
Evaluation of Runtime Task Mapping Heuristics with
rSesame - A Case Study

Kamana Sigdel† Mark Thompson‡ Carlo Galuzzi‡ Andy D. Pimentel† Koen Bertels†

† Computer Engineering Laboratory
EEMCS, Delft University of Technology, The Netherlands

Email: {K.Sigdel, C.Galuzzi, K.L.M.Bertels}@tudelft.nl

‡ Computer Systems Architecture Group
University of Amsterdam, The Netherlands

Email: {M.Thompson, A.D.Pimentel}@uva.nl

Abstract—rSesame is a generic modeling and simulation frame-
work which can explore and evaluate reconfigurable systems at the
early design stages. The framework can be used to explore different
HW/SW partitionings, task mappings and scheduling strategies at
both design time and runtime. The framework strives for a high
degree of flexibility, ease of use, fast performance and applicability.
In this paper, we want to evaluate the framework’s characteristics
by showing that it can easily and quickly model, simulate and
compare a wide range of runtime mapping heuristics from various
domains. A case study with a Motion-JPEG (MJPEG) application
demonstrates that the presented model can be efficiently used to
model and simulate a wide variety of mapping heuristics as well as
to perform runtime exploration of various non-functional design
parameters such as execution time, number of reconfigurations,
area usage, etc.

I. INTRODUCTION

Recent trends show that modeling and simulation frame-
works are becoming one of the popular ways for exploring
and evaluating reconfigurable systems [1-5]. These frameworks
can explore and evaluate reconfigurable systems’ behavior at
various design stages. The advantages introduced by such
approaches include high model (component) re-usability and
easy customization of the design according to various system
requirements. Nevertheless, most of the available simulation
frameworks are restricted to design time exploration and only
deal with the static nature of the reconfigurable architectures
and/or the applications. Design time exploration alone is not
adequate and cannot address the dynamic nature of such achitec-
tures/applications. As a consequence, to cope with this situation,
researchers build their own proprietary simulation tools to
model and evaluate reconfigurable architectures at runtime. To
this end, there are several issues: 1) the lack of standardized
methods of runtime modeling and simulation for evaluating such
architectures, 2) the complexity of the evaluation procedure and
3)the cumbersomeness of the comparison between the various
evaluation methods. To address these challenges, there is a
need for a standard modeling and simulation tool for Design
Space Exploration (DSE) which is able to explore and evaluate
reconfigurable systems’ behavior at runtime. By having such
a framework, it is possible to evaluate reconfigurable systems
at runtime and, more important, to provide a common platform
for model comparison and standardization of the benchmarking.
Towards this goal, in [10], we presented a generic modeling
and simulation framework, rSesame, which can explore and

0This research has been funded by the hArtes project EU-IST-035143, the
Morpheus project EU-IST- 027342 and the Rcosy Progress project DES-6392.

evaluate reconfigurable systems at early design stages. The
framework can be used to perform DSE with respect to HW/SW
partitioning, task mapping and scheduling at both design time
and runtime. With rSesame, designers can instantiate a model
that can explore and evaluate any kind of reconfigurable ar-
chitecture running any set of streaming applications from the
multimedia domain. The framework provides various important
system attributes such as execution time, area usage, number of
reconfigurations, etc and it thrives for a high degree of flexibility,
ease of use, fast performance, and applicability.

In this paper, we evaluate the framework’s characteristics
by illustrating that it can easily and quickly model, simulate
and compare a wide range of runtime task mapping heuristics
from various domains. To demonstrate this, we instantiate a
model from the framework for the Molen architecture [11]. We
incorporate several task mapping heuristics with the model and
we evaluate these heuristics based on various non-functional
attributes recorded from the model. The main contributions of
this paper are the following:
• evaluation of the rSesame framework with the model

instantiated for the Molen reconfigurable architecture;
• a case study of three different runtime mapping heuristics

with the model
• evaluation and comparison of the aforementioned heuris-

tics for the first time using a single common modeling and
simulation platform.

II. RELATED WORK

In the traditional way of performing DSE, various algorithms
of different complexity are used for HW/SW partitioning, task
mapping and scheduling. Examples of such classical algorithms
are dynamic programming, branch and bound, integer linear
programming, graph partitioning, simulated annealing, genetic
algorithms, ant colony optimization, etc. Besides these algo-
rithmic approaches, various models are also used for DSE
to evaluate reconfigurable systems behavior at various design
stages. In [2], the authors present a modeling methodology
for runtime scheduling of reconfigurable architectures based on
discrete event systems. In [3] and [4], the authors present a
system-level modeling framework for the rapid exploration of
different reconfiguration alternatives. Another approach for sim-
ulating the performance of reconfigurable architectures based
on SystemC has been presented in [1]. Similarly, in [7],
a methodology for modeling of dynamically re-configurable
blocks at the system-level using SystemC is presented. However,

all these approaches are limited to design time exploration
and only deal with the static nature of the architecture and/or
the applications. To address the dynamic nature of dynamic
reconfigurable systems, decisions made only at design time are
not adequate and cannot address all runtime system conditions.
There are few attempts which combine design time exploration
together with runtime management, presented in [5] [6] and try
to evaluate the system at both stages. However, these method-
ologies are mostly restricted to the MPSoC domain and do
not address the reconfigurable system domain. Unlike existing
approaches, we focus on designing a system-level modeling and
simulation framework for the exploration and the evaluation of
reconfigurable architectures at early design stages. We make a
first attempt to present a generic framework which can evaluate
reconfigurable systems at design time as well as at runtime.

III. RSESAME OVERVIEW

The rSesame framework is built upon the Sesame framework
[9]. Sesame is a modeling and simulation platform for system
level DSE targeting streaming applications from the multimedia
domain. The rSesame is a reconfigurable extension to Sesame,
which can be efficiently employed to perform DSE for HW/SW
partitioning, task mapping and scheduling at design time as well
as at runtime for any reconfigurable systems. The framework
strives for several key features such as flexibility, ease of use,
fast performance and applicability. The rSesame framework
allows an application task to be modeled either as a HW, SW
or as a pageable task. A HW/SW task is always mapped onto
the reconfigurable hardware component/microprocessor, while
a pageable task can be mapped on either of these resources.
Task assignment to the SW, HW and pageable categories is
done at design time. At runtime, these tasks are mapped onto
their corresponding resources based on time, resources and
conditions of the system.

We use Kahn Process Network (KPN) [12] at the gran-
ularity of coarse-grain tasks for application modeling. Each
KPN process contains functional application code instrumented
with annotations that generate Read, Write and Execute events
describing the actions of the process. The generated traces are
forwarded onto the architecture layer using an intermediate
mapping layer which consists of Virtual Processors (VPs) to
schedule these traces. Along with the VPs, the mapping layer
contains a Runtime Mapping Manager (RMM) that deals with
the runtime mapping of the applications on the architecture.
Depending on current system conditions, the RMM decides
where and when to forward these events. To support its decision
making, the RMM employs an arbitrary set of user-defined
policies for runtime mapping which can simply be plugged in
and out of the RMM. The RMM also collaborates with other
architectural components to gather architectural information.
The architecture layer in the framework models the architectural
resources and constraints. These architectural components are
constructed from generic building blocks provided by a library,
which contains components for processors, memories, on-chip
network components, etc. As a result, any kind of reconfigurable
architecture can be constructed from these generic components.
Besides the regular parameters such as computation and com-
munication delays, other architectural parameters like reconfig-
uration delay and area for the reconfigurable architecture, can

be provided as extra information to these components. More
information on the rSesame framework can be found in [10].

IV. CASE STUDY

In this section, we describe a case study to show the char-
acteristics of the rSesame framework tested on a real recon-
figurable architecture by evaluating and comparing different
runtime mapping heuristics based on various design attributes.

A. Model Instantiation

In order to carry out the evaluation, we instantiate a model
from the rSesame framework for the Molen reconfigurable
architecture. The rSesame framework is not restricted to a
specific kind of architectures and it can be deployed to evaluate
any reconfigurable architecture. The Molen architecture is just
considered as an example of such an instance. The Molen
[11] is an established norm for the polymorphic processor
paradigm incorporating a General Purpose Processor (GPP) and
a Reconfigurable Processor (RP) such as an FPGA. The RP
is used to accelerate code fragments from applications in a
processor/co-processor fashion. The RP consists of one or more
Custom Computing Units (CCUs), each representing a hardware
implementation of a task. Application tasks can be executed
either on the GPP (as regular compiled microprocessor code)
or on the RP (as a hardware IP core) or on both.

Resource Manager

C

VPB VPC VPD VPEVPA

GPP CCU1 CCU3 CCU4

Mem

A B
D

E

Arbiter

CCU2

RP

Runtime
Mapping
Manager

CBH

AMAP

IBH

Fig. 1. A Model instantiated from the rSesame framework that can facilitate
runtime task mapping for the Molen reconfigurable architecture

Fig 1 depicts the model instantiation that can perform runtime
task mapping for the Molen architecture. In the model, CCUs
and the GPP are modeled as architectural layer components.
A Resource Manager (RM) is added to monitor which CCUs
are configured and to keep track of the architectural resource
information (e.g. available area). The RMM collaborates with
the RM to gather architectural information such as free re-
sources. The arbiter is modeled as an architectural component
and performs synchronization between the GPP and the RP,
which supports either mutual exclusive operation of GPP and
RP (traditional co-processor model) or parallel operation.

B. Experimental Setup

We consider a Motion-JPEG (MJPEG) encoder application
as a case study. The corresponding KPN graph is shown in
Fig 2. The application model consists of two implementations
(MJPEG1 and MJPEG2) of the MJPEG application. MJPEG1
operates on the blocks (partially) in parallel (see the 4 DCT/Q
streams in the top part of Fig. 2), whereas MJPEG2 operates on
the blocks sequentially (bottom part of Fig. 2). MJPEG1 and
MJPEG2 are combined together in order to create an example of
dynamic application. MJPEG2 can be considered as a sporadic
application that appears in the system randomly and competes

with MJPEG1 for the resources. This behavior is implemented
in such a way that at a certain point in time MJPEG2 starts
encoding a frame simultaneously with MJPEG1.

Fig. 2. Application Model

We created a Molen architecture model with 18 CCUs, one
for each task. Note that the number of CCUs is a parameter that
a designer can define based on the number of pageable and HW
tasks. For this experiment, we consider all tasks as pageable to
fully exploit runtime mapping by deciding where and when to
map them at runtime. We assume that no task can have a size
larger than the total FPGA area. All CCUs may not fit on the
RP at once because of area constraints. Nonetheless, they can
execute on the RP after the reconfiguration. We use estimated
values of computational latency (for the GPP and the CCUs),
area occupancy (on the FPGA) and reconfiguration delay for
each task. No delay is associated with the RMM, the RM or
with context switching. The main purpose of this case study is
to evaluate the framework’s characteristics with the use of the
instantiated model. Hence, the calibration of the model is left
as a future work.

C. Task Mapping Heuristics

Our framework allows easy modification of certain compo-
nents in the model, while keeping other parts untouched. We
illustrate this feature by allowing the designers to experiment
with different kinds of runtime application mapping heuristics.
The heuristics under consideration have variable complexity
with respect to their implementation and the nature of their
execution. They were originally defined to be used at different
system stages ranging from lower architecture level to OS and
higher application levels. This illustrates the flexibility of the
framework in incorporating different kinds of algorithms from
various domains. In the following, we describe the studied
heuristics more in detail:
As Much As Possible Heuristic (AMAP): AMAP tries to
maximize the use of FPGA area as much as possible [8]. Tasks
are mapped onto the RP if area is available, otherwise they
are mapped on the GPP. This simple heuristic is being used in
resource management in various domains. The implementation
of this heuristic is trivial within our model and can be described
using only a few lines of code.
Cumulative Benefit Heuristic (CBH): CBH maintains a cu-
mulative benefit (CB) value for each task that represents the
amount of time that would have been saved up to that point if
the task had always been executed on the RP. Mapping decisions
are made based on these values and the available area. For
example, if the available area is not sufficient to load the CCU
for the current task, CCUs can be swapped if the CB of the
current task is higher than that of the to-be-swapped-out set. In
[13], this heuristic is used for dynamic coprocessor management
of reconfigurable architectures at a low architecture level. The

implementation of this heuristic was a little more complicated
and resulted with more lines of code than the one of AMAP.
Interval Based Heuristic (IBH): IBH divides execution into a
sequence of time slices (intervals) for mapping and scheduling.
In each interval, execution frequency of each task is counted.
Mapping decisions are made based on the frequency count of
the previous interval: tasks with the highest frequency count are
mapped onto the RP. In [14], this heuristic is used for resource
management in a multi-threaded environment at OS level. To
implement this heuristic, intervals are marked by inserting a
special event in the application model, which is a trivial process
within Sesame. Whenever this special event is encountered in
the mapping layer, the frequency count is revisited and the task
mapping is changed. We chose intervals to coincide with frame
boundaries, although they can easily be defined in different
ways.

V. RESULTS AND EVALUATION

The model provides various useful statistics to the designer,
such as total execution time (in terms of simulated cycles), area
usage, number of reconfigurations, etc. It also provides various
runtime information about the application and the architecture.
By observing these statistics, it is possible to gain useful insight
into the characteristics of the architecture and the efficiency
of the mapping heuristics. In the following, we describe these
statistics in more detail.

Fig. 3. DCT Execution snapshot in MJPEG1/MJPEG2 (AMAP)

A. Runtime Information

This information is recorded as a trace during the model
execution. Currently, the model is capable of providing the
runtime analysis described in the following:
Spatial behavior of a task - The spatial behavior of a task
provides an indication whether a pageable task is running as
a HW or SW task. This information is vital to check the
correctness of the spatial mapping behavior. Fig 3 captures a
snapshot of such behavior for three different tasks - DCT2,
DCT3 (from MJPEG1) and DCT (from MJPEG2) recorded
for the AMAP heuristic. The figure shows that in order to
accommodate DCT on the RP, DCT2 (at time Ty) and DCT3
(at times Tx and Tz) switched their mapping to SW providing
DCT enough area to execute. Such mapping behavior for all the
tasks for the entire execution time-line can be retrieved from the
model.
Temporal behavior of a task - A HW task can further show
various behaviors depending on its execution. It can either be
in a waiting state, a mapped state, or running state. A HW task
is in a waiting state if the task is waiting to be mapped onto
the RP. This happens when there is no area available on the RP
or in case of a task dependency with other tasks. A HW task
is in a mapped state if it is already configured on the RP and
it is not currently executing, however, it may execute again. A

HW task is in the running state when the task is actually busy
performing execution.

Fig. 4. A FSM showing temporal behavior of a HW task

Fig 4 presents a finite state machine (FSM) showing different
states of a HW task, where the numbers 1 to 4 refer to the
following state transitions: 1) as soon as area becomes available
or task dependency ends, 2) the task execution starts, 3) when
other tasks need to be executed, and 4) the task execution
finishes but the task may execute again. The mapped state has a
reconfiguration delay associated with it. If a task transits from
a waiting state to a running state, this delay is considered but if
the task is already in the mapped state then this delay is ignored.
The performance can be significantly improved by avoiding
the former transition. A HW task may or may not enter the
waiting state depending on the system conditions. To avoid a
task to enter the waiting state due to a lack of area on the
RP, the task can be mapped onto the GPP. This decision is
made by the specific policy implemented by the RMM and/or
by the RM. However, if the waiting state is due to a data
dependency, it cannot be avoided. Table I shows a snapshot of
the temporal behavior of each HW task during a small period
of the application run recorded for the AMAP heuristic. At
each execution, the behavior of each HW task is noted as R,
M and W which refer to the Running, Mapped and Waiting
state respectively. In each row, the state of all the HW tasks
is recorded at each execution. As it can be inferred from the
table, HW tasks change their state (R, M and W) with time as
per required by the system. The first row shows that DCT2 and
DCT3 are in the running state, DCT1, DCT4 and VideoOut1
(VOut1) are in the mapped state while the other tasks are in
the waiting state. The RP has area limitation and as a result,
only five tasks can be in the mapped/running state. Moreover,
all the Q tasks, VLE1 and VOut1 have a data dependency with
DCTs. As a result, other tasks are in the waiting state. In the
successive executions, these tasks, in turn, are mapped and run.

Similarly, when DCT4 changes its state from M to R, the
reconfiguration is avoided. However, in the case of DCT1, when
the state changes from W to R (as it has to pass through mapped
state), the reconfiguration delay is added. In the latter case,
by saving the first M state (see first row for DCT1 in Table
I) for three more executions, this delay can be easily avoided.
The mappings can be optimized by understanding and analyzing
such behavior. Thus, this information is vital not only to test
the correctness of the mapping algorithms but also for their
optimization.

Spatial behavior of tasks can also be observed from the
table. For example, when MJPEG2 arrives, VideoIn1(VIn1)
from MJPEG1 is moved to the GPP (indicated by SW in the
table) and DCT from MJPEG2 is mapped onto the RP. This is
again due to the area limitation on the RP.
Number of hardware or software tasks - It gives information
about the total number of tasks being executed on HW and
SW at a particular time during the simulation run. Fig 5 shows

TABLE I
A SNAPSHOT OF THE TEMPORAL BEHAVIOR OF HW TASKS [R = RUNNING,

W = WAITING AND M = MAPPED STATE] (AMAP)

VIn1 DCT1 DCT2 DCT3 DCT4 Q1 Q2 Q3 Q4 VLE1 VOut1 DCT

...
W M R R M W W W W W M -
R W R R M W W W W W M -
M W R R R W W W W W M -
R W R R R W W W W W M -
M R R R R W W W W W W -
R R R R R W W W W W W -

- - - - - - - - - - - - MJPEG2 starts - - - - - - - - - - -
SW R R M R W W R W W W W
SW R R W R W W R W W W R
SW R W W R W R R W W W R
SW R W W W W R R R W W R
SW R W W W W M W R R W R
SW R W W W W W W M M R M
SW R W W W W W W M R M M
SW R W W W W W W M M R M

...

this information for all three heuristics at various checkpoints
of the execution time-line. For CBH, at the first checkpoint,
only MJPEG1 is running and DCT1, DCT2, DCT3, DCT4 and
Q2 are mapped onto the RP. At the second checkpoint (see
bi-direction arrow in the figure), when MJPEG2 arrives, Q2 is
pushed to the GPP and DCT from MJPEG2 is mapped onto
the RP. CBH maps the tasks with largest CB value onto the
RP. In this case, the CB of DCT is larger than the CB of
Q2. As a result, Q2 is swapped with DCT for execution. In
the case of AMAP, different task sets are mapped onto the RP
than in the case of CBH. This task set also changes after the
arrival of MJPEG2. AMAP changes the application mapping
more frequently than CBH and it can map any task onto the
RP. As a result, in the specified period in Fig 5(b), these tasks
are accumulated. The detailed representation of a quarter of a
period in Fig 5(b) is given as a snapshot in Fig 3. Similarly,
IBH determines the task sets for HW mapping at the beginning
of each interval and continues mapping the same task set during
the whole interval. As it can be inferred from Fig 5(c), in the
first checkpoint only tasks from MJPEG1 are mapped onto the
RP. This task set changes in the second checkpoint after the
arrival of MJPEG2 and stays the same further on. All the three
diagrams show the accumulated tasks for each interval. Thus, in
case of AMAP and CBH, these tasks may be different in each
snapshot within one interval. However, in case of IBH, the task
set stays the same in each snapshot within one interval. The
detailed expansion of Fig 5 will take the form of Fig 3. The
information provided by these figures are indispensable in order
to evaluate the correctness of the heuristics.

For this case study, we note that all the above system-
level simulations (with the inputs for MJPEG1 and MJPEG2
consisting of 8 and 4 picture frames of 128 × 128 pixels
respectively) can be executed in less than 10 second, thus
allowing fast performance of the model and extensive design
space exploration.
B. Execution Time

The execution time is recorded in terms of simulated clock
cycles. The SW execution time is noted as the total number of
cycles when all the tasks are mapped onto the GPP only and
HW execution time is recorded when tasks are mapped onto the
RP. The speed-up is calculated as a ratio of these two values.

C. Percentage of HW/SW Execution Time
The percentage of HW execution and SW execution is com-

puted as the total percentage of the execution time contributed

(a) CBH

(b) AMAP

(c) IBH

Fig. 5. Task mapping breakdown with respect to time for different Heuristics

by the RP for HW execution and the total percentage of the
execution time contributed by the GPP for SW execution of
an application respectively. Similarly, the percentage of recon-
figuration time calculates the percentage of the total execution
time spent in reconfiguration. This provides an indication on
how much of the total time is spent in the computation and
how much is just spent in reconfigurations. These values are
calculated as follows:

SW Exec.(%) =

N∑
i=1

#SWMappings(Ti) · SWExecTime(Ti)

TotalExecTime
· 100 (1)

where #SWMappings(Ti) is the total number of SW mappings
counted by the model for task Ti, SWExecTime(Ti) is the
software execution latency for task Ti and TotalExecTime is
the total simulated execution time. HW execution time is given
as:

HW Exec.(%) ≤

N∑
i=1

#HWMappings(Ti) · HWExecTime(Ti)

TotalExecTime
· 100 (2)

Note that the HW execution percentage can only be given
here as an upper bound, since the execution of tasks on the
RP can be performed in parallel. The metric calculated here
is an accumulated value. The simulator however can give the
actual snapshots. A similar equation holds for the time spent
reconfiguring:

Reconfig.(%) ≤

N∑
i=1

#Reconfig(Ti) · ReconfigDelay(Ti)

TotalExecTime
· 100 (3)

where #Reconfig(Ti) is the number of times Ti is configured
and ReconfigDelay(Ti) is the reconfiguration delay of Ti.

D. Number of Reconfigurations

The number of reconfigurations is recorded as the total num-
ber of reconfigurations incurred during the execution of an ap-
plication onto a given architecture. This provides an indication
on how efficiently the reconfiguration delay was avoided while
mapping tasks onto the RP. For example, mapping task A, task
B, and then task A again on the RP requires 3 reconfigurations,
while changing this sequence of mapping to task A, task A and
then task B requires only 2 reconfigurations.

E. Time Weighted Area Usage

The weighted area usage factor is a metric that computes
how much area is used throughout the entire execution of
an application on a particular architecture. This provides an
indication on how efficiently the RP area is utilized. This is
calculated as follows:

Area Usage(%) =

N∑
i=1

Area(Ti) · HWExecTime(Ti) ·#HWMappings(Ti)

TotalExecTime · Area(RP)
·100 (4)

where Area(Ti) is the area occupied by task Ti on the RP,
HWExecTime(Ti) is the hardware execution latency of Ti,
#HWMappings(Ti) is the total number of HW mappings
counted by the model for task Ti, Area(RP) is the total area
available on the RP and TotalExecTime is the total execution
time of the application.

F. Heuristics Comparison

In this section, we compare the three heuristics AMAP, CBH
and IBH by using the information recorded from the model as
described in the previous subsection. Fig 6 depicts the results of
running the three heuristics for mapping the MJPEG application
onto the Molen architecture. Interestingly enough, it can be
seen that AMAP achieves performance close to CBH in terms of
area usage, number of reconfigurations and the total execution
time. We might expect a significant difference since AMAP
maps random tasks on the RP, whereas CBH maps carefully
selected tasks onto the RP.

0%

20%

40%

60%

80%

100%

IBH CBH AMAP

Pe
rc

en
ta

ge
 o

f T
im

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Speed-up

% HW Execution % Reconfiguration % SW Execution Speed-up

Fig. 7. Heuristics Comparison in terms of HW Execution, SW Execution and
Reconfiguration with corresponding Application Speed-Up

As a matter of fact, CBH tries to choose a task with highest
HW/SW latency difference and maps it onto the RP if it is
more beneficial than executing it on the GPP. However, in
this experiment the reconfiguration delay considered for all the

0

1

2

3

4

5

6

7

8

Cumulative Benefit AMAP Interval Based

% Time Weighted Area Usage

(a) % Time Weighted Area Usage

0

1

2

3

4

5

6

7

8

9

10

Cumulative Benefit AMAP Interval Based

Reconfigurations

(b) Number of Reconfigurations

(c) Total Execution Time

Fig. 6. Comparison of three Heuristics based on Area Usage, Number of Reconfigurations, and Total Execution Time

tasks is a constant factor. As a result, no matter which tasks
are mapped onto the RP, the performance of both heuristics
is almost the same. Nevertheless, the CBH can perform better
in the cases where reconfiguration delay is variable. On the
contrary, in the case of IBH, tasks are mapped onto the RP
based on the execution count. As a result, many of the sequential
tasks (in this case mostly VideoIn and VLE) are mapped onto
the RP, thus making inefficient use of the parallelism available
in the RP. As a result, this heuristic lags far behind the others. A
similar explanation holds for the area usage as well (as shown
in Fig 6(a)). Note that the number of reconfigurations for IBH is
significantly lower compared to the other two. This is not due to
an efficient algorithm which tries to optimize the reconfiguration
delay, but this is because the HW mapping count is very low
in this case.

Similarly, Fig 7 shows the comparison between the three
heuristics in terms of HW and SW execution with respect to the
speed-up. The primary y-axis in the graph is stacked as 100%
and shows the contribution of HW execution, SW execution
and reconfiguration to the total execution time. The secondary
y-axis is the measure of the obtained speed-up. Having more
HW task mappings, increases the HW execution speed, which in
turn accelerates the application. However, it has a penalty to pay
with respect to reconfiguration. The efficiency of the mapping
heuristics lies in finding the best mapping while minimizing the
number of reconfigurations. Nevertheless, in the figure, we see
a linear contribution of the reconfiguration overhead to the total
execution time. This is again due to the constant reconfiguration
delay considered in the experiment. Note that this result can
change drastically with a larger diversity of task sizes and
reconfiguration delays. In the future, we will perform more
experiments with real values of task sizes and reconfiguration
delays.

Another observation that can be made from Fig 7 is the
contribution of the HW execution, SW execution and recon-
figuration to the total execution time. The figure shows that
most of the application is executed on the GPP and only less
than 30% of the total computation is done on the RP. This is
due to the architectural restrictions. Due to the processor/co-
processor nature of the studied Molen architecture, the GPP
and the RP run in a mutual exclusive way. This influences the
mapping decision of the RMM, which in turn contributes to
the lower HW execution rates. This significantly increases the
total execution time. Note that the area usage is a time weighted
factor in terms of total execution time (see equation 4). Thus,
these two factors significantly contribute to the low area usage.
The area usage can be increased either by mapping more tasks

onto the RP or by operating the RP and the GPP in parallel.
The case study demonstrates that the framework is flexible
and can efficiently assess various runtime mapping heuristics
in terms of various design parameters. The comparison shows
that the AMAP heuristic performs better in those cases when
reconfiguration delay and area are considered as a constant
factor. In other cases, CBH may perform better.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described and tested a generic model-
ing and simulation framework for runtime task mapping for
reconfigurable architectures. We instantiated a model for the
Molen reconfigurable architecture to deploy the framework and
used it to explore various design parameters. Due to the fast
execution times, the model can be used to efficiently explore
and/or evaluate various task mappings and record various archi-
tectural parameters such as execution time, area usage, number
of reconfigurations and percentage of HW/SW mapping. We
showed that the model is easy to construct and extend. This
indicates that the presented framework can be efficiently used
as a standard platform to facilitate easy comparison between
various evaluations and, hence, can also be used as a reference
tool for future research. In future work, we will validate the
framework against a real implementation for final calibration in
order to evaluate and increase its accuracy.

REFERENCES

[1] Y. Qu et al., “Systemc-based design methodology for reconfigurable
system-on-chip”, Proc. of the Euromicro Conf. on DSD05, 2005.

[2] J. Noguera et al., “System-level power-performance trade-offs in
task scheduling for dynamically reconfigurable architectures”, Proc. of
CASES03, 2003.

[3] P.-A. Hsiung et al., “Perfecto: A systemc-based design-space exploration
framework for dynamically reconfigurable architectures,” ACM Trans.
Reconfigurable Technol. Syst., vol. 1, no. 3, pp. 1–30, 2008.

[4] T. Rissa et al., “System-level modelling and implementation technique for
run-time reconfigurable systems” Proc. of FCCM02, 2002.

[5] C. Ykman-Couvreur et al., “Design-time application exploration for mp-
soc customized run-time management”, in Proc. of SoC05, 2005, pp. 66–
69.

[6] V. Nollet et al., “Run-time management of a mpsoc containing fpga fabric
tiles,” IEEE Trans. VLSI System, vol. 16, no. 1, pp. 24–33, 2008.

[7] A. Pelkonen et al. “System-Level Modeling of Dynamically Reconfig-
urable Hardware with SystemC”, Proc. of IPDPS03, USA, 2003.

[8] K. Sigdel et al., “System-level runtime mapping exploration of reconfig-
urable architectures”, Proc. of RAW09, 2009.

[9] A. D. Pimentel et al., “A systematic approach to exploring embedded
system architectures at multiple abstraction levels,” IEEE Trans. Comput.,
vol. 55, no. 2, pp. 99–112, 2006.

[10] K. Sigdel et al., “rSesame-A generic system-level runtime simulation
framework for reconfigurable architectures”, Proc. of FPT09, 2009.

[11] S. Vassiliadis et al., “The molen polymorphic processor,” IEEE Trans.
Comput., pp. 1363– 1375, November, 2004.

[12] G. Kahn, “The semantics of a simple language for parallel programming,”
Proc. of the IFIP74, 1974.

[13] C. Huang and F. Vahid, “Dynamic coprocessor management for fpga-
enhanced compute platforms,” in Proc. of CASES08, 2008.

[14] W. Fu and K. Compton, “An execution environment for reconfigurable
computing,” in Proc. of FCCM05, 2005.

