Conservative Application-Level Performance
Analysis through Simulation of MPSoCs

Andrew Nelson
Technische Universiteit Delft
a.t.nelson@tudelft.nl

Abstract—Applications, often with real-time requirements, are
mapped onto Multiprocessor Systems on Chip (MPSoCs). Hard
real-time applications require no deadline misses, and a formal
modelling approach must be used to analyse the worst-case
performance, which is complicated and time consuming. Such
models are restricted to specific application behaviours and not
generally applicable. Soft real-time applications such as video
decoders often do not fit these models while having less strict
requirements. An infrequent frame drop is barely noticeable, and
a worst-case analysis is too pessimistic. For such applications it
suffices to meet deadlines for a given set of traces.

In this work we propose conservative simulation as an
alternative approach to formal modelling for soft real-time
applications. We introduce a hybrid simulation method which
enables performance guarantees on a per-trace basis, without any
modelling effort. Furthermore we evaluate an implementation of
the described technique and compare it with an actual MPSoC
instance implemented on an FPGA. Our results show that the
simulation technique is conservative, with less than a 10%
difference in timing compared to the actual implementation, for
a software JPEG decoder.

I. INTRODUCTION

Real-time applications have temporal constraints to adhere
to. The rigidity of this adherence can be defined subjectively
as a hard or soft constraint [1]. Performance analysis of hard
real-time applications uses formal modelling techniques such
as dataflow analysis [2] or real-time calculus [3]. Formal
models are restrictive of application behaviours [2] and are
not generally applicable. Even if it is possible to modify the
application to fit the model, considerable time and effort must
be spent creating an application model and ensuring that it
accurately captures potentially complex behaviours. Soft real-
time applications such as video decoders often do not fit these
models while having less strict temporal requirements. It is
nevertheless necessary to perform application-level perform-
ance analysis on soft real-time applications in order to ensure
that the temporal requirements of the application are met for
a representative set of inputs [4].

Simulation provides the ability to generate per-trace timings
without the need for an application model. Unfortunately,
simulation does not take into account worst-case behaviour of
the platform and thereby only produces timing estimates. The
increased computational complexity of simulating a hardware
platform also makes it relatively slow when compared with
more abstract techniques. Combining the two techniques of
formal modelling and simulation into a hybrid model presents

978-1-4244-9086-8/10/$26.00 ©2010 IEEE

Andreas Hansson
Universiteit Twente
a.hansson@utwente.nl

51

Henk Corporaal
and Kees Goossens
Technische Universiteit Eindhoven
h.corporaal@tue.nl
k.g.w.goossens@tue.nl

Software |- ;{ [Hardware
i+ Description
Mapping
A 4 A 4
ompilation ompilation
Compilati Compilati

InputHConsewative]

Data Simulation
Trace
Bounds

Conservative simulation based SoC co-design flow.

|

Figure 1.

the opportunity to produce per-trace conservative application-
level performance analysis without the need to formally model
the application.

We propose the use of a hybrid technique called conservat-
ive simulation as an alternative to formal analysis to generate
per-trace temporal bounds, without requiring any modelling
of the application. We achieve this by combining already
existent, cycle accurate processor Instruction Set Simulators
(ISS) with a conservative NoC communication model of our
own design. We further contribute a conservative simulation
based hardware/software co-design method, as illustrated in
Figure 1. Software code needs only to be mapped onto the
hardware platform before being compiled and linked into a
simulation executable program. The mapping process involves
assigning portions of the application (tasks) to individual
processing cores and ensuring that communication is carried
out using explicit synchronisation. The resultant code only has
to be compiled and linked in order to perform conservative
simulation. The simulation processes the input data producing
a trace bound. A more thorough application-level performance
analysis can be carried out by inputting a representative
dataset [4] to the simulated application, e.g. a H264 decoder
application simulation, processing a set of videos of varied
complexity. When we apply our technique to a JPEG decoder
application, that is mapped to a three processor system, it
produces conservative, per-trace timing results with less than
10% difference compared to the actual implementation.

The rest of this paper is structured as follows. In the
following section we discuss the work of this paper in the
context of related work and declare the contributions that

ESTIMedia 2010

we make. In section II we explain the rationality behind the
conservative simulation technique for conservative application-
level performance analysis of real-time MPSoCs. In section IV
we present a hardware platform to which the conservative
simulation technique has been applied, focussing on the ne-
cessities that make our approach applicable. We follow this in
section V with a detailed description of our hybrid modelling
approach to the hardware platform. In section VI we describe
how to achieve application level conservativeness in a multi-
core system using our NoC model. We provide a case study
analysis of our technique by applying it to a JPEG decoder
application, in Section VII. We end this paper with conclusions
in section VIII.

II. RELATED WORK

Many techniques for modelling hardware platforms have
been proposed in the past. In this section we focus on tech-
niques that overlap with our work in some way. Multiprocessor
simulation methods such as those in [5], [6] enable the
production of timing results through simulation of applications
running on a cycle accurately modelled platform. Simulation
techniques such as these do not take into account the worst
case response times of individual components by construction.
As a result any timing analysis will be an estimate, making
it unsuitable to draw firm conclusions relating to real-time
deadlines. In contrast to these simulation techniques, our
method provides per-trace temporal guarantees.

Formal methods such as dataflow analysis [2], [4], [7] and
Real-Time Calculus (RTC) [3] enable abstraction away from
platform and application details by generalising functional
and temporal behaviours. Using these methods, it is possible
to analytically derive temporally conservative timings at the
transaction level. In [8] it is shown that the Latency Rate
(LR) server [9] abstraction technique can provide conservat-
ive abstraction for certain arbitration schemes and that they
can be incorporated into dataflow graphs. The work in [10]
describes a method to conservatively model a predictable
MPSoC platform and an application as a combined Cyclo-
Static Dataflow (CSDF) graph [2]. The technique is only
applicable to applications that can be modelled as CSDF
graphs, with time and effort needing to be spent in order to
create CSDF models for each application that the platform
will run. Our technique provides the ability to perform per-
trace conservative application level performance analysis on
software without the need to create application models. The
formally modelled hardware in [10] could also be applied to
an application trace to enable the analytical derivation of per-
trace guarantees. In order to analytically bound a trace from
an application the trace information must first be obtained.
This trace can be obtained through simulation of the platform.
Our proposed solution uses simulation to not only generate
the trace but also perform the temporal analysis of the trace,
in a single pass.

Stochastic methods such as those described in [1] target
Soft Real-Time applications by enabling the derivation of the
probability of an application missing a deadline. The stochastic
methods described in [1] require mathematical analysis of the

52

application and hardware of a similar degree of complexity
[4] as the previously described formal methods, while not
producing a definitive guarantee. Our method requires no
temporal profiling of the application to produce definitive con-
servative per-trace guarantees. For Soft Real-Time applications
the conservative simulation method is used to ensure that a
representative set of input stimuli [4] meet their deadlines
so that other subsequent stimuli are also likely to meet their
deadlines.

An increasingly popular approach is to combine simulation
and formal methods to create a hybrid analysis technique.
In [11], [12] a hybrid approach is taken that combines real-
time calculus with simulation in order to produce trace based
timing values. The approach in [11], [12] requires the formal
modelling of chosen application tasks, thus requiring much
time and effort. In [13] the abstraction of specific application
tasks is avoided by abstracting their platform’s Real-Time
Operating System (RTOS). This is beneficial as a new abstract
model does not need to be created for every application that is
to be run on the platform. The technique in [13], in contrast to
our method, does not produce conservative temporal analysis.
In [14] a multi-stage approach is taken starting with high-
level abstract models for functional validation and eventually
refining the model into a transaction-accurate model. In con-
trast to the approach in [14] our method produces conservative
temporal results after a single simulation pass.

Our simulation technique enables the compilation and sim-
ulation of application code that has been mapped to the target
platform. Only a single iteration of the simulation is required
to produce conservative application timings. We contribute a
conservative hybrid simulation approach that combines formal
modelling with cycle accurate simulation, which enables the
hardware/software co-design flow illustrated in Figure 1. To
achieve this we further contribute a description of how to
model an Athereal NoC [15] for conservative simulation.
We subsequently contribute an automated toolflow for the
derivation of the parameter values required for this model.
We finally contribute a case-study analysis of our technique
in which we compare simulation results with those from an
actual FPGA implementation of the platform, for an actual
soft real-time application in the form of a JPEG decoder.

III. CONSERVATIVE SIMULATION

In this paper we focus on the conservative performance
analysis of real-time MPSoCs. A real-time MPSoC is a com-
bination of hardware and software elements. For our purposes,
at the hardware-level a MPSoC consists of multiple processing
cores, memories and other peripherals all connected together
in some configuration by an interconnect, e.g. the MPSoC
illustrated in figure 2. Shared hardware resources require
arbitration schemes to decide which of the sharing resources
gets to use it at any given time. Arbitration schemes such
as Time Division Multiplexing (TDM), Round Robin (RR)
and Credit-Controlled Static-Priority scheduling (CCSP) [16]
allow the starvation-free sharing of resources facilitating the
calculation of a temporal worst case upper-bound for each
arbitration. The actual duration of an arbitration depends on

[C;)re+ 2] [C;)re+ 3]
[Host}’[; ;]

[Timer] [Frame Buffer] [Memory]

Athereal NoC

Figure 2. Hardware platform instance.

the arbiter’s settings, e.g. a TDM table’s length and utilisation,
and the arbiter’s phase at the start of the arbitration process,
i.e. where a TDM arbiter is in its table.

At the software or application-level, applications execute
processing input data. The execution of the application may
be input dependent meaning that more or fewer cycles may be
needed to execute an application depending on the input data.
The performance at the application-level is also dependent
on the hardware-level. Application-level performance analysis
of an MPSoC is therefore dependent on the input data, the
arbitration settings and the arbitration phases.

Formal modelling of real-time system designs enable analyt-
ical validation of worst case temporal behaviours for all input
data, arbitration settings and phases. Formally modelling a
real-time system is not trivial. All formal modelling techniques
impose restrictions on behaviours in order to enable the analyt-
ical calculation of worst case temporal bounds. Formal mod-
elling methods such as Dataflow [2], [4], [7] and Real-Time
Calculus [3] use graph theory in order to analytically bound
temporal behaviours. The behaviours of both the hardware
and the software must be encapsulated within the restrictive
modelling technique in order to guarantee Worst Case temporal
bounds. Each application that is to be run on a platform must
be modelled individually. If the application behaviours do not
fit the model then a choice must be made to either invest
time to find a new formal modelling technique that fits, if it
exists, or spend time modifying the application to fit the model,
if possible. As such a balance must be struck between the
severity of the consequences of the real-time system missing
a deadline and the complexity of carrying out a conservative
application-level performance analysis. With vast amounts of
available code that has not been written with formal modelling
techniques in mind the process of verification adds complexity
to the porting process.

Embedded system designers are already familiar with using
simulation as part of the code porting process. Simulation is
used to test the functionality of applications before they are run
on a physical implementation of the platform. Cycle accurate
simulation may be used to provide temporal indications of a
design’s performance. Cycle accuracy in this case refers to
the modelling of the hardware components. These temporal
indications can be provided without the restriction on system
behaviours needed to perform a formal analysis. Unlike for
formal analysis each cycle accurate simulation is only valid for
the particular input data, arbiter settings and phase that were
used for the simulation run. Even though the timings produced
are not useful to provide any meaningful level of real-time
guarantee, the lack of application restrictions in combination
with the straight forward cycle accurate modelling of the

53

Table 1
REAL-TIME GUARANTEES GIVEN BY EACH TECHNIQUE.

Vinputs | V arb. settings | V arb. phases
Formal Modelling Yes Yes Yes
in general
Formal Modelling Yes Optional Yes
technique in [10]
Stochastic Modelling No No No
techniques in [1]
Conservative Simulation No Optional Yes
(per-trace)
Cycle Accurate Simula- No No No
tion

hardware make this technique relatively easy to implement.

We contribute a hybrid method for conservative application-
level performance analysis that combines formal modelling
techniques with simulation to provide per-trace temporal guar-
antees. Our conservative simulation technique generates per-
trace conservative application-level performance guarantees
striking a balance between the ease of use of simulation and
the assurances provided by formal modelling. For conservative
simulation a per-trace guarantee means that the produced
timing is the worst case timing for the input data and arbit-
ration settings used for that simulation, but independent of
arbitration phases. As such our technique is proposed as an
alternative to formal methods for the conservative performance
analysis of soft Real Time embedded systems where missing
an occasional deadline may be tolerated. By conservatively
simulating a representative set of data inputs [4] our technique
guarantees that the deadline miss rates of the same set of traces
on the implemented MPSoC could only be lower. Table I
shows an overview of the capabilities of some performance
analysis techniques to provide real-time guarantees.

Our technique works for predictable hardware platforms
such as that described in [17] that are temporally monotonic.
The monotonic property ensures that if all the events in
the multiprocessor platform are viewed as a single time-line
the later occurrence of an event does not enable the earlier
occurrence of subsequent events and similarly the earlier
occurrence of an event does not enable the later occurrence
of subsequent events. At the hardware level it is therefore
possible to mix conservative modelling with cycle accuracy
without losing overall conservativeness. This conservation of
conservativeness does not automatically confer to the applic-
ation level and is dealt with separately in section VI.

It is the monotonic property of the hardware that we exploit
by using formal modelling techniques to conservatively model
only the run time arbitrated components of the hardware
platform. By incorporating these models into an otherwise
cycle accurate simulation of the hardware platform and tuning
them using the arbitration settings we are able to provide per-
trace conservative guarantees that are valid for all arbitration
phases with few restrictions on the application. The same
results that are achieved using a single run of our conservative
simulation technique can be achieved by using multiple runs of
a cycle accurate simulation to cover all the arbitration phases
and all the arbitration settings. The practicality of doing this
is questionable for all but the simplest of designs.

—| [o= [T -+
& w| |2
NI Qg NI g g
. AL
,,,,,,,, § 3
o Mmoo I
Z i A&
:Ec a NI S NI
AT ¥ eHmmm
Figure 3. Example of an Athereal NoC connection from a Master IP to a
Slave IP.

We contribute a tested real-time SoC design flow that
uses conservative simulation to verify on a per-trace basis
if the system would meet it’s tolerated deadline miss rate,
as illustrated in figure 1. Hardware and software elements
of the SoC are described separately before being compiled
and linked into a conservative simulator of the system. Input
data is loaded into the simulation at run-time, facilitating the
production of multiple traces without the need to recompile
the conservative simulator. In the following section we provide
the description of a hardware MPSoC platform to which our
technique has been successfully applied. In section VII we
combine software case studies with the hardware platform
and using our design flow we present their conservative
application-level performance analyses.

IV. HARDWARE PLATFORM

The hardware platform follows the predictable hardware
template from [17] that combines components at the IP-
level. Predictability of the platform is achieved through the
deterministic execution-ordering and duration of processor in-
structions, facilitated by access to memories with deterministic
access times via an interconnect that can provide guaranteed
temporal upper-bounds on transaction latency and throughput.
The work in this paper applies to the hardware template, not to
a specific hardware instantiation, and the general theory should
be applicable to other predictable hardware architectures. An
example of a suitable hardware platform is a simple multi-core
system with some distributed shared memory, connected by a
bus that uses a TDM arbitration scheme.

The hardware platform to which we apply this technique is
a more complicated multi-core system using multiple VLIW
processing cores with local instruction and data memories,
connected by an Athereal NoC [15] to a distributed shared
memory, as illustrated in Figure 2. A framebuffer and timer
peripheral are also included in the design to facilitate visual
output and measure run-times respectively. The scheduling of
instructions for the VLIW cores is taken care of at compile
time and the VLIW cores do not have any hardware-level
optimisations that modify this ordering. The compiled code is
used for both simulation and on the actual implementation of
the platform facilitating direct comparison of timings. We have
implemented this technique using an already existent cycle
accurate Instruction Set Simulator (ISS) for the processing
cores. The required monotonicity of the hardware platform

54

Corel Core2 Core3

Timer FrmBuf Mem

Figure 4. Example of an Athereal NoC connection use case. Arrows indicate
the connection orientation from master to slave.

for the conservative simulation method permits the use of
conservative methods other than the use of cycle accurate ISS’s
for the processing cores.

The VLIW cores put MMIO transaction requests directly
onto the ZAthereal NoC. The Athereal NoC connects the com-
ponents together providing contention free routing, achieved
using pipelined Time Division Multiplexed (TDM) circuit
switching. Logical connections are set up from initiator (mas-
ter) ports to target (slave) ports following a TDM schedule that
is calculated off-line. An example of an Athereal NoC use
case can be seen in figure 4. Each arrow in figure 4 represents
a single logical connection across the Zthereal NoC from a
master port to a slave port. The TDM scheduling enables a
logical connection’s throughput and latency to be guaranteed
independent of other connections as it cannot be affected by
the network utilisation of other connections. The guarantees
on throughput and latency for each logical connection allow
each connection to be modelled individually.

We will now explain the physical transaction path across the
NoC from a master port to a slave port. A transaction can be
either a read or a write. The Zthereal NoC uses posted writes
meaning that the IP on the master port may continue operation
as soon as the transaction is accepted by the NoC without
having to wait for an acknowledgement from the slave IP. By
construction, the NoC in our implementation operates on a
fixed word sized granularity. Figure 3 illustrates the request
and response channels of a transaction path from master to
slave and back again.

Taking a read request sent from a processing core (master)
to a shared memory location (slave) as an example we will
explain the hardware processes required to carry out this
request. The processing core initiates the read transaction on
the local bus where the address of the desired read location
is decoded. The bus may have multiple outgoing logical
connections, each represented by their own shell. Following
the address decoding the appropriate shell is selected for the
logical connection between the processor and the memory.
The shell serialises the request, encapsulating the bus-level
transaction. A read is encapsulated as two word sized headers
and a write is encapsulated as two word sized headers plus one
word of data payload. The serialised transaction is then passed
to the Network Interface (NI) where it is buffered until it is
scheduled for packetisation and injection onto the network.

Each logical connection is buffered separately to avoid
interference with traffic from other connections. The buffers
maintain a FIFO ordering of requests. Once a request reaches
the head of the queue a TDM arbitration scheme in combina-
tion with credit based flow control decides when to inject the
request onto the router mesh. Arbitration is carried out on a

Request

Response

Processor

credit return

Figure 5. Representation of a virtual connection using a combination
of formally modelled components (Black) and cycle accurate components
(White).

word sized granularity meaning that a single read transaction
requires two arbitrations and single write transaction requires
three arbitrations, in the producing NI. The TDM scheme is
configured to ensure that the request will reach its destination
without being blocked. The credit based flow control system
ensures that buffer overflow is avoided. To facilitate this a
credit tally is kept at the producing NI that represents space
in the connection’s corresponding buffer in the consuming NI.
When data is sent across the network the tally is deducted.
Once there are no more credits, data cannot be transmitted un-
til credits are returned from the receiving NI. The combination
of TDM scheduling and credit based flow control ensures that
a guaranteed bound on latency and throughput can be given
per logical connection, from producing NI to consuming NI.

Once the request is injected onto the router mesh the request
crosses the network making a fixed amount of hops for any
given connection before being de-packetised and buffered
again in the receiving NI. The request is buffered until it can be
passed to the shell that is allocated to logical connection from
the processor to the memory. The shell de-serialises the request
and passes it to the local bus of the memory. The bus may
have multiple incoming shells making an arbitration scheme
necessary for access to the slave. In our implementation a
Round Robin (RR) arbitration scheme is used to provide
access to the slave, permitting access only if space is available
in the logical connections buffer in the producing NI of the
response channel. The RR arbitration scheme ensures that a
guaranteed latency and throughput is maintained for access to
the memory. Once scheduled for access to the memory the
read request is serviced, retrieving the requested data.

The response path of the logical connection operates in
the same manner as the request path. The response is buf-
fered in the producing NI of the response channel where
TDM scheduling and flow control are used again to ensure
a guaranteed bound on latency and throughput per logical
connection, from producing NI to consuming NI. Upon arrival
at the consuming NI the response is buffered until it is de-
serialised in the shell. Once de-serialised the retrieved data
from the memory is passed back to the processor, completing
the transaction. Due to the construction of the NoC and the
arbitration schemes used, guaranteed upper bounds on latency
and throughput can be given per logical connection, for the
servicing of transactions.

55

Figure 6. Dataflow representation of a Latency Rate (LR) server.

The Zthereal NoC also exhibits the required temporally
monotonic behaviour for the application of our conservat-
ive simulation technique. In section V we show how the
monotonic property of the NoC can be used in conjunction
with the ability to model logical connections individually to
create a hybrid model that can be used for transaction-level
conservative performance analysis.

V. NoC COMMUNICATION MODEL

In this section we explain how the individual NoC connec-
tions can be modelled conservatively using a hybrid of formal
modelling techniques in combination with cycle accurate sim-
ulation.

The work in [10] describes how the Cyclo Static Dataflow
(CSDF) [2] formal modelling technique can be applied to real-
time MPSoCs, that use the ZAthereal NoC, in order to provide
conservative application-level performance analysis. In con-
trast to our method, in [10] it is required that applications are
also modelled using the CSDF formal modelling technique
so that conservative analytical bounds may be derived. A
method for dataflow analysis [2] of the Athereal NoC is
described in [10] that models each connection individually as
a request and a response channel. In [10] the entire request
and response channels are modelled conservatively using a
dataflow representation of Latency Rate (LR) servers [8], [9].
For our conservative simulation technique we use formally
modelled LR servers in combination with cycle accurately sim-
ulated hardware components. By only modelling the runtime
arbitration schemes using dataflow modelling we achieve a
finer grained conservative abstraction level for each connec-
tion. This facilitates the production of tighter conservative
guarantees.

An Athereal connection, as illustrated in figure 3 may be
modelled for use with conservative simulation as illustrated in
figure 5. Many of the hardware components have response
times that are unaffected by when they are used. These
components are modelled cycle accurately and are represented
in white in figure 5. Run-time arbitrated components have
response times that are related to when they are used, e.g.
the response time of a TDM arbitration depends on where
in the table the scheduler is at the start of the arbitration.
These components are formally modelled and are represented
in black in figure 5. This model can be used in simulation
to provide transaction-level guarantees that are valid for all
arbitration phases and for all arbitration settings depending on
how it is configured.

The TDM and RR arbitration schemes used in the Zthereal
NoC enable upper bounds to be derived for their worst case
temporal performance. While these arbitrations schemes may

D no service

. service

>
0 p!
Figure 7. Example TDM arbitration table.

be conservatively modelled as a static delay of their worst case
performance, LR servers enable less pessimistic, temporally
conservative abstraction. This is achieved by characterising
the temporal behaviour of the arbitration scheme as two
values Latency and Rate, represented by 6 and p respectively.
Detailed rationalisation of the workings of LR servers is
beyond the scope of this paper, and we direct you to [8], [9] for
more details. LR servers may be represented conservatively as
a dataflow graph [8], as illustrated in Figure 6. Dataflow actors
[2] Vo and V, represent the Latency and Rate components
of the LR server, respectively. The response time of the
Latency and Rate dataflow actors are represented by Tg and
Tp respectively.

The dataflow actors can fire (start executing) as soon as
tokens become available on all of their incoming edges. In
figure 6 actor Vy can fire as many times in parallel as there
are tokens on its incoming edge, producing a token on its
outgoing edge when its firing is complete. Actor V,, has a self
edge with a single token meaning that only one firing of the
actor may take place at any time. Once the token on the self
edge has been consumed the actor V,, cannot fire again until
it has finished firing and produced a token on its self edge.
In figure 5 it is shown that the formal model used for the
producing NI’s (NI,,) is dependent on the credit return of the
flow control just as the actual scheduling is dependent on the
availability of credits. If no credits are available, indicating that
there is no space in the buffer in the consuming NI (NI.), then
the formal model of the arbitration in the NI, will not start
operating on any new data arriving in the buffer until credits
are returned. This behaviour is in keeping with the physical
implementation of the arbitration in the producing NI’s.

In order to conservatively model run-time arbitrated com-
ponents using LR server abstraction they must first be charac-
terised as Latency and Rate values. In Figure 8 we contribute
an automated toolflow for LR value derivation. TDM arbitra-
tion tables for use in the NIs are generated from the desired
individual NoC connection parameters, such as bandwidth.
Zthereal NoC resource allocation for individual NoC connec-
tion parameters is described in detail in [18]. The Latency
and Rate values for individual connections are subsequently
derived from the TDM tables. An example of a TDM table
is illustrated in figure 7. The table in figure 7 is made up of
slots of service and non-service. The table continuously cycles
meaning that an element arriving for arbitration may have to
wait until a slot where it can be serviced comes round again.
The worst case response time 7 of the TDM table is the longest
time that an element requiring would have to wait before it
is scheduled. In the worst case a Round Robin arbitrations
scheme also acts as a TDM table. From these TDM tables the
Latency 0 and Rate p values are calculated from the Worst

56

Individual NoC
Connection
Parameters

NoC Resource NI TDMA LR Value LR
Allocation Tables Derivation Values

Tool flow for Latency Rate (LR) value derivation.

Figure 8.

Case response time 7 of the table as follows.

F=0+p "

The derivation of this equation is beyond the scope of
this paper, for more information we refer you to [8]. The
LR values 6 and p can be computed prior to the simulation
and stored in an XML document, for example, to be loaded
by the simulation. This allows the simulation to be easily
reconfigured to conservatively bound other arbitration settings.
It is also possible to generate LR values that bound the worst
case arbitration setting and hence the per-trace temporal bound
produced by our simulation technique will be conservative for
all arbitration settings and arbitration phases, e.g. generate
the LR values for a maximum length TDM table that can
be instantiated with the lowest possible utilisation. This is
shown in table I for the formal modelling technique in [10]
and conservative simulation as an optional property.

The LR values are used in the simulation to calculate the
length of time data would have to wait for scheduling by the
arbitration scheme in the context of data that was previously
scheduled, as per the LR server model illustrated in Figure 6.
FIFO buffers in the NIs are modelled so that the scheduling
time of the previously scheduled element, by the LR server, is
taken into account when scheduling the subsequent element.
The absolute response time of an element Ej entering a FIFO
buffer to be scheduled can be calculated using Ey’s start time
in the FIFO, the previously scheduled element E_;’s absolute
response time and the LR values 6 and p respectively.

responseEy = MAX (startEy+ 0, responseE_) + pf1

Using the hybrid Athereal NoC model in combination with
cycle accurate processing core ISS’s, we can now generate per-
trace timing results that are conservative for single processor
systems. The model is conservative at the hardware-level but
the conservativeness does not automatically confer to the
application-level for multiprocessor systems. In the following
section we demonstrate that application-level conservativeness
is not guaranteed because of hardware-level conservativeness
and explain how we can give conservative application-level
bounds in this case.

VI. APPLICATION-LEVEL
CONSERVATIVENESS

In the previous sections we take the general idea of Con-
servative Simulation, show a hardware platform to which it
is applicable and describe how our technique can be applied
to this platform. The monotonic behaviour of the hardware
platform is utilised to permit conservative abstractions of hard-
ware components while preserving overall conservativeness. In

A A :
Corel [read x [Mem.[x=0 | [readx [Mem. [x=1 |

FPGA
Core2 [write x=1 [Mem. |

A Q!

Corel [read x . JMem. Jx= |22t

SIM o Conservative <52277757 ;gi :

Core2 |write x = 1 * TMem. | R

Figure 9. Timing analysis of inter-IP synchronisation modelled using
conservative transaction times.

order to provide conservative application-Level performance
analysis of a MPSoC it must be possible to also conservatively
bound the application-level behaviours of the system. In this
section we show that conservatively modelled hardware is
not enough to guarantee application-level conservativeness
for the application-level behaviour of synchronisation. We
subsequently explain how conservative application-level per-
formance analysis can still be performed in this case.

In section V we describe how to model the Athereal NoC
for use with conservative simulation. Our description covers
how to conservatively model individual NoC connections, such
as those illustrated in figure 4, by incorporating formal mod-
elling techniques to bound the temporal behaviour of run-time
arbitrated components. This is sufficient to provide hardware-
level or transaction-level temporal bounds. Consequently, in-
dividual transactions across the NoC can be simulated to
generate conservative timings. However, the application-level
act of synchronisation is not necessarily conservative. As
we show in Figure 9 application-level conservativeness in
simulation is not automatically conferred from transaction-
level conservativeness in simulation.

Figure 9 illustrates a timing analysis of a two cores syn-
chronising in a MPSoC, using a flag value (x) in shared
memory. In this scenario Core I reads the flag value in shared
memory that Core2 sets equal to 1. If the flag has not been
set, Corel repeatedly reads the flag until it reads that the
flag value has been set equal to 1. In the implementation
of the system (FPGA) Core I reads the flag just before
Core 2 sets the flag value equal to 1, forcing Core 1 to
read the flag again to receive the flag value that Core 2
set. In simulation (SIM), even though all the transactions
are conservative in comparison to the implementation, the
overall act of synchronisation at the application-level is not
conservatively bound. This may occur, as illustrated in Fig-
ure 9, when Core 2 gains access to the memory first and sets
the flag value equal to 1. Core I subsequently reads the set
flag value and does not perform another read unlike in the
implementation version. The application-level act of inter-IP
synchronisation is therefore not conservatively bounded. This
is not a quirk of our particular implementation but a general
observation that conservative transaction-level modelling does
not automatically confer conservativeness to the application-
level.

It is possible to bound synchronisations conservatively at
the application level, by simply making Corel in the simu-
lated version of the application read the flag one more time,
upon reading that the flag value (x) set by Core2 is now

57

MF1 _RespFl CF ReqF1 _MF1 _RespF1

Corel [Mem.[x=0 | Treadx [Mem. [x=1 i
FPGA RegF2 LFZ : Conservative

Core2 |writt x=1 [Mem. | J

|
|
|
|
:
|
MS1__ReqS1_CS _ReqS1__MS1__RespS1!
< |

[read x [Mem. [x=1 |
|

|

|

J

Corel - IMemJx=1]
SIM RegS2 MS2
<>
Core2 [write x=1 [Mem. |

Figure 10. Timing analysis of inter-IP synchronisation modelled using our
extra read technique.

equal to 1, as illustrated in Figure 10. Since transactions are
conservatively modelled, the absolute response time of the
write from Core2, to set the flag value, is never less than the
implementation. The worst case response time for the act of
synchronisation occurs whenever Corel just misses reading
the flag value that Core2 sets and has to read again, as is
illustrated in Fig 10 for the FPGA. The best case response
time for the act of synchronisation occurs whenever Corel
reads the flag value immediately after it has been set by Core2.
Since individual transactions are conservatively bounded, it
is sufficient for Corel in the simulation to read the flag
again upon reading the set value in order to conservatively
bound the act of synchronisation. This bounds the scenario
that the implementation experiences the worst case response
time, while the simulation experiences the best case response
time, as is illustrated in Fig 10 for the SIM. It is necessary that
there is only a fixed duration of computation between reads
during synchronisation, otherwise the temporal behaviour of
the synchronisation cannot be bounded using this technique.
Theorem 1: Conservatively modelled NoC transactions in
simulation do not guarantee application level conservativeness.
Assumption 1: All timing values exist in the R>¢ domain.
Assumption 2: Simulated transaction times are never
shorter than implementation transaction times. This is also true
of the timed elements that the transactions are composed of.
Assumption 3: A simulation write will never start earlier
than the same write in implementation.
Assumption 4: Simulation time between reads is never
shorter than implementation time between reads.
Assumptions 1-3 are obvious observations of the properties
of a conservative simulation. Assumption 4 is not inherently
true in a conservative simulation. One method of ensuring
that this is the case is by stipulating that only a fixed number
of fixed duration instructions may be executed between reads
for the specific case of synchronisation.

In order to maintain conservativeness;

SIM Sync Time > FPGA Sync Time

To show that reading an extra time in simulation, upon
reading the desired value, maintains conservativeness this must
be shown to be true in all cases. In order to bound all cases
the worst case timing of the implementation must be bound
in simulation.

As is illustrated in figure 10, the worst case for maintaining
conservativeness of a synchronisation occurs when the core
that is reading the synchronisation flag value (x), in the FPGA
implementation, reads the flag value just before it is written
requiring that the flag must be read again to receive the
set value. In simulation (SIM) the core that is reading the
flag value reads the flag value just after it has been set,
and therefore the synchronisation is complete. Even though
the transaction lengths are conservatively bounded the act of
synchronisation has a shorter duration in simulation (SIM)
than in the FPGA implementation. Reading one extra time in
SIM, even though it is functionally unnecessary, conservatively
bounds the synchronisation of the FPGA implementation. This
produces the following synchronisation timings, using the
naming from Figure 10:

SIM Sync Time =
ReqS2 4+ MS2 + MS1+ RespS1+CS + ReqS1 +MS1
+RespS1

FPGA Sync Time =
ReqF2 4 RespF1 +CF +RegF1+MF14 RespF'1

Conservativeness of a simulation is lost if the timings in
simulation are less than the timings in the implementation. The
worst case for maintaining conservativeness therefore occurs
when SIM transactions and FPGA transactions are equal in
duration. Therefore cancelling out equivalent terms:

RegSZ+ MS2+ MS1 + RespST+ OS5 + RegSt + MST
+RespST > Regt2
+RespF 1T+ CF + RegF T+ MFT+ RespFT
Leaving
MS2+MS1>0

This is always true due to Assumption 1; memory ac-
cess times cannot be negative. Therefore reading an extra
time in simulation, after reading the desired synchronisation
flag value, will always cause the simulation synchronisation
to conservatively bound the implementation synchronisation.
This method is not tightly conservative and will bound the
synchronisation plus the simulated memory access times for
Core 1 (MS1) and Core 2 (MS2).

To ensure that synchronisation is performed in this manner,
we suggest incorporating the extra complexity in a communic-
ation API and stipulate that all inter-IP synchronisation should
be carried out using it. Rectifying the inter-IP synchronisation
conservativeness at the transaction-level in the simulation
model adds the complication of being able to distinguish
between synchronisation reads and communication reads. The
abstract classification of the reads as synchronisation reads
originates at the application-level. We propose an application-
level solution using an application-level communication pro-
tocol such as C-HEAP [19], in order to avoid the necessity
for such a classification.

58

The C-HEAP Application-Level Communication API works
well for streaming applications, i.e. signal processing applic-
ations, and may be modified to incorporate our extra read
technique to maintain application-level conservativeness. The
C-HEAP API uses explicit synchronisation followed by com-
munication via circular buffers to communicate data between
distributed IP. The synchronisation stage involves reading a
pair of counters that represent buffer occupancy. The C-
HEAP API may be made suitable for use with our extra
read technique by simply modifying the synchronisation stage
to read the counters an extra time upon reading that the
counter values have changed. The communication stage can
be performed as normal because the explicit synchronisation
stage ensures that only one core accesses a particular area of
the circular buffer at a time.

VII. CASE STUDIES

In this section we will describe how our conservatively mod-
elled simulation platform is applied in practice and evaluate
our technique using case study analysis. Our case studies will
consist of a synthetic application and an actual soft real-time
application in the form of a JPEG decoder.

For the purposes of our experiments we use the multi-
processor simulator from the Silicon Hive HiveCC Software
Development Kit [20]. The Silicon Hive multiprocessor sim-
ulator facilitates the use of our conservative simulation based
design flow, illustrated in figure 1. The hardware platform from
section IV is implemented in FPGA and modelled using cycle
accurate Instruction Set Simulators (ISS) for the processing
cores and the conservative model described in section V for
the connections of the ZAthereal NoC. The latency rate values
required for the NoC connection models are derived from
the arbitration settings used in the FPGA implementation
following the flow illustrated in figure 8. The hardware needs
only to be described and compiled once for use with multiple
applications.

Our case study analysis of our conservative simulation tech-
nique is carried out for different applications that are mapped
to the example platform. The applications are mapped onto the
platform manually ensuring that the conditions required for
conservative application level performance analysis are met,
as described in section VI. The applications are compiled
and linked with the hardware model creating a conservative
simulation model of the entire real-time MPSoC. By running
the same applications on both the FPGA and in conservative
simulation, and by using the same input data sets it is possible
to perform a direct comparison of the temporal results of
the simulation with the actual implementation. We compare
the results of the FPGA implementation with two different
hybrid simulation models. One of the simulation models
represents the runtime arbitration using a static Worst Case
(WC) bound. The other simulation model uses the Latency
Rate (LR) dataflow model as illustrated in figure 6, to bound
the arbitration scheme.

Our first case study demonstration makes use of a synthetic
application that enables the timing of an 8 kbyte array data
transfer to and from distributed shared memory. The array is

WC Arb. Sim. H—
LR Arb. Sim. =3
FPGA —— |

Cycles (x10%)

Read

Write

Figure 11. Array transfer case study results.

written to the remote memory location one word (32 bits) at a
time, and read back in the same manner. We do this because
our NoC by construction works on a word size granularity.
The results illustrated in Figure 11 compare the application
timing results for both simulation models and execution on
an actual implementation of the system. When comparing the
simulation times of the two simulation models, the simulation
that uses the LR dataflow model for the arbitration gives
a tighter conservative bound than the static WC arbitration.
We can also see that the LR simulation time for writing
the array in figure 11, shows a higher accuracy compared to
reading the array, in comparison to the timings on the FPGA
implementation. This is to be expected, as the NoC’s ability
to perform posted write transactions enable the processor to
continue processing as soon as the data to be transmitted is
put on the NoC’s local Bus interface.

Since the processor can continue processing, it may send
multiple writes one after the other onto the NoC. The Latency
Rate (LR) servers that are used to model the run-time arbit-
ration provide tighter conservative bounds if kept busy. The
Latency component (vg) delay of the LR server model illus-
trated in figure 6, allows multiple transactions to be delayed
at the same time. The pipelining of the Latency delay allows
for tighter conservative bounds for streaming transactions. The
static WC arbitration simulation for writing the array can be
seen to be much more conservative than the LR arbitration
simulation in figure 11 for this reason.

Read transactions can only be carried out one at a time since
the processor has to wait for the data to be returned before
it can continue processing. A series of read transactions are
therefore not able to take advantage of the tighter conservative
bounds of the LR server like write transactions can. The
difference between the WC arbitration simulation and the LR
arbitration simulation is caused by how a read transaction is
physically represented. In the Athereal NoC, as illustrated in
figure 3, the shell encapsulates the read transaction as two
word sized headers. The arbitration in the Network Interface
works on a word sized granularity meaning that both words
for the same transaction get scheduled separately. In the LR
arbitration simulation this means that the second word of the
read transaction can take advantage of the pipelining of the
Latency component of the LR server. The WC arbitration
simulation bounds both words of the read transaction using
the worst case temporal bound, causing this simulation to be
less tightly conservative than the LR arbitration simulation.

59

9
8 WC Arb. Sim. H—m_
o 7k LR Arb. Sim. =3 |
(=} 6 FPGA
s
s 4
S 3
o 2
1
0
Cores: 1 2 3 1 2 3
Large File Small File
Figure 12. JPEG decoder case study results for a 3 core MPSoC.

Most importantly for conservative application-level analysis,
from figure 11 it can be seen that regardless of accuracy
all of the simulation models temporally bound the FPGA
implementation.

We will now subsequently demonstrate the applicability
of this technique to an actual soft real-time application in
the form of a JPEG decoder. The JPEG decoding algorithm
has much in common with video decoding algorithms such
as MPEG. For this case study we start with the code of
an already existent unparallelised JPEG decoder. The JPEG
application is parallelised in a data-partitioned fashion, on a
Minimum Coded Unit (MCU) granularity [21]. In keeping
with our design flow, illustrated in Fig 1, the JPEG application
needs only to be mapped to the hardware in order to perform
conservative simulation. The data partitioning of the JPEG
application means that the entire JPEG decoding algorithm is
mapped onto each processor. The mapped JPEG application
is able to be simulated conservatively without the need to
formally model the application. The JPEG decoding algorithm
has an input data dependent execution. The experiment is
repeated for two different input images using one, two and
three cores to decode the images. The two images both
have the dimensions 1024 x 768 but have different file sizes
after JPEG encoding. The JPEG algorithm’s Variable Length
Decoding (VLD) step is not easily parallelised and as such
each core carries out this step in its entirety. MCU’s are
assigned for decoding to each of the cores following a modulo
counting scheme.

Figure 12 illustrates the timing results for both WC and
LR arbitration simulations, and execution on an actual sys-
tem implementation on FPGA. In figure 12 the expected
diminishing return of adding extra cores can be seen for
both the large and small JPEG file. This result is in keeping
with Amdahl’s law. More importantly for our conservative
simulation technique these results show an accuracy of the
conservative simulations to within 10% of the actual runtime.
These results also concur with our findings in the array transfer
case study; that writes enable more accurate simulation results.
The smaller file has a greater proportion of writes to reads than
the larger file and subsequently demonstrates more accuracy
in the simulation results. The results in figure 12 also show
that the LR arbitration simulation is more tightly conservative
than the WC arbitration simulation, which also concurs with
our findings in the array transfer case study.

9

8 WC Arb. Sim. H—_
—~ LR Arb. Sim. =
%0 7
S
- 6
Z 5
s 4
S 3
I 2

1

0

Cores: 1 2345 12345
Large File Small File
Figure 13. JPEG decoder case study results for a 5 core MPSoC hardware

description.

The usefulness of the conservative simulation technique for
soft real-time application-level performance analysis can also
be seen from the results in Figure 12. The produced timing
results from our technique are not only accurate but also
conservative providing application-level, per-trace temporal
bounds through simulation. Even though our case study only
shows our conservative simulation method being applied to 3
processing cores, our method is not bounded to an upper limit
of processing cores. By modifying the simulation hardware
description to have more cores, it is possible to map the
application to the modified simulation platform and produce
conservative per-trace timings without actually implementing
the platform. We demonstrate this possibility by mapping the
JPEG application onto a hardware description of an MPSoC
with 5 processing cores instead of 3. The results of these
simulations are presented in figure 13. Even though we do
not implement the 5 core hardware platform on the FPGA, by
using our conservative simulation technique we are guaranteed
that if the platform was implemented the timings produced by
these traces would be less than our simulation timings.

Our case study analyses show that our hybrid modelling
technique, that combines cycle accurate simulation with formal
analysis in order to provide per-trace temporal bounds for
all arbitration phases of a real-time MPSoC, can be applied
practically. We show that our conservative simulation tech-
nique can provide conservative application-level performance
analysis without the need to formally model the application.
In contrast to regular simulation techniques, we are able to
guarantee for soft real-time applications that the deadline miss-
rates, for the set of conservatively simulated traces, can only
be less when executed on the physical implementation.

VIII. CONCLUSION

Application-level performance analysis of real-time applic-
ations mapped onto a MPSoC are necessary to ensure that
the applications meet their deadline miss rate. This can be
achieved through a formal modelling approach, although this
restricts the application to specific behaviours in order to fit
the model, and requires significant effort. Soft real-time ap-
plications, such as a video decoder, may miss some deadlines
without much of a detriment to their perceived performance.

60

In these instances we propose a conservative simulation ap-
proach to Application-Level Performance Analysis on a per-
trace basis.

We propose using a hybrid modelling approach to model
a predictable hardware platform, enabling per-trace conservat-
ive application-level performance analysis through simulation.
Our method requires very little effort to modify applications
beyond mapping them to the platform. We demonstrate the
technique’s applicability to performance analysis of soft real-
time applications by conservatively simulating a JPEG de-
coder. Analysing the results of the JPEG case study, we find
that the simulation is conservative and accurate to within
10%. We conclude, based on the complexity of the technique
and the case study results, that Conservative Simulation is a
feasible alternative to Formal Analysis for Application-Level
Performance Analysis of soft real-time applications.

REFERENCES
[1]
[2]

G. Buttazzo et al., Soft Real-Time Systems Predictability vs. Efficiency.
Springer US, 2005.

G. Bilsen et al., “Cyclo-static dataflow,” IEEE Trans. on Sig. Proc.,
vol. 44, no. 2, 1996.

L. Thiele et al., “Real-time calculus for scheduling hard real-time
systems,” in Circ. and Sys., 2000., vol. 4, 2000.

M. Bekooij et al., “Dataflow analysis for real-time embedded multipro-
cessor system design,” in Dynamic and Robust Streaming in and between
Connected Consumer-Electronic Devices. Springer, 2006, ch. 4.

L. Benini et al., “MPARM: Exploring the multi-processor soc design
space with systeme,” J. VLSI Signal Process. Syst., vol. 41, no. 2, 2005.
J. Cong et al., “MC-Sim: An efficient simulation tool for MPSoC
designs,” ICCAD, 2008.

E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, 1987.

M. Wiggers et al., “Modelling run-time arbitration by latency-rate
servers in dataflow graphs,” in SCOPES, 2007.

S. Dimitrios et al., “Latency-rate servers: a general model for analysis
of traffic scheduling algorithms,” IEEE/ACM Trans. Netw., vol. 6, no. 5,
1998.

A. Hansson et al., “Enabling application-level performance guarantees
in network-based systems on chip by applying dataflow analysis,” IET
Comp. & Digital Techn., 2009.

F. Ophelders et al., “Intra- and inter-processor hybrid performance
modeling for MPSoC architectures,” in CODES+ISSS, 2008.

S. Kiinzli et al., “Combining simulation and formal methods for system-
level performance analysis,” in DATE, 2006.

M. Krause et al., “Combination of instruction set simulation and abstract
RTOS model execution for fast and accurate target software evaluation,”
in CODES+ISSS, 2008.

E. Moreno et al., “Integrating abstract NoC models within MPSoC
design,” in RSP ’08, 2008.

K. Goossens et al., “/Zthereal network on chip: Concepts, architectures,
and implementations,” IEEE Des. and Test of Comp., vol. 22, no. 5,
2005.

B. Akesson et al., “Real-time scheduling using Credit-Controlled Static-
Priority arbitration,” in RTCSA, 2008.

A. Hansson et al., “CoMPSoC: A template for composable and pre-
dictable multi-processor system on chips,” ACM Trans. Des. Autom.
Electron. Syst., vol. 14, no. 1, 2009.

, “Undisrupted quality-of-service during reconfiguration of multiple
applications in networks on chip,” in DATE, 2007.

A. Nieuwland et al., “C-HEAP: A heterogeneous multi-processor archi-
tecture template and scalable and flexible protocol for the design of the
embedded signal processing systems,” Des. Auto. for Emb. Syst., vol. 7,
no. 3, 2002.

Silicon Hive, website, http://www.siliconhive.com.

G. Wallace, “The JPEG still picture compression standard,” Commun.
ACM, vol. 34, no. 4, 1991.

(10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20
[21]

