not an ideal simulator. One of the major drawbacks of us-

ing XTREM is that it models a low-power, high-performance

embedded processor – an overkill in the implant application

domain. Another shortcoming is that it does not simulate

any (off-chip) memory, thus making system-level simulations

difficult. Also, our long usage of XTREM has revealed a

number of bugs and modeling inaccuracies (see [18] for an

extensive list), most of which have been solved by a newer

simulator XEEMU [19]. Therefore, an XEEMU porting for

our framework is in the process of being developed. In the

meantime, XTREM has been maintained in our exploration

chiefly for reasons of compatibility with previous work,

availability and ease of use. We have combined readouts

from XEEMU regarding memory power consumption and

have updated the power metric in our exploration in order to

overcome some of the above stated limitations of XTREM.

For quantifying each chromosome’s area cost, we have

used CACTI v3.2, a well-known, cache-area estimation tool.

The total area cost has been calculated as the sum of the

(fixed) net processor and (off-chip) memory area, based on

related literature; and the per-case cache (BTB, I$, D$ etc.)

estimates derived from CACTI simulations.

B. Biomedical workload

The above framework is supplemented by biomedical

workloads that are input to the simulators in order to drive the

exploration process. We focus on benchmarks representative

of the actual workloads that will be fed in real implants, in

terms of functional as well as of timing behavior. To represent

these workloads, we make use of the benchmarks found in

ImpBench v1.1 [20], comprising compression, encryption,

data-integrity, synthetic and stress benchmarks (see Table II).

Most implant applications are iterative process wherein

sensors are read, actuators are enabled, and processing tasks

are triggered; all within a fixed, periodical, time frame.

This is also indicated by the benchmarks. A generic, typical

workload mix for future implants has already been presented

in [4]. Concisely, a synthetic application (DMU-variant) ex-

ecutes (manipulating sensors and actuators) and periodically
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TABLE III

IMPEDE-EVOLVED PROCESSOR CONFIGURATIONS.

conf BPRED BTB RAS L1-I$ L1-D$ Mem Ex. Time Power Area
sets assoc sets bl.size assoc repl sets bl.size assoc repl lat.

(-) (#) (#) (#) (#) (bits) (#) (-) (#) (bits) (#) (-) (#cc) (sec) (mW ) (mm2)

1 bimod 64 8 8 4096 16 32 FIFO 4096 16 1 FIFO 2 27.465 17.539 2521.36
2 bimod 128 8 2 256 16 16 LRU 4096 8 2 LRU 16 37.166 15.368 394.53
3 bimod 64 32 0 256 16 16 RAND 1024 32 2 FIFO 1 1.790 123.143 400.92
5 taken 1 1024 32 32 RAND 16 16 16 FIFO 8 26.143 13.842 1325.39
6 nottaken 8 1024 16 4 FIFO 512 32 2 FIFO 1 1.433 63.217 327.10
7 bimod 128 8 4 2048 16 8 FIFO 4096 32 1 LRU 1 1.751 93.200 659.94
8 taken 0 16 32 8 RAND 512 32 4 RAND 8 2.777 74.860 299.37
9 bimod 128 2 4 64 32 8 LRU 128 32 16 FIFO 8 2.181 63.288 327.61

10 bimod 32 16 8 128 8 2 FIFO 16 32 8 RAND 1 4.516 87.887 243.68
11 bimod 64 8 1 256 16 4 FIFO 64 32 16 FIFO 2 1.951 93.366 298.79
12 nottaken 4 16 8 2 FIFO 64 8 2 RAND 8 35.571 88.153 215.30
13 bimod 64 4 2 8 16 1 FIFO 128 32 2 RAND 16 6.834 69.729 227.71
14 nottaken 2 64 16 2 LRU 16 32 16 FIFO 16 4.605 67.197 250.99
15 nottaken 2 16 8 4 FIFO 32 32 2 FIFO 4 6.823 80.947 218.21
16 nottaken 2 8 32 2 LRU 64 16 2 FIFO 1 24.463 71.681 218.84
17 nottaken 1 32 16 16 FIFO 16 32 4 LRU 8 2.868 69.781 238.62
18 bimod 128 2 8 64 8 16 FIFO 16 32 16 FIFO 2 2.222 90.816 268.36
19 bimod 32 1 8 64 16 16 LRU 128 32 32 FIFO 4 1.922 74.419 421.30
20 nottaken 1 128 16 4 LRU 64 32 4 RAND 16 3.395 62.336 236.57

TABLE II

IMPBENCH V1.1 BENCHMARKS. (*) INDICATES TYPICAL VALUES FOR

10 − KB WORKLOADS, EXCEPT FOR DMU-VARIANTS WHICH USE

THEIR OWN SPECIAL WORKLOADS.

benchmark name size dyn. instr.* dyn. µops*
(KB) (average) (#) (average) (#)

Compression miniLZO 16.30 233186 323633
Finnish 10.40 908380 2208197

Encryption MISTY1 18.80 1267162 2086681
RC6 11.40 863348 1272845

Data integrity checksum 9.40 62560 86211
CRC32 9.30 418598 918872

Real applications motion 9.44 3038032 4753084
DMU4 19.50 36808080 43186673
DMU3 19.59 75344906 107301464

Stressmarks stressmotion 9.40 288745 455855
stressDMU3 19.52 124212 224791

stressDMU3
Temperature

Drug release rate

00:00

MM:SS

stressDMU3

logged raw

Pressure
Drug release rate

00:04
stressmotion*

Activity factorMotion

miniLZO

logged raw

data(10KB) 10011100111001110011

Off-chip

RC6

compressed

data(~2.2KB) 10011

Off chip

memory

storage

00:06

RC6

encrypted

data(~2.3KB) XXXX XXXX

00:07

checksum

data with
00:08

Checksum

(~2.3KB)
TxD

CXXXX XXXX

* (indicative

times)

Fig. 3. Conceptual block diagram of simulated implant application (based
on [4]).

(when 10 KB of logged data are collected) compression,

encryption and data-integrity tasks are invoked on the data.

In this case, and in order to provide a realistic, worst-

case, SiMS-processor design, we update the above workload

mix as follows: Per benchmark category, we select the fastest

executing algorithm - i.e. miniLZO for compression, RC6 for

encryption and checksum for data integrity. As for the syn-

thetic benchmark, we replace it by both stressmarks stress-

motion and stressDMU3 which simulate a single-iteration,

worst-case instance of the regular benchmarks motion and

DMU3, respectively. This combination is depicted in Fig. 3.

Every processor configuration (or chromosome) evolved

through ImpEDE is made to execute this whole sequence of

benchmarks, representing the busiest (i.e. worst-case) itera-

tion in the implant’s operational lifetime. The execution-time

metric is calculated as the accumulation of execution times

of all involved benchmarks while the power-consumption

metric is calculated as the weighted average of the power

consumptions of all involved benchmarks with each one’s

execution time used as the weighting coefficient.

To push the worst-case, processor-design envelope further,

and without loss of generality, we use 10−KB EMGII as the

input dataset to the above benchmarks. It features a realistic

size and has been shown to evoke the longest execution times

among the available physiological datasets [14].

It should be noted, last, that all ImpBench benchmarks

(and, thus, the ones currently used) are kernels simulating

the processing load of an implant processor. Therefore, they

suffer from certain modeling limitations: they have no way

(a) of modeling the behavior of any implant peripherals

(biosensors/bioactuators), and subsequently (b) of accurate

modeling any externally triggered (timing or other) events,

i.e. they have no sense of real time. This is a well-known

problem in benchmarking (event-driven) embedded systems.

This has been addressed by introducing extra code in the

benchmarks to imitate the passage of time and the occur-

rence of external events (e.g. timer/sensor interrupt). This,

of course, has to be done in a careful fashion as it can

potentially pollute simulation results in terms of timing

behavior, executed instruction mix and so on.

With the above considerations, ImpEDE has been allowed

to run over significant periods of time in search of optimal

SiMS-processor configurations. Table III lists the results of
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TABLE IV

STUDY CASES OF REAL IMPLANTABLE APPLICATIONS (TAKEN FROM [1]).

case Author Pub. Application Power Sensor Sampl. ADC Core Core Ex.Time Power c/s Area
Year source count rate resol. arch. freq. Worst-case Peak Total

(-) (#) (Hz) (bits) (-) (MHz) (sec) (mW) (mm2)

A Smith et al. [9],
[10], [21]

1998 restoration of paralyzed
muscle, MES

RF-ind. 2 100 12 FSM 1 34.1333 96.00 937.50

B Eggers et al.
[22], [23], [24]

2000 ICP-based diagnosis for
brain diseases

RF-ind. 1 100 10 no 0.125 81.9200 0.24 58.50

C Rollins et al.
[25]

2000 continuous ECG for
spontaneous cardiac
arrhythmias

battery (ext.) 8 1000 12 FSM 2 0.8533 34.00 4209.67

D Valdastri et al.
[11]

2004 gastric-pressure monitor-
ing

battery 1 25000 10 8-bit µC 4 0.3277 50.40 162.00

E Au-Yeung et al.
[26]

2004 continuous AEG, deliv-
ery of atrial ATP

battery 4 333 10 8-bit µC 8 6.1502 115.30 5106.00

F Liang et al. [27] 2005 ENG RF-ind. 1 11000 10 8-bit µC n/a 0.7447 90.00 1350.00

this search. Each one of the 19 entries is a Pareto-optimal,

non-dominated solution to the problem. Performance, power

and area metrics are also reported for each entry.

IV. IMPLANT STUDY CASES

For selecting representative study cases of the implant

application domain, we draw upon the extensive survey

performed by Strydis et al. [1] who has investigated more

than 60 cases of experimental as well as commercialized

implantable devices. The selected applications will help

provide diverse operational requirements for our targeted

SiMS processor(s).
In order for a direct and fair comparison with the candidate

SiMS processor(s), we have to place the study cases in the

same design space as the one traversed by ImpEDE. That

is, we need to know the worst-case execution time, the

power consumption and the area cost of each of the studied

implantable systems. This requirement limits the number of

eligible systems to only 6, as shown in Table IV. In spite of

this, the scope of applications addressed is diverse – spanning

the muscular, neural, cardiac, gastric, atrial, and nervous

systems. An extensive description of the various devices can

be found in [1], yet short descriptions are given below for

convenience.
Device #A, by Smith et al. [9], [10], [21], is used for

functional neuromuscular stimulation (FNS). The authors are

describing a flexible implantable-stimulator and telemetry

(IST) system which makes provisions for multiple channels

of stimulation, multiple channels of sensor or biopotential-

electrode sensing and power and bidirectional data commu-

nication between the implant and an external control unit

(ECU) over a transcutaneous, inductive RF link.
Device #B, by Eggers et al. [22], [23], [24], is a

miniature, implantable, intra-cranial pressure (ICP) measure-

ment system for monitoring patients in the ER (e.g. post-

surgery patients). This essentially is a telemetry-powered,

implantable system consisting of an absolute-pressure sensor

and two low-power ASICs for pressure read-out and telemet-

ric data/power transmission.
Rollins et al. [25] have developed an implantable radio-

telemetry system (device #C) for continuous monitoring of

ECG signals over a period of weeks to months for capturing

all events preceding sudden-death incidents. The design of

the system centers around two separate but inter-dependent

units: the implantable unit and a backpack which holds

batteries for powering the implant, a processor and a WLAN-

card for forwarding the data wirelessly to a base station for

further archiving and analysis.

Valdastri et al. [11] present a new, versatile implantable

system (device #D) that provides multichannel telemetry

of measured biosignals. The presented system consists of

the microcontroller-based implant which can monitor and

wirelessly transmit up to 3 channels to an external receiver

and, in this case, monitors gastric pressure in the stomach.

Au-Yeung et al. [26] have built an implantable device

(#E) which is capable of continuously monitoring the elec-

trophysiological state of the heart atria and, also, of de-

livering chronic and programmable atrial pacing. In effect,

the proposed system can induce standard AF, can measure

the atrial effective refractory period (AERP), can deliver

anti-tachycardia pacing (ATP) therapy and can sense and

telemeter atrial electrograms (AEGs).

The developed system by Liang et al. [27] (device #F)

allows recording and telemetry of electroneurogram (ENG)

signals to an external host computer. The implant is built

to receive power and ASK-modulated commands over a

wireless RF-link and to transmit physiological data back

through passive telemetry. The device consists of a µC

with on-chip, 10 − bit ADC which digitizes and forwards

data acquired from an analog-sensing front-end through cuff

electrodes.

As illustrated in Table IV, actual implant chipset sizes

have been employed for the area metric. The term ‘chipset’

represents the dimensions of any design and assembly type;

ranging from fully integrated and multi-chip module (MCM),

to PCB-mounted. Figures were also available for the implant

chip-only size (in mm2) - e.g. processor die but no sup-

porting PCB - and for the implant package size (in mm3).

However, the chipset area was finally preferred so as to allow

more direct and fair comparisons with the XTREM processor

plus off-chip memory. Memory is specifically included in this
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work as the initial analysis (see section I) revealed rising

trends in memory usage for future implants.

As far as power consumption is concerned, the most

frequently reported figure in the actual implantable systems

is active (peak) power which was the power measured during

full load. This is the power simulated by XTREM as well,

since XTREM does not support any low-power or sleep

modes of operation. Therefore, peak power values as reported

by XTREM, without any conversion, have been used as the

power metric.

Finally, for the performance metric, some estimations were

required in order to make the real and simulated systems

commensurable. All case studies are devices with periodic

monitoring windows, thus exhibiting a specific sampling rate,

as shown in Table IV. The inverse of this rate (or frequency)

signifies the maximal amount of time the device has to read

a sensor value and process it before the next value arrives. In

effect, this is the worst-case execution time of the implant.

Note that we might have used the ‘Core frequency’ as a

measure of the processing rate but this would be accurate

only for designs with very simplistic cores as in cases #A,

#B and #C. For the rest of the cases whereby a full µC

is used, the core frequency is much higher (typically three

orders of magnitude) than the actual sampling frequency and,

thus, does not reflect the real-time deadlines of the implant.

However, the performance metric for the study cases (as

the inverse of the sampling rate) is not yet completely

normalized with respect to that of our processor configu-

rations. As discussed in the previous section, our processor

configurations consume EMG input data of 10 KB. The

study cases, on the other hand, are assigned (by design) the

task of consuming a single sample of size equal to the ADC

resolution used (e.g. 8 bits), from each sensor they have

on-board. Therefore, for each study case to collect 10 KB

of sample data, a longer execution time is needed which is

inversely proportional to the number of available sensors.

The normalized, worst-case execution time is then given by:

ETnorm =
10 KByte

F × N × S
, (1)

where F is the sampling frequency (in Hz) of the sensor(s),

N is the ADC resolution (in bits) and S is the number of

working sensors on the implant. This is the execution time

given in Table IV. It should be noted that formula (1) does

not account for any further processing of the data once ac-

quired. On the contrary, our evolved processor configurations

perform significant processing tasks, as discussed in section

III-B. Therefore, by considering an ideal situation involving

zero processing time for the real life comparison cases, while

keeping a non-zero processing time for our designs, we

design our implant processors for the worst-case.

V. EXPLORATION RESULTS

A. Analysis

In this section, we see how a single processor or family

of processors can be identified as “generic processor(s) for

implants”. We denote this set of processors as P. Once

developed, this family should be able to replace a large

number of implant applications - i.e., there must be a

processor p in the set P that has equivalent or better design

characteristics than the existing application in question. For

reasons of economy, P must be a minimal set.

As mentioned before, we consider 3 design characteristics

– power, performance and area. Therefore, we have a 3D

design space, as shown in Fig. 4a. In this Figure, our

processor design points (denoted with numbers) and the case-

study points (denoted with letters) have been plotted. For

clarity purposes, 2D Figs. 4b, 4c and 4d of the same 3D space

have also been plotted. The bounding boxes around the study

cases represent 10% confidence intervals to compensate for

the uncertainty introduced when trying to fit the study cases

in the design space.

From the figures, we notice that implant devices #A

and #E are dominated by most of the candidate processor

points in all three dimensions. Therefore we can include

any configuration from {6, 7, 8, 9, 10, 11, 13, 14, 15, 17,

18, 19, 20}2 in order to cover applications #A (restoration

of paralyzed muscle) and #E (atrial electrogram and anti-

tachycardia pacing).

The other devices are not so easily fitted without applying

standard engineering practices. For example, device #B, is

largely dominated in terms of execution time and area but

not in terms of power. In fact, #B has the lowest power profile

(0.24 mW ) by a wide margin across processor configurations

and study cases alike. Looking at the application details [22],

we see that, #B is a minimal functionality device measuring

intra-cranial pressure and is powered by an external power

source (through RF induction). Therefore, power is not a big

issue for this application as it allows for a non-implanted

power source – which in practice can be replaced by a

bigger power source if required without compromising the

implanted chip area. Therefore, any of the processors that

dominate #B across the other two dimensions may still

be used to replace it – with the provision of a bigger

external power source, and keeping in mind heat dissipation

constraints. Therefore, #B (diagnosis of brain disease) can

be replaced by {10, 12, 13, 14, 15, 16, 17, 18, 20}.

Furthermore, we see that devices #C, #D and #F are highly

performance oriented. Out of these, device #D performs

gastric-pressure monitoring at the extremely high sampling

rate of 25 kHz, the highest rate among all applications in

the study. In practice, however, gastric pressure varies at a

much lower rate (making 1-5 second samples more than

sufficient), making this a good example of implant over-

design. We see that configuration {2} dominates case #D

if this fact is taken into consideration, and can be a suitable

replacement in practice. On the other hand, devices #C and

#F perform continuous-ECG and ENG monitoring, which are

indeed demanding applications in terms of throughput and,

therefore, cannot be accommodated by a lower sampling rate.

We observe that these devices are dominated by {1, 2, 5}

2As labeled in Figure 4.
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Fig. 4. Comparison of study cases and DSE results for 10 KB workloads running on the selected benchmarks.

and {2, 5} respectively w.r.t. power and area. We see that

configuration {2} is present in all three replacement sets.

Therefore, if {2} were available as a cost-effective, generic,

pre-tested and pre-approved component as envisioned, appli-

cation #D can be replaced without loss of functionality; #C,

#F could be accommodated by adding a hardware accelerator

in order to deliver the required performance. Such a hardware

accelerator is feasible as long as it falls in the power and area

margin provided by {2} as compared to the application in

question.

B. Discussion

From the above analysis, we can make the following

observations: First off, through this study we provide exper-

imental evidence that existing implants are very diverse but

also seriously overdesigned embedded systems. They address

medical applications through ad-hoc device implementations

which are lacking a systematic design approach. A more

structured and top-down approach needs to be asserted if we

want to exploit the benefits microelectronics technology has

to offer these days.

One step towards this direction is the careful design of a

generic processor family P which can service a wide number

of applications. This generic processor family must have at

least one processor from {10, 13, 14, 15, 17, 18, 20} in order

to satisfy applications #A, #E and #B; and configuration {2}
in order to satisfy #C, #D and #F. Out of the former set,

we observe that {15} has the least area and {20} the least

power. Since area and power are both of primary concern

in a constrained implant, the generic-processor family may

contain both these processors. The implant designer may,

then, choose either of these processors depending on which

of these two constraints is more pressing for the (unknown)

application in question. Therefore, the family of processors

chosen is {2, 15, 20}.
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VI. CONCLUSIONS

In this paper, we have presented a complete approach to-

wards systematic, educated and automated microarchitectural

specification of processors for biomedical, microelectronic

implants. We have provided 19 Pareto-optimal processor

alternatives investigating a large set of hardware parameters

such as I-cache and D-cache geometries, branch-prediction

policy and memory latency. To the best of our knowledge,

we have also provided the first comparison between the

suggested processor configurations and existing, documented

implantable devices across a wide range of applications. To

manage this, we have established means of direct comparison

based on careful assumptions that take into account the

unavoidable inaccuracies of our tools. In doing so, we

have proposed processors that can operate under worst-case

conditions, i.e. they are suitably provisioned for the mission-

critical implant applications.

In the future, we intend to expand our DSE framework

to also optimize for system reliability in order to ensure

error-free operation of critical implant applications. For this,

we need to introduce a fourth metric based on reliability,

and expand our tools accordingly. Work has already begun

on porting XEEMU to our system as a more bug-free and

accurate replacement for XTREM. Finally, we would also

like to include more real-life applications in our studies –

however, this is influenced by the extremely limited infor-

mation released for this field.
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